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A finite quantum system evolving unitarily equilibrates irpeobabilistic fashion. In the general many-
body setting the time-fluctuations of an observaldleare typically exponentially small in the system size.
We consider here quasi-free Fermi systems where the Hanigitt@nd observables are quadratic in the Fermi
operators. We first prove a novel bound on the temporal fltichgA 42 and then map the equilibration
dynamics to a generalized classical XY model in the infireteperature limit. Using this insight we conjecture
that, in most cases, a central limit theorem can be formdlkgtading to what we calaussian equilibration:
observables display a Gaussian distribution with relagiver A.A/A = O(L~'/?) wherelL is the dimension
of the single particle space. The conjecture, corroborbyedumerical evidence, is proven analytically under
mild assumptions for the magnetization in the quantum XY eh@ohd for a class of observables in a tight-
binding model. We also show that the variance is discontiswad the transition between a quasi-free model and
a non-integrable one.

PACS numbers: 03.65.Yz, 05.30.-d

I. INTRODUCTION space:

A(t) = tr (ae”"MRe"M) 1)

Out of equilibrium and equilibration dynamics of closed ) ) )
quantum systems have been recently at the center of a renewgd: (1) is Perfefgy a?glogqus to its many-body version
and intense interest/[1-7]. In particular the issue whetherA (1) = tr (Ae” poe’ ) with R playing the role of the
quantum integrability plays a key role in equilibration aifd |n|t!al statepg. There is however one importance Q|fference:
so, which one, has been investigated by several authors [g¥Nile trpg = 1 one hastR = N = vL , i.e. isextensive (we
10]. In this paper we will address this problem along thedefinedv = N/L the filling factor). . .
lines of the probabilistic approach to quantum equilimrati ~ For unitary evolution in finite systems, the density matrix
advocated in [6,/7, 11]. Here the central object is the (itgini # (t) = e~"" poe’" does not converge neither in the strong
time) full time statistics of the expectation value of a quan Nor in the weak topology [6]. Equilibration must be formu-
tum observable. We will focus on a particular, yet very impor lated in probabilistic terms. Given the observation time-wi
tant class of quantum integrable systems: quasi-free Gerimi  dow [0, 7', the observablel (¢) has probabilityPy (a) dov of
systems, i.e. systems where both the Hamiltonian and the o€ing in the intervala, a + da], where the probability den-
servable are quadratic in the canonical Fermi operatoisgUs sity is given byPa (a) = § (A (t) — a)T, and the time aver-
fairly g_eneral central-limit type arguments as_wgll as epl age operation ig” = T~ foT £ (¢) dt. For simplicity we will
analytic examples we will argue that a sharp d|§t|nct|va_fsfa always take the limif” — oo when taking time average and
of these systems, as opposed to the general interacting onggte simply 7 in place of f<. Roughly speaking an observ-

is an exponential enhancement of the amplitude of the temape 4 equilibratesif its probability densityP, («) is highly
poral fluctuations of a quadratic observable around its mea, YNy

value. This appears to be a precise and quantitative way eaked around its mea(t) = tr (A7) [6]. The role of equi-

X . rium state is played by the time-averaged density mairix
make sense of the common folklore that integrability leads t 1S play yi 9 : .y ﬁ
AT The question we are going to address here is: what is the
a poorer (or no) equilibration.

size of the fluctuations oP,4 («) for observablesA in this
guasi-free setting?

