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Abstract

We apply a unified and trade-off based optimization for low-dissipation models of cyclic heat

devices which accounts for both useful energy and losses. The resulting performance regime lies

between those of maximum first-law efficiency and maximum χ (a unified figure of merit corre-

sponding to power output of heat engines). The bounds available for both symmetric and extremely

asymmetric heat devices are explicitly obtained. The similarities for heat engines and refrigerators

and the energetic advantages of the trade-off optimization are specially stressed.
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I. INTRODUCTION

The thermodynamic optimization of heat devices is receiving special attention due to

the contemporary growing importance of saving energy resources in relation to any energy

converter operation. Along this issue, a number of different performance regimes based on

different figures of merit have been considered [1–3] with special emphasis on the analysis

of possible universal and unified features.

For any cyclic converter the maximum Carnot efficiency for heat engines, ηC, or the maxi-

mum Carnot coefficient of performance (COP) for refrigerators and heat pumps, εC, requires

an infinite cycle time with zero-power and zero-entropy generation operation regimes. On

the contrary, the maximization of the corresponding useful energy (power output for heat

engines [1–17], cooling rate for refrigerators and heating rate for heat pumps [1–3, 18–22])

gives operation regimes which do not necessarily involve either entropy generation con-

straints or efficiency increase. As a consequence, the optimization of heat devices based on

a compromise (trade-off) between energy benefits and unavoidable losses by irreversibilities

has been frequently used [2, 3, 23]. Among them, some of us and coworkers proposed the

so-called Ω criterion which represents a compromise between energy benefits and losses for a

specific job. This criterion is easy to implement for any energy converter (either isothermal

or non-isothermal), without the requirement of the explicit evaluation of the entropy gener-

ation and it is independent of environmental parameters. Particular details on this unified

optimization criterion can be found in [24] and explicit applications for different stochastic

and coupled heat engine models have been reported [25–27]. Some unified characteristics

were also compared with those obtained under the maximum power regime [28] for heat

engines.

In the optimization field a valuable progress was made by Esposito et al. [29] by consid-

ering a low-dissipation Carnot heat engine model. In this model the entropy generation in

the hot (cold) heat exchange process behaves as Σh/th (Σc/tc) with th and tc denoting the

corresponding time duration and Σh and Σc being coefficients containing information on the

irreversibility sources. Thus the reversible regime is approached in the limit of infinite time.

The maximum power regime allows recovering the paradigmatic Curzon-Ahlborn value [30]

ηCA = 1 −
√
1− ηC when symmetric dissipation is considered, but without assuming any

specific heat transfer law nor the linear-response regime. These authors also derived the
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lower and upper bounds for the efficiency at maximum power and found that they can be

reached under extremely asymmetric dissipation limits.

Another conceptual insight was reported by de Tomás et al. [31] who introduced a uni-

fied optimization criterion, χ, for heat devices. The χ figure of merit, independent of any

particular model, it is focused in the common characteristic of every energy converter, the

cyclic working system, instead of any specific coupling to external heat sources which can

vary according to a particular arrangement. This criterion is defined as the product of the

converter efficiency z times the heat absorbed by the working system Qin, divided by the

time duration of cycle tcycle: χ = z Qin/tcycle. For heat engines χ becomes power output

while for refrigerators it allows obtaining an optimized COP εmaxχ =
√
1 + εC − 1 ≡ εCA

under symmetric conditions. This result can be seen as the counterpart of Curzon-Ahlborn

efficiency for heat engines. It was firstly obtained in the finite-time-thermodynamics (FTT)

context for Carnot-like refrigerators by Yan and Chen [32] taking as target function εQ̇c,

where Q̇c is the cooling power of the refrigerator, later and independently by Velasco et

al. [33, 34] using a maximum per-unit-time COP, and by Allahverdyan et al. [35] in the

classical limit of a quantum model with two n-level systems interacting via a pulsed exter-

nal field. Very recently, Wang et al. [36] generalized the previous results for refrigerators

by obtaining the lower and upper bounds of the COP and shown that these bounds can be

approached under extremely asymmetric dissipation limits. All main results obtained with

the low-dissipation model have been confirmed within a minimally nonlinear irreversible

thermodynamics framework for both heat engines [37] and refrigerators [38].

The goal in this paper is twofold. First, the Ω-figure of merit is applied to the unified

low-dissipation model for heat devices and the corresponding efficiency and COP bounds

are obtained under general and symmetric conditions. This is done, respectively, in Sects.

