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Random walks constitute a fundamental mechanism for a large set of dynamics taking place on
networks. In this article, we study random walks on weighted networks with an arbitrary degree
distribution, where the weight of an edge between two nodes has a tunable parameter. By using the
spectral graph theory, we derive analytical expressions for the stationary distribution, mean first-
passage time (MFPT), average trapping time (ATT), and lower bound of ATT, which is defined as
the average MFPT to a given node over every starting point chosen from the stationary distribution.
All these results depend on the weight parameter, indicating a significant role of network weights on
random walks. For the case of uncorrelated networks, we provide explicit formulas for the stationary
distribution as well as ATT. Particularly, for uncorrelated scale-free networks, when the target is
placed on a node with the highest degree, we show that ATT can display various scalings of network
size, depending also on the same parameter. Our findings could open a pathway to delicately control
random-walk dynamics on networks.

PACS numbers: 05.40.Fb, 89.75.Hc, 05.60.Cd, 05.40.-a

I. INTRODUCTION

Random walks on complex networks have attracted
increasing interest in the past few years [1, 2] because
of their wide applications in a large variety of scientific
fields [3]. Thus far, random walks on binary networks
have been extensively studied, leading to some impor-
tant understanding of this paradigmatic dynamical pro-
cess and uncovering the effects of the underlying network
structure on the behavior of random-walk dynamics [4].
For example, general solutions for mean first-passage
time (MFPT) from one node to another in a general net-
work have been found by using different methods [5–7].
The MFPT from node i to node j, denoted by Fij , is
defined as the expected time for a walker starting from
node i to first reach node j. This quantity is required
in various considerations [8]. Recently, average trapping
time (ATT), 〈Fj〉, for the trapping problem [9], a partic-
ular random walk defined as the average of Fij over all
starting points i to a given trap node j, has received con-
siderable attention [10–28], for this quantity can be ap-
plied to characterize transport efficiency. There are dif-
ferent approaches for evaluating 〈Fj〉, showing nontrivial
(dependence) scalings of MFPT 〈Fj〉 with network sizes,
which strongly depend on network structural properties
such as power-law degree distribution [13, 14, 17, 18],
fractality [16], and modularity [19, 24].

It is well known that in addition to the above-
mentioned important structural properties, most real-
life networks exhibit a large heterogeneity in the distri-
bution of edge weights, characterizing the intensive in-
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teractions between node pairs [29, 30]. The inhomoge-
neous weights have a substantial effect on various dy-
namical processes running on a network, including zero
range processes [31], synchronization [32, 33], cascad-
ing failures [34], mass-aggregation [35], diffusive pro-
cesses [36], bimolecular chemical reactions [37], diffusion-
annihilation processes [38], voter behavior [39], traffic
fluctuation [40], among others. Thus far, a comprehen-
sive analysis about random walks on weighted networks
is still lacking, although it is suggested that weight het-
erogeneity could play an essential role on random-walk
dynamics.

In this paper, we present a rather comprehensive study
of random walks on a generic weighted network, where
the weight wij of the edge linking nodes i and j has
strong correlations with the degrees, di and dj , of node i
and j, and is assumed to be wij = (didj)

θ with θ being a
controllable parameter. Such a form of edge weights can
be observed in various real weighted networks [29, 30].
Based on the spectral graph theory [41], we will derive
analytically the formulae of the stationary distribution,
MFPT Fij from node i to node j, ATT 〈Fj〉 to a given
target node j for a walker starting from a source node se-
lected from the stationary distribution, as well as a lower
bound for 〈Fj〉. The obtained results show that all these
quantities are strongly affected by network weights char-
acterized by parameter θ, which indicates the significant
impact of weights on random walks. For the special case
of uncorrelated networks [42], we will provide succinct
expressions for some interesting quantities. Particularly,
for the trapping problem on an uncorrelated scale-free
network, when the perfect trap is placed at a hub node
with the largest degree, by tuning the weight parame-
ter θ, ATT can exhibit different scalings with network
sizes. Our work thus might have practical implications
for controlling random walks on real-world networks.
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II. FORMULATION OF THE PROBLEM

Most existing works about random walks are confined
on binary networks [5]. For a connected binary network
G with N nodes and M edges, where the nodes being
labeled by 1, 2, 3, . . . , N , its connectivity is represented
by the adjacency matrix A, in which the entry aij = 1
(or 0) if nodes i and j are (not) adjacent. The degree of

node i is di =
∑N

j=1 aij , and the diagonal degree matrix
D of network G is defined as follows: the ith diagonal
entry is di, while all the non-diagonal entries are equal
to zero. It is easy to verify that the total degree of all

N nodes is K = 2M =
∑N

j=1 di, and the average node

degree is 〈d〉 = 2M/N .