Before tackling this question and concentrate on fluctua-
tions, let us point out a few remarks on the nature of the equi-

The system is initialized in a generic staiewith N parti-
cles and both the evolution Hamiltonidih and the observ-

able A are quadratic in the fermionic operatorsl[26]. Thelibrium state itself. If the spectrum is non-degenerate &t

Hamiltonian is H = 37, ¢} M yc, = ¢'Me (notation erage, dephased, stathas the fornp = 3__ p,,|n)(n| where
ct = (c{, e ,cTL) , L number of sites). The general quadratic |n) are many-body eigenstate &f corresponding to energy
E, andp,, = (n|po|n). The powers of the HamiltoniaH",
n=20,1,...,d— 1 are linearly independent if there atelif-
ferent eigenvalueg,, and if the spectrum is non-degenerdte
coincides with the Hilbert space dimensioni[29]. In thisdat
case the average state can always be written in the foem

observable has the form = Y clas ¢y, = clac. We
will assume that|a|| ., = O (1) [27] as this guarantees that
the expectation values oA scales at most extensively with
the system size [28]. The main object of investigation is
A(t) = tr(Ae " pyeif). Exploiting the quadratic na- P A _ .
ture of the problem and introducing the covariance matrixeXP [Zk:o o H } the so called GGE (generalized Gibbs
Ry = tr(poclcy) (0 < R < 1) one can show that the ensemble) [8]. The coefficients, depend on the initial state
expectation valued (¢) reduces to a trace in the one-particle po and on the eigenvectof$n)}. The condition to write the



coefficientsy,, interms of thep,, is precisely that of the invert- bound of Reimann in our quasi-free case. Let the one-
ibility of the Vandermonde matri¥;, , = (En)kfl (n,k = particle Hamiltonian have the following diagonal forkd =
1,...,d), i.e., once again, non-degeneracy of the spectrumy_; Ax|k)(k|. The time averaged covariance matrix is
sincedet V =], _, (Ex — Ex). The relation expressing the then R = >, (k|R|k)|k)(k|. We also defineF,, =

o e a0 d—1 k : klalq)(q|R|k). Assuming the non-resonance condition
Pa'S interms of theny’s is: pr, = ZXpl [Zk:o akE”] Since f<or| t|h(>e< c|)n(|a-p>)article spectrum, one getsd? = trF? —
p=expd, npaln)(n| = exp> 2y 30, axExln)(n| . the  s° (F ) < wF? = Y0, [(Klalg)|” [{a|RIK)]*. Now
inverse relation iS, in vector notatiaa = V_llnp. The in- R is a non-negative opera'i:or and so induces a (p055|b|y
verse of the Vandermonde matrix can be found explicitly bydegenerate) scalar product which satisfies Cauchy-Schwarz

expanding the identityn) (n| = [T, % multiplying inequality: |(g|RIK)Z = |(alM)rl> < (dla)rklk)r =
by In p,,, summing over. and exponentiating sele [30] (q|R|q)(k|R|k). This leads us to

Let us now go back to the context of EG] (1). Sirce<
R (t) < 1 the time averaged covariande = e¢—M ReitM AA® < tr (aRaR) < ||a|\§O trR )
satisfies) < R < T and so defines a Gaussian stagewith
covarianceR. Moreover, sincerR (t) = N, forallt,trR =  Now, since0 < R < T, trR. < trR = trR = N, we

N, pg is a Gaussian state witN particles. Now, for what finally obtain AA% < |[la|, vL . While equation[(R) is the
concerns quadratic observables of the kihd= cfac, their  quasi-free analog of the Reimann’s bound it implies some
time average expectation value is the same as that obtainéuportant differences with respect to the general (nosjfre
with pz: A = traR = trApg. In other words the statgs  case. Consider the situation where the observable ex-
andpy arethe same when restricted to quadratic observables.tensive. In the non-free case the diameterlab extensive,

A generic Gaussian state can be written in the form=  i.e. diam(4) = O (L”) in D spatial dimensions. More-
N exp (c'G(R)c) whereG(R) :=log[R(1— R)~'][12]and  over, the minimum value of the purity> is 1/d and so