II and III. Second, in Sect. IV, the results are compared with those obtained under the

χ-criterion [36], making special emphasis on possible unified features for both heat engines

and refrigerators and on the inherent energetic advantages of the compromise (trade-off)

criterion versus the optimization of just the useful energy.
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II. HEAT ENGINES AND THE Ω TRADE-OFF.

As it is usual in Carnot-like models, we assume that the adiabatic steps run instanta-

neously while for the isothermal processes we proceed as follows (more details can be seen

in [36]). When the working substance is in contact with the hot reservoir at temperature Th

the constraint on the system is loosened according to some external controlled parameter

λh(τ) during the time interval 0 < τ < th with τ being the cycle-time variable. It is in this

sense of loosening the constraint that this step is called isothermal expansion. A certain

amount of heat Qh is absorbed from the hot reservoir and the corresponding variation of

entropy can be expressed as

∆Sh = Qh/Th +∆Sir
h , (1)

where ∆Sir
h ≥ 0 is the irreversible entropy production. When the working substance is in

contact with the cold reservoir at temperature Tc the constraint on the system is enhanced

according to the external controlled parameter λc(τ) during the time interval th < τ < th+tc.

It is in the sense of enhancing the constraint that this step is called isothermal compression.

A certain amount of heat Qc is released to the cold reservoir and the variation of entropy in

this process can be expressed as

∆Sc = −Qc/Tc +∆Sir
c , (2)

where ∆Sir
c ≥ 0 is the irreversible entropy production. Having undergone this Carnot-like

cycle, the system comes back to its initial state again. The net energy and variation of

entropy changes in the whole cycle are null and then we have ∆Sh = −∆Sc = ∆S ≥ 0 with

a useful work output given by W = Qh −Qc.

The additional assumption of the low-dissipation Carnot heat engine model is that heat

transfer accompanying finite-time operation in each isothermal process is inversely propor-

tional to the duration of the processes th and tc, respectively, with dissipation constants

Σh > 0 and Σc > 0 accounting for irreversibility details [29]. The corresponding entropy

production ∆Sir
i is therefore given by ∆Sir

i = Σi/ti (i = c, h). According to these assump-

tions and taking into account Eqs. (1) and (2), the heat transfers, Qh and Qc, and the

efficiency, η, are given by

Qh = Th

(

∆S −
Σh

th

)

≡ Th (∆S − Σhxh) , (3)

4



Qc = Tc

(

∆S +
Σc

tc

)

≡ Tc (∆S + Σcxc) , (4)

and

η ≡
W

Qc

= 1−
Qc

Qh

= 1−
Tc (∆S + Σcxc)

Th (∆S − Σhxh)
, (5)

where by convenience xc ≡ 1/tc and xh ≡ 1/th.

Pertinent to our analysis here is that for heat engines the Ω-criterion, a compromise

between maximum work performed and minimum work lost, reads as Ω = (2η − ηmax)Qh

[24]. Then we have

Ω̇ ≡
Ω

tcycle
= [2 (Qh −Qc)− ηCQh]

xcxh

xc + xh

, (6)

where ηC ≡ 1 − Tc/Th ≤ 1 is the maximum Carnot efficiency and tcycle ≡ tc + th = (xc +

xh)/xcxh is the time for completing the whole cycle. The Ω̇-maximization with respect to

xc and xh, ∂Ω̇/∂xc = 0 and ∂Ω̇/∂xh = 0, leads, respectively, the two following equations:

[2 (Qh −Qc)− ηCQh]
xh

xc

= 2TcΣc (xc + xh) , (7)

[2 (Qh −Qc)− ηCQh]
xc

xh

= ThΣh (2− ηC) (xc + xh) (8)

Dividing Eq. (7) by Eq. (8) we obtain that

xc

xh

=

√

√

√

√

Σh(2− ηC)

2Σc (1− ηC)
, (9)

while if they are summed up the result is

ηC∆S = 2 (2− ηC) Σhxh + 4(1− ηC)Σcxc. (10)

By solving Eqs. (9) and (10), xh and xc are explicitly given by

xh =
ηC∆S

2
[

(2− ηC)Σh +
√

2 (2− ηC) (1− ηC)ΣhΣc

] (11)

and

xc =
ηC∆S

2
[

2 (1− ηC) Σc +
√

2 (2− ηC) (1− ηC) ΣhΣc

] (12)