For discrete-time random walks defined on a binary
network, at each time step the particle (walker) starting
from its current position moves to each of its neighbor-
ing nodes with the same probability. Such a stochas-
tic process is characterized by the transition matrix
P = D−1A [6], in which the entry pij = aij/di presents
the jumping probability from node i to node j in one
step. This process can be described by an ergodic
Markov chain [43, 44], whose stationary distribution is
π = (π1, π2, . . . , πN )⊤, where πi = di/K. It is clear that

π⊤P = π⊤ and
∑N

i=1 πi = 1.

The above-defined random walks can be easily ex-
tended to be on weighted networks [45]. Mathematically,
topological and weighted properties of a weighted net-
work are described by a generalized adjacency matrix
W , whose entry wij specifies the weight of the edge con-
necting nodes i and j. In this paper, we focus on undi-
rected network having symmetric nonnegative weights
wij = wji ≥ 0. Moreover, we assume the weight of the
edge between nodes i and j to be wij = (didj)

θ, where θ
is a controllable parameter. Our assumption is based on
empirical works on realistic networks, including scientific
collaboration networks [29], metabolic networks [30], and
airport networks [29, 30]. Moreover, the strength si of
node i is defined by si =

∑

j∈Ωi
wij [46], where the sum

runs over the set Ωi of the neighboring nodes of i.

Notice that random walks occurring on weighted net-
works are biased. In the process of a random walk, the
transition probability pij from node i to j is given by
pij = wij/si, which constitutes an entry of the transition
matrix P = S−1W for the biased random walk, where
S is the diagonal strength matrix with its ith diagonal
entry equal to the strength si of node i. In the following,
let s denote the sum of strengths for all the N nodes,

i.e., s =
∑N

i=1 si =
∑N

i=1

∑N
j=1 wij . It is clear that the

transition matrix P is a stochastic matrix.

Next, we will show that many quantities related to
the biased random walks are encoded in the transition
matrix P , and thus can be derived from P . Generally,
except regular networks, P is asymmetric. So, we intro-
duce matrix

Γ = S−
1
2WS−

1
2 = S

1
2PS−

1
2 , (1)

which is real and similar to P and thus has the same set
of eigenvalues as P . Furthermore, if ψ is an eigenvector
of matrix Γ associated with eigenvalue λ, then S−

1
2ψ is

an eigenvector of P corresponding to eigenvalue λ.
It is easy to verify that for any given node i,

∑n
j=1 pij =

1 always holds. Thus, 1 is an eigenvalue of transition
matrix P , as well as matrix Γ. Moreover, it is the great-
est eigenvalue with single degeneracy. For eigenvalue 1
with a corresponding normalized eigenvector w, one has
Γw = w, which together with Eq. (1) gives P (S− 1

2w) =

(S− 1
2w). Because P1 = 1, one has S− 1

2w = 1. Thus, w
can be determined explicitly as

w = (w1, w2, . . . , wN )⊤ =

(
√

s1
s
,

√

s2
s
, . . . ,

√

sN
s

)⊤

.

(2)
Equation (1) shows that matrix Γ is real and symmet-

ric, thus all its eigenvalues are real. Let λ1, λ2, λ3, · · · ,
λN be the N eigenvalues of matrix Γ for a network of size
N , rearranged as 1 = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λN ≥ −1,
and let ψ1, ψ2, ψ3, . . ., ψN denote the corresponding
normalized, real-valued and mutually orthogonal eigen-
vectors. Let ψi = (ψi1, ψi2, . . . , ψiN )⊤ and ψi be the ith
column vector of matrix Ψ. Evidently, Ψ is an orthogonal
matrix, satisfying

ΨΨ⊤ = Ψ⊤Ψ = I; (3)

that is,

N
∑

k=1

ψikψjk =
N
∑

k=1

ψkiψkj =

{

1, if i = j,

0, otherwise.
(4)