N is a normalization constant. From this it immediately fol- is exponentially small in the system size. In the quasi-free
lows thatp; can be written apz = Nexp_, Akcher where  setting, instead, the minimum value ofR in Eq. (2) is
c's are eigenmodes dff an_d comm_des with equation (8_) of mintrR> — N2/L = 2L, sinceR/N defines a density ma-
[8]. When the system equilibrates i.61(t) — tr (Apg) this iy 61 \which the minimum purity is the inverse of the matrix
remark shows .the validity of the GGE fany initial statepg dimensionZ. All in all, recalling that|jal|.. = O (1), for
and aI_I quadratic observables. I_nd|cat|ons thatc_onverges extensive observables, the minimum of the bound to the vari-
to p; in some sense as the size increases were indeed alre Nee isO (Lge_’yL), ~ > 0, (for systems of linear sizé),

presentinthe Iiteratu_re._ Fpr instancelin/[13] it was shdvan,t whereas in the quasi-free setting one baL). This seems
n t_he_thermod_ynamlqIlmltp (t) = p weakly ast — oo, to hint at the fact that fluctuations in the quasi-free sgttire
Wh'.le in [14,[13] a pgr'uc_ular form of strong convergence Was_proportional to the system size and are hence much larger tha
derived, when considering subsystems (though for a Bosonig, ie non_free case where they are exponentially smallgn th
system). volume. Of course Eq[12) is just an upper bound, and noth-
ing prevents, in principle, from having a much smaller vari-
ance. For example, whenever the initial state or the observ-
able commute with the Hamiltonian (¢) is constant and its
) - fluctuations are zero. We will always avoid such patholdgica

Assuming the non-resonantconditiononthe enerdigs{  gjtyations. In the following, instead, we will argue thag #x-
Ey = Ep — E, impliesn = m andp = gorn =pandm = tansjve behavior of the fluctuations, in quasi-free systéms
g), Reimann has shown [16] that the temporal fluctuationsy, fact quite general, leading tols+/Z scaling of the relative
AA? = (A(t) — A)” satisfy AA? < diam (4)? tr5® where  errorv/AA2 /A for a generic observable. Indeed sudy&/'T
diam (A) is the maximum minus the minimum eigenvalue of scaling has been observed to hold for a quadratic Hamiltonia
A. Now in general, for most initial states, the puritytrp>  even for more general observables (see SM df [17]) and even
is exponentially small in the system size implying exponen-in presence of disorder except for quenches into a localized
tially small fluctuations. Here is one argument. First nbett phasel[18].
trp®> = L (t) with £ (t) being the Loschmidt echat (t) =
|<w0|e‘”H|wo>\2 which admits the following cumulant ex-
pansionL (t) = exp [23 00, (—t2)" (H?™)./ (2n)!] [6].
Here (H?"), are the cumulants off computed withp,. The
point is that if pg is sufficiently clustering, but not an eigen-
state ofH, all the cumulants are extensive in the system siz
and non-zero. Thek (t) = exp [~L"g (t) + corrections]
whereg (t) > 0 does not depend on the size and, for suffi-
ciently largeL one hasC < exp [—L” min, g (t)] [31].

In the quasi-free setting the non-resonant condition doeg(A( . Now we observe théf the (one-particle) ener-
not hold. Let us then seek for the analogous of thegies are rationally independent (RI), as a consequence of a

II. ABOUND ON THE VARIANCE

I11.  MAPPING TO A CLASSICAL XY MODEL

Let us write again the generic expectation value
e@) in the basis which diagonalized/: A(t) =
A+ 25y [Figl cos (E(Ak — Ag) + Brq) With ¢, =
arg Fy, 4. To obtain information on the probability den-
sity P4 («) we consider the generating functiqmny (A) :=
t)—A)



theorem on the averages, the infinite time average @) is
the same as the uniform average over the tdts In this
case the generating functiony (\) is exactly given by the
partition function of the generalized, classical XY modéthw
energyr (0) = 237, [Fi,q| cos (0 — 0 + ¢r,q) and in-
verse temperaturd = —\. The matrix|F}, 4| defines the
lattice of the interactions while the phasgs, give the offset

from which the angles are measured. Note that the behavior

of the densityP,4 («) is dictated byy 4 () in a neighborhood
of A = 0 which corresponds to infinite temperature of the
classical XY model.