Taking into account Eqs. (5), (11) and (12) we obtain for the efficiency under maximum

Ω̇-conditions, ηΩ, the following relation in terms of the temperatures (through ηC) and the

dissipation constants Σh and Σc:

5



ηΩ =
3− 2ηC + 3a

4− 3ηC + 4a
ηC (13)

with a =
√

(1− ηC)(2− ηC)Σc/2Σh. This equation monotonically increases with Σh/Σc and

it is easy to obtain their lower and upper bounds considering, respectively, the asymmetric

limits Σh/Σc → 0 and Σh/Σc → ∞:

η−Ω ≡
3

4
ηC ≤ ηΩ ≤

3− 2ηC
4− 3ηC

ηC ≡ η+Ω (14)

The particular limit Σc/Σh → 1 in Eq. (13) is also of interest because it represents the

symmetric dissipation condition. Under this condition Eq. (13) reduces to

ηΣc=Σh

Ω ≡ ηSymΩ = 1−

√

(1− ηC) (2− ηC)

2
, (15)

a result firstly reported by Angulo et al. [39] using the ecological function as figure of merit

for the so-called endoreversible Carnot heat engine models.

III. REFRIGERATORS AND THE Ω TRADE-OFF.

As for heat engines, in Carnot-like refrigerator models the adiabatic processes run instan-

taneously, while for the isothermal processes we proceed as follow [36]. In the isothermal

expansion the working system is in contact with a cold reservoir at temperature Tc and the

constraint on the system is loosened according to the external controlled parameter λc(τ)

during the time interval 0 < τ < tc with τ being the cycle-time variable. A certain amount

of heat Qc is absorbed from the cold reservoir and the the variation of entropy in this process

can be expressed as

∆Sc = Qc/Tc +∆Sir
c , (16)

where ∆Sir
c ≥ 0 is the irreversible entropy production. We adopt the convention that

the heat absorbed by the refrigerator is positive, so ∆Sir
c ≤ ∆Sc. During the isothermal

compression the working substance is in contact with a hot reservoir at temperature Th

and the constraint on the system is further enhanced according to the external controlled

parameter λh(τ) during the time interval tc < τ < tc + th. A certain amount of heat Qh is

released to the hot reservoir Th. Thus the total variation of entropy in this process is

∆Sh = −Qh/Th +∆Sir
h , (17)
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where ∆Sir
h ≥ 0 is the irreversible entropy production. Having undergone this Carnot-like

cycle, the system comes back to its initial state again. The energy change and variation of

entropy in the whole cycle are null. Then, we have ∆Sc = −∆Sh = ∆S ≥ 0 and a net work

input given by W = Qh −Qc.

The low-dissipation Carnot-like refrigerator model additionally assumes that entropy gen-

eration accompanying finite-time operation in each isothermal process is inversely propor-

tional to the duration of the processes th and tc with constant strengths Σh > 0 and Σc > 0.

With these assumptions and according to Eqs. (16) and (17), the heat transfers and the

COP, ε, are given by

Qh = Th

(

∆S +
Σh

th

)

, (18)

Qc = Tc

(

∆S −
Σc

tc

)

, (19)

ε ≡
Qc

W
=

Qc

Qh −Qc

=
Tc (∆S − Σcxc)

(Th − Tc)∆S + TcΣcxc + ThΣhxh

(20)

where xc ≡ 1/tc, and xh ≡ 1/th.

For refrigerators the Ω-criterion, a trade-off between maximum cooling load and minimum

lost cooling load, reads as Ω = (2ε− εmax)W [24] and then

Ω̇ = (2ε− εmax)
W

tcycle
= [2Qc − εC(Qh −Qc)]

xcxh

xc + xh

, (21)

where ǫC ≡ Tc/(Th − Tc) is the maximum Carnot COP. The Ω̇-optimization with respect to

xc and xh gives, respectively, the two following equations:

[2Qc − εC (Qh −Qc)]
xh

xc

= TcΣc (2 + εC) (xc + xh) (22)

[2Qc − εC (Qh −Qc)]
xc

xh

= ThΣhǫC (xc + xh) (23)

Dividing Eq. (22) by Eq. (23) we obtain that

xc

xh

=

√

√

√

√

Σh(1 + ǫC)