According to the properties of real symmetric matrices,
one has

Ψ⊤ΓΨ = diag[λ1, λ2, . . . , λN ], (5)

which, together with Eq. (3), leads to

Γ = Ψdiag [λ1, λ2, . . . , λN ] Ψ⊤ . (6)

Equation (6) means that the entry τij of matrix Γ has
the following spectral form:

τij =

N
∑

k=1

λkψkiψkj . (7)

We now express matrix P in terms of Ψ and S. From
Eqs. (1) and (3) one obtains

P = S−
1
2ΓS

1
2 = S−

1
2Ψdiag [λ1, λ2, . . . , λN ] Ψ⊤S

1
2 . (8)

Let P t be the tth power of matrix P , whose ijth entry
denoted by (pt)ij represents the probability for a walker
to start from node i and reach node j in t steps. From
Eq. (8), one has

P t = S−
1
2

(

N
∑

k=1

λtkψkψ
⊤
k

)

S
1
2 (9)
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and

(pt)ij =
N
∑

k=1

λtkψkiψkj

√

sj
si
. (10)

In the limit, one has

lim
t→∞

(pt)ij = ψ1iψ1j

√

sj
si

=
sj
s
, (11)

where Eq. (2) and the relation w = ψ1 were used. There-
fore, the stationary distribution for a random walk on
weighted networks is

π = (π1, π2, . . . , πN )⊤ =
(s1
s
,
s2
s
, . . . ,

sN
s

)⊤

, (12)

which obviously depends on the strengths of the nodes,
thus the weighes of the edges.

III. MFPT FROM ONE NODE TO ANOTHER

MFPT is one of the most important quantities related
to random walks, since it contains useful information
about the random-walk dynamics [8]. In what follows,
we will derive MFPT for a random walk from one node
to another in a weighted network, by using the formalism
of generating functions [47].
Let (qt)ij represent the probability for a walker start-

ing from node i to reach node j for the first time precisely
in t steps. This first passage probability (qt)ij relates to
the transition probability (pt)ij by

(pt)ij =

t
∑

s=0

(qs)ij(p
t−s)jj . (13)

Let Fij denote the MFPT for a random walk on a
weighted network from node i to j. Then,

Fij =
∞
∑

t=1

t(qt)ij . (14)

To find Fij , we introduce the following generating func-
tions:

Q̃ij(x) =

∞
∑

t=0

(qt)ijx
t (15)

and

P̃ij(x) =

∞
∑

t=0

(pt)ijx
t , (16)

where |x| < 1. The above two equations together yield

Q̃ij(x) =
P̃ij(x)

P̃jj(x)
. (17)

By definition, the MFPT Fij can be evaluated as

Fij =

∞
∑

t=1

t(qt)ij =
d

dx
Q̃ij(x)

∣

∣

∣

∣

x=1

. (18)

Thus, our goal is reduced to evaluating Q̃ij(x) and then
differentiating it.
Plugging Eq. (10) into Eq. (16) yields

P̃ij(x) =

∞
∑

t=0

N
∑

k=1

(λkx)
tψkiψkj

√

sj
si

=

N
∑

k=1

ψkiψkj

√

sj
si

+

N
∑

k=1

∞
∑

t=1

(λkx)
tψkiψkj

√

sj
si

= ψ1iψ1j

√

sj
si

∞
∑

t=1

xt +

N
∑

k=2

[

∞
∑

t=1

(λkx)
t

]

ψkiψkj

√

sj
si

= πj
1

1− x
+

N
∑

k=2

1

1− λkx
ψkiψkj

√

sj
si
, (19)

where we have used Eqs. (4) and (12). In a similar way,

P̃jj(x) can be derived as follows:

P̃jj(x) =
∞
∑

t=0

N
∑

k=1

(λkx)
tψ2

kj

=
N
∑

k=1

(λ1x)
0ψ2

kj +
N
∑

k=1

∞
∑

t=1

(λkx)
tψ2

kj

=

N
∑

k=1

ψ2
kj + ψ2

1j

∞
∑

t=1

(λ1x)
t +

N
∑

k=2

[

∞
∑

t=1

(λkx)
t

]

ψ2
kj

= πj
1

1− x
+

N
∑

k=2

1

1− λkx
ψ2
kj . (20)