Itis not difficult to engineer a situation which exactly repr
duces the standard XY modelip-dimension. For example, it
suffices to consider the Hamiltonidii = Y Cl Coe, With
e Rl (z is a point of aD-dimensional lattice), choose the
observabled =} . ., cl.cy ((z,y) indicates nearest neigh-
bor) and initial stateiy) = L~Y2Y" |&) = cl_,]0). In
this case the partition functiof (free-energyF) of the clas-
sical D-dimensional XY model is precisely the characteristic
function of the observabld: Z = x4 (A) (F = Inxa (V).

In fact in this caseiz ,, = 0(5,) While Ry, = 1/L so that

0
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Figure 1: Full distribution for the transverse magnetizatper site
m (t) = (of (¢)) around its mean fof. = 40. The quench is per-
formed from ¢o = y1 = 1) (ho = 2) — (h1 = 4). The histogram
is obtained sampling (¢) at 200,000 random times uniformly dis-
tributed in[0, Timax] With Thhax = 100,000. The thick curve is a
Gaussian with zero mean and variance= L~>),_, W;/2 as
computed inl[6].

IV. QUENCH ON THE QUANTUM XY MODEL

The Hamiltonian is given in terms of Pauli spin operators

Fpy = L7104 which defines the nearest neighbor hyper-55-¥* (we use periodic boundary conditions)

cubic graph.

We would like to stress here that the one-particle space has

a natural underlying geometric structure. For instance, th
labels k, ¢ represent points in momentum (real) space in
superfluid (localized) phase and the distaifce- ¢| is well
defined. Now, when the matrix elements, ,| decay suf-
ficiently fast as|/k — g| — oo the corresponding XY model
is well defined in the thermodynamic limit, i.e. the intersiv
free energy has a limit a6 — oo. This happens for instance
in case|F}, ,| decays exponentially ifk — g| or if one has
|Frql ~ 1/|k —q|” with v > D. When this is the case one
hasxa (\) = exp L f (\) where f (\) is the free energy
per site. Moreover, under these conditions, one expetis

to be analytic in the high temperature= 0, limit, implying
that all the cumulants ofl (¢) are extensive. From this we im-
mediately draw the central limit theorem (CLT): &s— oo
the variablg A (t) — A)/LP/? tends in distribution to a Gaus-
sian with zero mean and finite variance givendy , f (A).
We call this situatiorGaussian equilibration. It is important
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In the quench scenario, the initial state is the ground state
|1o) of the Hamiltonian with parametefsy, io). The param-

%ters are then suddenly changed afg is evolved with the

Hamiltonian corresponding t@y1, h1).

The model in Eq.[{8) has been long used as a testbed for
the study of quantum phase transitions in many body sys-
tems, and more recently in the realm of out-of equilibrium
unitary dynamics. See [19, 120] and the more recent mon-
umental [211] for more details and references. A Jordan-
Wigner transformation brings Eq.](3) to a quadratic form
in Fermi operators. Since? in terms of Fermi opera-

tors iso? = 2c;rci — 1, the transverse, total magnetization
M(t) = Y ,(c7 (t)) is a quadratic observable. Its expecta-
tion value in the quench setting is given by|[6} 20¥ (¢) =

23 50 COS 19,(:) cos (09) + sin 19,(:) sin (§9},) cos (tA,(:))
—isink/ (h; +cosk), 69 = 0 —

where tan ﬁz(j)

to stress that one cannot have Gaussian equilibration in thzégco) andAgf) = 2\/(% sink)® + (h; + cosk)® are the one-

non-free setting otherwise all the cumulants would scatbén

same way. Instead in the non-free setting one expects exteto k = 7 (2n+ 1) /L, n = 0,1

sive average but variance exponentially small in the volume

particle energies. The quasi-momenta are quantized aogord
,-..,L/2 — 1. At this point

it seems quite natural to expect that the energigg are ra-
tionally independent. Indeed one can show that the numbers
cos(kp) kn = 7(2n+1)/L,n = 1,2,...,(L —1)/2 are
rationally independent fof. prime [7]. Given the form of the

We will now further corroborate these arguments with twodispersion we may expect that the requirementthiatprime
examples where indeed Gaussian equilibration can be provenay be removed.

or shown.

Assuming rational independence of the one-particle ener-



giesA,(cl), the corresponding classical XY model has energy

E(0) = > 0 Wkcos(y) with Wy, = sinﬁl(gl) sin (60). 0.20f -
Each classical spirk’ interacts with an external field along a Z \5
fixed axis with strengtfiV;.. The partition function factorizes, 0.15¢ / \
each integral ovef;, gives a Bessel functiof, (A\W},) and < T \
we obtaine® M=) — expS™  In (I (AWy)). Clearly % 0.0
M (t) — M is a sum of independent random variables, each 0,05
with zero mean and variand&? /2. '
Now, under the —quite reasonable— assumption of ratio- 0.00 L : ) :
nal independence of the one-particle energies, one care prov -10 -5 0 5 10
Gaussian equilibration for the observableM (¢). More X

precisely one can show that for any value of parameters

(0, ho) # (71, /), the variable(M — M)/v/L asL — oo Figure 2: Full distribution for the observablé = ¢ cle,
tends in distribution to a Gaussian with zero mean and variaround its mean fof, = 201, N = 100, ¢ = 101. The histogram
ance(2m) ! Jo (W2/2) dk. is obtained sampling! (¢) at 240,000 random times uniformly dis-

We can prove this result by showing that the Lyapunov con{fibuted in[0, Tinax] with Tinax = 180,000. The thick curve is a

dition is satisfied so that the central limit theorem follows Qaussian with zero mean and variance= 0.0208L as computed

from Lindeberg’s theorem (see e.g.[[22]). Following the no-" the text

tation of [22] we haves? = >, 07 = >, WZ/2 —

L(4n)~" [TW2dk. Then, withs = 1 |X,[*" = V. TIGHT BINDING MODEL

4/(37) |[W|*. The Lyapunov’s condition with = 1 amounts ) _ o

to the vanishing of the following quantity ds— oo: We consider here the I tight binding model
H = Y (clceq1 +hec) with twisted boundary con-

) L 116 [T W dk ditions cpyq = cpe®r as proposed in_[23]. As quadratic
— Z |Xk|3 Loge - 0 75 - (4) observable we takel with diagonal one-particle matrix:
5L j>o0 VL3VT (f” |Wk|2 dk) A= Zi:1 clc,. The system is initialized setting all thé
0 particles say to the left of the chain, i.e. the initial cosace
) matrix is R = diag(1,1,...,1,0,...,0) with N ones and
Indeed the RHS of EqL(4) goes to zerolas— oo since 1y zeros on the diagonal. The observalilis extensive for
[Wi| < 2 forall k and|[W,| # 0 for almost anyk for ¢ — 47, and the thermodynamic limit is given by = ¢/L,
(70, ho) # (71, 7). v = N/L constant and. — co. The time evolved observable
Remark  For small quench close to a critical point, the readsA (1) = >, g~ (k — q) ge (¢ — k) e~ it(Ae—Aq) where