Substituting Eqs. (19) and (20) into Eq. (17) and carry-
ing out some computation, we obtain

Q̃ij(x) =

πj + (1− x)

N
∑

k=2

1

1− λkx
ψkiψkj

√

sj
si

πj + (1− x)
N
∑

k=2

1

1− λkx
ψ2
kj

. (21)

Differentiating Q̃ij(x) with respect to x and then setting
x = 1, we obtain a closed-form expression for Fij as

Fij =
s

sj

N
∑

k=2

1

1− λk

(

ψ2
kj − ψkiψkj

√

sj
si

)

, (22)

which is useful for the following derivation. Similarly to
the stationary distribution, the MFPT Fij is also related
to the strength of the target node and weights of the
involving edges.
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IV. MFPT TO A GIVEN TARGET

After obtaining the MFPT Fij from one node i to an-
other one j in a generic weighted network G, we proceed
to consider the trapping problem defined on G, which is
a particular random walk with a perfect trap placed at a
given node, e.g., node j. We use 〈Fj〉 to represent the av-
erage trapping time (ATT), which is the mean of MFPT
Fij from a starting point i to the trap node j, with the
starting point being taken over the stationary distribu-
tion [18] that depends on the strength as can be seen from
Eq. (12). Note that the selection of the starting point is
slightly different from that in most existing works [10–17],
where the distribution of the starting points is uniform.
The choice of the stationary distribution for the starting
points adopted here is reasonable, since we focus on the
trapping problem on weighted networks.
By definition, the ATT 〈Fj〉 is given by [18]

〈Fj〉 =
1

1− πj

N
∑

i=1

πi Fij . (23)

Taking into account the expression of Fij in Eq. (22),
one straightforwardly arrives at

〈Fj〉 =
1

1− πj

N
∑

i=1

si
sj

N
∑

k=2

1

1− λk

(

ψ2
kj − ψkiψkj

√

sj
si

)

=
1

1− πj

N
∑

k=2

(

1

1− λk
ψ2
kj

N
∑

i=1

si
sj

)

−
1

1− πj

N
∑

k=2

(

1

1− λk
ψkj

√

s

sj

N
∑

i=1

ψki

√

si
s

)

.(24)

Using Eq. (4) gives
∑N

i=1 ψki

√

si
s =

∑N
i=1 ψkiψ1i=0.

Thus, Eq. (24) reduces to

〈Fj〉 =
1

1− πj

s

sj

N
∑

k=2

1

1− λk
ψ2
kj . (25)

Equation (25) is a general result valid for the trapping
problem on all weighted networks.
We next derive a lower bound for 〈Fj〉. By Cauthy’s

inequality, one has

(

N
∑

k=2

1

1− λk
ψ2
kj

)(

N
∑

k=2

(1− λk)ψ
2
kj

)

≥

(

N
∑

k=2

ψ2
kj

)2

.

(26)
According to Eq. (7), every diagonal entry entry sjj
of matrix S satisfies sjj =

∑N
k=1 λkψ

2
kj ≥ 0 , j =

1, 2, . . . , N . Considering that the traces of matrices S
and P are equivalent to each other, both equaling zero,
we have sjj = 0. Then, applying λ1 = 1, one gets

N
∑

k=2

(1− λk)ψ
2
kj =

N
∑

k=1

(1− λk)ψ
2
kj = 1−

N
∑

k=1

λkψ
2
kj = 1

(27)

and

N
∑

k=2

ψ2
kj =

N
∑

k=1

ψ2
kj − πj = 1− πj . (28)

Combining Eqs. (25)-(28) produces the following result:

〈Fj〉 ≥
1

1− πj

s

sj
(1 − πj)

2 =
s

sj
(1− πj) =

s

sj
− 1. (29)

This lower bound is strongly affected by the strength of
trapping node and the weights of all edges in the network.
In addition, as will be shown in the following section, the
lower bound for ATT can be achieved in some graphs.