function W), ~ sin(ﬁ,ﬁl))(aﬁk/ax) dz (x is the quenched the functiong, (¢) is given by g, (¢) = L™ Zizle—iwf_
variable,x = A, h), becomes highly peaked (for instance, theThe matrix F., depends only on the difference — ¢:
peak is around = 7 close to the Ising critical point &t = 1 Fry = f(k—q) = gn(kE—q)ge(qg—k). The eigen-
and Wk/dl' diverges asl/k) For finite L and Sufficiently enérgies are given bﬁk = 2co0s (k + 9) and the quasi_
small quench, few termig’;, dominate and one can obtain (for momenta can be considered quantizedkas= 2mn/L,
finite L) a non-Gaussian distribution. Indeed, as discussed ip, — (. 1,..., L — 1. For# = 0 the energies are degenerate as
detail in [11], this is the case in general: for small quersche A, — A, but for most of the), = — k does not belong to the
close to a quantum critical point, observables become a sumrillouin zone and the energies are non-degenerate. In this
of few independent random variables and the distributien accase the average i = . 9n (0) g0 (0) = Lva. Still the
quires a universal double-peaked form. Ay, cannot be Rl a8 = trM = Y, Ay, however it is likely

In figure[1 we show a plot of the distribution of the trans- that there are few relations among the energies. In fackiasa
verse magnetization per site (t) = M (t) /L for the equili-  showed|[23] that for. odd and for most of thé € (0, 7/L),
bration dynamics undergoing a quantum quench. The distrithe one-particle energies satisfy the non-resonant dondit
bution agrees very well with a Gaussian with varianée=  This implies that, for most, the variance is given by
L=2%",.0 W2/2 obtained considering: (¢) as a sum of in-
dependent variableS|[6]. This in turns shows that the assumpAA® = g (k — q) ge (g — k)* = _ [gn (0) ge (0))* .
tions of rational independence seems to be justified or at lea k.q k
that the number of relations among the frequencies is suffi-
ciently small as not to break the CLT. Note thatis not a : T 0 5 :
prime in fig.C1. By only checking that the one particle spec-"€@l space with result (N2 — 2 (£2 —1) /3] (assuming

trum is non-degenerate, it is easy to prove that the varianc = ¢ otherwise swapV with /). This proves analyti-
is Am? = L2%,_ W2/2 [6]. SinceW; is a bounded cally that, besides the average, also the second cumulant —
= k>0 :

the variance— is extensive and in particular one ha$® =

The double sum above can be evaluated going back to

function this implies immediately thakm? = O (L7'), in s B oon o
accordance with the Gaussian equilibration prediction. L (VO‘ T3 Vo ) +0 (L )
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On the other hand, using methods borrowed from sta- 13} 10
tistical mechanics, we can get an approximate analytic ex- 1 ‘ --=- Am’(T=1000)
pression for the whole cumulant generating function. In 1208 Am(T=2000)
this approximation all the cumulants will turn out to be ex- L B S Amz(T=5000)
tensive implying Gaussian equilibration fot (¢t) (see fig- 1.22+ LT \\‘.\ N | T Am(T=10000)
ure[2). We first assume rational independence of the ener- — M " N Am (T=50000)

gies A, so that the problem is mapped to an classical XY €1.215
model. A single (or a few) relation among the energies is . .
a sort of boundary condition for the classical model and is 121- -

not expected to change the leading, bulk, term. The energy g

of the classi(cal )n/wdel for the translation invariant case is 1'205f
E () =25 D/2 ¢ g L cos((ém —9})—1— ) ‘ ‘ ‘
©) 2= |f(~)|Zm,1 S\ e _ b4 1351 05 0 05 1 15
(pa = argf(d) and @, is a periodic extension ob., K x 10°
i.e. 0,4+nr. = 6.). Now we note thatf (d) is highly
peaked aroundl = 0, so we approximate the energy Figure 3: Variance ofn (¢t) = (o7 (t)) of as a function of the inte-

keeping only the nearest neighbor term, iE.(8) =~ grability breaking parameter. The quench parameters are< 1)
I ~ ~ . X (ko = 0,ho = 2.0), — (k1 = Kk, hy = 2.7). The size isL = 8.

21f (D)2 25= cos ((GIH - 9%) + ¢1)- This is precisely @ pata are obtained via full diagonalization of the Hamiltoi

one-dimensional (classical) XY model with periodic bound-

ary condition (and off-sep;) and can be solved via transfer

matrix method|([24]. The partition function becomg&s = fermions while for any non zere the Hamiltonian is not in-

trK” where the transfer matrix operator{;§h(6,)](6,.,) =  tegrable. As shown in figl3, the variancerof(t) = (o7 (¢))
f27r do e)\\f(l)\cos(9~2+179~2+¢1)h(0 )/(27).  The transfer is discontinuous at the integrable point= 0. As expected
0 x x .

matrix is non-hermitian because ¢f. Using the identity Am? (x = 0) is larger thanAm? (x — 0). We would like

oK cos(a—p) _ S e Iy (K) ¢r(=9) where I, are Bessel to stress here that the appearance of a discontinuity in an
infinity time average, is perfectly legitimate even for finit

size systems. The origin of the discontinuity of the var&anc

stems from a massive violation of the non-resonant conditio

at x = 0. Note that the average (not shown) is smooth

atx = 0, indicating that the degeneracies of the energies are

T o constant around = 0. We also performed numerical sim-
L1n (Io{A | £(1)). As expected, in this approximation, the cu- ulations keeping the observation time wind@finite. The

mulant generating function is extensive and analytix ia 0. L . -
One then has again the CLT in its standard form: the variablgﬁeCt of a finiteT" is to make the variance smooth:at= 0,

(A(t) — A)/V, tends in distribution to a Gaussian in the approaching the discontinuoiis= oo value with corrections

of orderT—1.
T . . 2 . 2
thermodynamic limit with variancéy_,7/L = |f(1)[" /2. As noted previously, it is easy to prove that at the inte-

The Gaussian prediction is clearly confirmed by a numerica{;rame point the variance scale Asn?> = O (L~1). On the
experiment see fig] 2. contrary, checking the exponentially small scaling exeect
at non-integrable points is very difficult numerically a th
computation of the variance requires full exact diagomaliz
tion which limits the analysis to very short sizes.
Finally, a compelling question is whether similar results
From the previous discussion it appears that the variancgeneralize to more complex integrable models such as those
AA?, for a quadratic observablé, can be used as an effec- integrable by Bethe Ansatz. To investigate this scenario we
tive tool for the characterization of integrable-non-gr@ble  performed preliminary numerical simulations with the éoi-
transition, at least in the case where integrable models atieg Hamiltonian
identified with quadratic systems. In particular we expect a

functions (satisfyingly > I > I--- and I, (K) =

I_, (K)) one sees that plane wave¥"’= are eigenfunc-
tion of KC with eigenvaluel,,, (2|f (1)| \) e~®™%. The largest
eigenvalue in modulus, withn = 0, gives immediately
the free energy in the large size limitF = InZ

VI. FLUCTUATIONSAND INTEGRABILITY

increase ofA 4% when the evolution Hamiltonian crosses a L . vy L

guasi-free point. To check this conjecture let us add a next- H= Z [Ui oip toioi, +Aojor  +

nearest neighbor interaction term to Hg. (3) (for simplieie =1

sety = 1) which is known to break integrability (see elg.|[25] a(ofol,+ ool , + Aoiol,)], (5)

and references therein). Hence we consider the model with periodic boundary condition. At = 0 the Hamiltonian

L is integrable by Bethe Ansatz. In our simulations we quedche
H=-

3

(0208, + ho? — koPol,,) from (Ao,ao)_to (A1,0q), and looked at the statistics of
] A(t) = (o0, (t)) + h.c. as this is a quadratic observable
in the fermionic setting. Our numerics shows that the fluctu-
and perform numerically simulated quenches fidm <o) to  ations are smooth as; crosses the integrable point, which
(h1,k1). At k = 0 the model can be mapped to quasi-freeindicates that the non-resonant condition is satisfied fwhe



sical XY model at infinite temperature. As a by product we
obtain a quantum setting (initial state, Hamiltonian, abd o
servabled xy), such that the equilibration dynamics 4f v
gives the solution of a classical XY model in-dimension,
and vice-versa.