V. RESULTS FOR UNCORRELATED

WEIGHTED NETWORKS

We have shown that the primary quantities related to
random walks on weighted networks rely on the node
strengths and the weights of edges. Below, we will apply
the above-obtained results to uncorrelated networks in
order to uncover how these primary quantities change
with the weight parameter θ.
For uncorrelated networks, many quantities of interest

can be determined explicitly. First, for the strength si of
node i, by definition we have

si =
∑

j∈Ωi

(didj)
θ = (di)

θ
dmax
∑

d′=dmin

diP (d
′|di)(d

′)θ , (30)

where P (d′|di) is the conditional probability [48] that a
node of degree di has a neighboring node with degree
d′; dmin and dmax are the minimum and maximum node
degrees, respectively. Let P (d) be the degree distribu-
tion of the network. Then, for an uncorrelated network,
P (d′|di) = d′P (d′)/〈d〉 and

si = (di)
θ+1

dmax
∑

d′=dmin

(d′)θ+1P (d′)

〈d〉
=

(di)
θ+1〈dθ+1〉

〈d〉
,

(31)
where 〈dθ+1〉 is the (θ+1)st order moment of the degree
distribution.
The total strength s of all nodes can be evaluated as

s = NP (si)si = NP (di)si =
N〈dθ+1〉2

〈d〉
, (32)

where P (si) is the distribution of node strengths that is
equal to the degree distribution of the network. Thus,
the stationary distribution for a random walk on an un-
correlated weighted network becomes

π =
(s1
s
,
s2
s
, . . . ,

sN
s

)⊤

=

(

(d1)
θ+1

N〈dθ+1〉
,
(d2)

θ+1

N〈dθ+1〉
, . . . ,

(dN )θ+1

N〈dθ+1〉

)⊤

. (33)
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Equation (33) shows that the stationary distribution
is dominated by the weight parameter θ. When θ = 0,
it reduces to the case of unbiased random walks. For the
case of θ = −1, the stationary distribution is uniform
with πi = 1/N for node i. In the case of θ > −1, πi
increases with di, which means that it is easier to find
the walker after a long time at a large-degree node than
at a small-degree node. On the contrary, in the case of
θ < −1, πi is a decreasing function of di, thus the final
occupation probability for a node with a small degree is
higher than another node with a large degree.
From Eq. (33), we can also obtain the mean first return

time (MFRT) Rii for uncorrelated weighted networks.
By definition, MFRT Rii is the expected time for a walker
originating from node i and returning to i for the first
time. According to the Kac formula [44, 49, 50], the
MFRT for a node coincides with the inverse probability
to find the walker at this node in the final equilibrium
state of the random-walk process. Thus,

Rii =
1

πi
=
N〈dθ+1〉

(di)θ+1
, (34)

which also depends on θ and has been derived in [51] by
using a different approach.
Finally, for the lower bound of ATT on an uncorrelated

network, inserting Eqs. (31) and (32) into Eq. (29) yields

〈Fj〉 ≥
N〈dθ+1〉

(dj)θ+1
− 1. (35)

This lower bound is sharp. It can be reached in an
N−node complete graph, where the MFPT from any
node to j equals N − 1 [52], which is consistent with
Eq. (35). Moreover, the ATT for complete graphs is in-
dependent of parameter θ.
Different from complete graphs and some other regular

graphs belonging to circular graphs, the lower bound for
ATT provided by Eq. (29) on non-regular networks relies
heavily on the parameter θ. For those networks with
small relaxation time when the stationary distribution is
reached, the lower bound can be attained (see [53] for
explanation) but the results for different destinations are
closely related to θ. For θ > −1, the ATT for large-
degree nodes is small, since Fj decreases with the growing
dj . For θ = −1, the ATT is identical for all destination
nodes irrespective of their degrees. While for θ < −1,
the walker can find small-degree nodes more easily than
finding large-degree nodes, since in this case the walker
is biased towards those nodes with small degrees.
Note that for the θ = 0 case, it is reduced to unbi-

ased random walks. For this particular case, Eq. (29)
shows that the lower bound of ATT is proportional to
the inverse degree of the trap node. Such a scaling has
been reported in [18] and [53]. In [18], a main concern is
ATT on scale-free networks, which are ubiquitous in real
systems [54, 55].
Next, we show that our results for ATT given in