A consequence of the above scenario —confirmed by nu-
merical simulations— is that the varianée4? turns out to
be discontinuous at the quasi-free point of an otherwise non
integrable Hamiltonian. This shows that the enhancement of
the temporal fluctuations ak.A? (for a quadratic observable
A) may provide a universal anskperimentally testable sig-
nature of integrability in the context of out of equilibriushy-
Figure 4: Full time statistics P (x) for the observ- namics, at least when integrable systems are identified with
able A(t) = (ofo;,(t) + hc. for the Hamiltonian quadratic models.
Eg. (8). The quench parameters a&o =2, ap = 1.7) — Ultimately the origin of the exponential decrease of the sig
(A1 =1,a1 =0,0.02,0.04,0.06) for a sizeL = 10. Atas =0  nalto noise ratio illustrated in this paper lies in the exgutial
the Hamiltonian is integrable by Bethe-Ansatz. Data ar@iobl  aqyction of the effective phase space entailed by the quasi
with full diagonalization of Hamiltonian EqLI5). For themte o0 natyre of our setup i.e., the many body space gets effec-
statistics, the (_)bs_ervablel (_t) has_ been _computed at 200,000 tively replaced by the single particle one. A natural questi
random times distributed uniformly i, 7'] with 7" = 100, 000. . o ’ L

for future research is whether a similar mechanism is ateplac

for a more general class of integrable systems such as Bethe-
Anstanz integrable models. Preliminary numerical resaks

stricted to the relevant subspace) also at the integralife.po -J e ; ; .
This indeed has to be expected from the form of the manyg'cate that,_ in this case the varlance 1S smpoth and a pessibl
body energies arising from the Bethe Ansatz [32]. Howevetnon_""m"’lIytIC behavior at the integrable point must be sbugh
it is still possible that a lack of rational independencetd t in higher order cumulants.

. . . LCV wishes to thank KITP for the kind hospitality. This re-
many-body energies, for Bethe Ansatz integrable modelks, wi X
shov?// up ix a nogn—analytic behavior of higgher cumulants Ofsearch was partially supported by the ARO MURI under grant
A(t) as a function of the non-integrability parameter WO911NF-11-1-0268 and by the National Science Foundation

. gt : der Grant No. NSF PHY11-25915. PZ also acknowledges
In figure[4 we plot the distribution functioR, for A (t) for unae
various quench experiment. At the integrable point therielist partial support by NSF grants No. PHY-969969 and No. PHY-

bution looks qualitatively different from the distributiaob- 803304.
tained ato; # 0. However further investigations are needed

to ascertain whether the dependenc@gbn «; is analytic at

the integrable pointy; = 0. A lack of analyticity would be a

signature of a lack of rational independence of the manyybod
energies.

VIlI. CONCLUSIONS

In this paper we addressed the question of equilibration in
quasi-free Fermi systems. The initial state is a generss sta
while the evolution Hamiltonian as well as the observabée ar
guadratic in the Fermi operators. While for general nome-fre
systems the varianc&.4? is typically exponentially small in
the volume, we find that in the quasi-free setting (for extens
observables) both the mean and the variance are propdrtiona
to the volume. This hints at the possibility of an underlying
central limit theorem, a circumstance that we tern@adis-
sian equilibration. In this case the properly rescaled observ-
able becomes Gaussian in the lafgkémit, and in general the
relative error satisfied.A/A ~ 1/v/L. We proved Gaussian
equilibration for the magnetization in the quantum XY model
assuming rational independence of the one body energies and
gave evidence for a class of observables/initial statelvienp
with a tight-binding model. In all cases Gaussian equitibra
was confirmed by numerical simulations. The key insight is a
mapping of the equilibration dynamics to a generalized-clas
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