Eq. (29) can display various different scalings when the

trap is located on a target node having a maximum de-
gree on a scale-free network and provide important in-
formation about random walks on the scale-free network,
encompassing that [18] as a particular case.
For an uncorrelated scale-free network with a constant

average degree 〈d〉 and a power-law degree distribution
P (d) ∼ d−γ , the term 〈dθ+1〉 in Eq. (35) can be evaluated
as follows: for θ = −1, 〈dθ+1〉 = 1; for θ = 0, 〈dθ+1〉 = 〈d〉
is exactly the average node degree; while for other cases
(θ 6= 0 ,−1), by integrating dθ+1P (d) from dmin to dmax

with respect to d, we obtain 〈dθ+1〉 to be approximatively

〈dθ+1〉 ∼











ln dmax, θ = γ − 2,

(dmax)
θ−γ+2, θ > γ − 2,

(dmin)
θ−γ+2, θ < γ − 2.

(36)

On the other hand, it has been established [42] that
for an uncorrelated scale-free network with γ ≥ 3, its
dmax approximately obeys the relation dmax ∼ N1/(γ−1).
Thus, when a trap is fixed at a hub node having degree
dmax on such a network with γ ≥ 3, the lower bound of
ATT, 〈Fdmax〉, can be expressed in terms of the network
size N . For θ = −1, 〈Fdmax〉 = N − 1, which scales
linearly with N . In fact, for this special case, the ATT is
independent of the network type and the trap position.
For θ = 0, 〈Fdmax〉 = N (γ−2)/(γ−1), growing sublinearly
with N as observed in [18]. While for θ 6= 0 ,−1, we
distinguish three cases:

〈Fdmax〉 ∼











lnN, θ = γ − 2,

1, θ > γ − 2,

N1− (γ−2)(θ+1)
(γ−1) , θ < γ − 2 .

(37)

Note that the approximate formulas given in Eq. (37) are
valid for small θ. Particularly, when θ = 0, Eq. (37) is in
agreement with the previous result obtained in [18]. For
other θ, Eq. (37) may yield a large deviation from the
true values [36].
To confirm our analytical results given in Eq. (37), we

perform extensive simulations of biased random walks
on the Barabási-Albert (BA) scale-free network [56], the
degree distribution exponent γ of which is equal to 3.
In Fig. 1, we present our numerical results for the ATT
to a most-connected node of BA networks with average
node degree 4, which confirm the theoretical prediction
provided by Eq. (37).
Equation (37) shows that for large θ, one can find

the trap hub easily. For example, in the whole range
of −1 < θ ≤ 0, when θ is not very large, the ATT in-
creases sublinearly with N , displaying a high trapping
efficiency. Actually, for some particular θ this result is
also valid for correlated scale-free networks. Previous
studies have indicated that in the case of θ = 0, the
ATT to a hub node in some correlated scale-free networks
behaves sublinearly with N , such as the pseudofractal
web [14, 15], Apollonian network [16], hierarchical scale-
free networks [17, 22, 25], and modular scale-free net-
works [19, 24]. While for small θ, especially for θ < −1,
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FIG. 1: (Color online) Average trapping time to a hub node
for biased random walks on the Barabási-Albert scale-free net-
work for various θ and network size N . The symbols represent
the numerical results generated by Eq. (24), while the solid
lines stand for the corresponding analytical results given by
Eq. (37).

Eq. (37) shows that the walker will miss the hub node
when θ decreases to sufficiently small, since in this case
the walker always travels among some nodes with small
degrees.

VI. CONCLUSIONS

In this paper, we have presented a unified framework
for random walks on weighted networks. In the process

of random walks, the transition probability from node i
to node j is proportional to the weight of the edge con-
necting i and j, which is (didj)

θ, where di and dj are
respectively the degrees of i and j, and θ is a control pa-
rameter of weights. We have calculated analytically the
expressions of the stationary distribution, MFPT from an
arbitrary node to any other node, and ATT to a given
trap node with a lower bound obtained. The resultant
formulas for all these interesting quantities are sensitive
to the change of θ, implying that θ plays an essential
role for random walks on weighted networks. For the
special case of uncorrelated networks, we have derived a
succinct expression for the stationary distribution, based
on which we have further shown how the lower bound
of ATT scales with the network size. Particularly, we
have provided a comprehensive analysis for ATT on un-
correlated scale-free networks, when a trap is positioned
at a hub node. Our work provides an efficient method
for controlling random-walk dynamics, using which one
can accelerate or decelerate the diffusion process on a
weighted network.
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