Σc(2 + ǫC)
(24)

while if they are summed up the result is

∆S = 2(2 + ǫC)Σcxc + 2(1 + ǫC)Σhxh. (25)
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Substituting Eq. (25) into Eq. (20) and taking into account Eq. (24), we derive the COP

under maximum Ω̇-conditions, εΩ, in terms of the temperatures and the dissipation constants

Σh and Σc as

εΩ =
3 + 2εC + 2b

4 + 3εC + 3b
εC, (26)

where b =
√

(1 + εC)(2 + εC)Σh/Σc. This equation monotonically increases with Σc/Σh and

it is easy to obtain their lower and upper bounds considering, respectively, the asymmetric

limits Σc/Σh → 0 and Σc/Σh → ∞:

ǫ−Ω ≡
2

3
ǫC ≤ ǫΩ ≤

3 + 2ǫC
4 + 3ǫC

ǫC ≡ ǫ+Ω (27)

The particular limit Σc/Σh → 1 in Eq. (26) represents the symmetric dissipation limit.

Under this condition Eq. (26) reduces to

εΣc=Σh

Ω ≡ εSymΩ =
ǫC

√

(1 + ǫC) (2 + ǫC)− ǫC
, (28)

a result first reported for Carnot-like refrigerators with the same optimization criterion but

in the FTT-context and under the endorreversible limit [24].

IV. RESULTS, DISCUSSION AND CONCLUSIONS

A. Heat engines

The obtained bounds for the optimized efficiency ηΩ, Eq. (14), are plotted in Fig. 1

together with the symmetric (endoreversible) limit given by Eq. (15). Also we plot in this

figure the efficiency bounds obtained by Esposito et al. (see Eq. (11) in [29]) under maximum

power conditions (i.e., under maximum χ):

η+χ =
ηC

2− ηC
,

η−χ =
ηC
2
,

and

ηsymχ = 1−
√

1− ηC ≡ ηCA.

8



By inspection of Fig. 1 it is obvious that the efficiencies under maximum of the Ω̇-function

behave qualitatively as the efficiencies under maximum power (i.e. maximum χ) but always

each bound at maximum Ω̇ is greater than the corresponding bound at maximum power.

Note also as the lower bounds η−χ = ηC/2 and η−Ω = 3ηC/4 behave linearly with ηC, while

the upper and the symmetric bounds reach the Carnot value as ηC → 1 in both regimes.

Another clear consequence is that in each case the maximum Ω̇ regime yields higher

efficiencies, closer to the Carnot values. In fact, it is easy to check numerically (not shown

in the figure) that in all cases the efficiency at maximum Ω̇ can be approximated by the

semi-sum of the Carnot value and of the efficiency at maximum power: η+Ω ≈ (η+χ + ηC)/2

and η−Ω = (η−χ + ηC)/2. These results generalize to asymmetric low-dissipation heat engines

the semisum rule obtained by Angulo-Brown et al. [39] in the symmetric, endoreversible

limit of the Finite-Time-Thermodynamics framework, ηsymΩ ≈ (ηsymχ + ηC)/2. This semisum

rule also holds for isothermal biochemical energy converters as reported in [40].

One of the advantages in the trade-off regime is the saving in the entropy generation, σΩ,

in comparison with the entropy generation in the χ-regime, σχ. In the low-dissipation models

the entropy generation for both heat engines and refrigerators is given by σ = Σhxh +Σcxc.

For heat engines xh and xc are given by Eqs. (11) and (12) in the Ω-regime and by Eq. (7)

in [29] for the maximum power (χ) regime. In Fig. 2 one can see how the ratio σΩ/σχ

behaves in terms of ηC in all temperature range and how the saving entropy generation in

the Ω̇-regime is specially relevant at high (ηC → 0) and intermediate relative temperatures,

getting up to 50%.

B. Refrigerators

The obtained bounds for the optimized COP, εΩ, Eq. (27), are plotted in Fig. 3 together

with the symmetric (endoreversible) limit given by Eq. (28). Also we plot in this figure the

COP bounds obtained by Wang et al. (see Eq. 14 in [36]) under maximum−χ:

ε+χ =

√
9 + 8εC − 3

2
,

ε−χ = 0,

and

εsymχ =
√
1 + εC − 1 ≡ εCA.
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In comparison with the χ-optimization the trade-off between maximum cooling power and

minimum losses offer a main advantage: both bounds are finite and greater, allowing some

guides to design refrigerators more energy-efficient and with entropy saving similar to heat

engines showed in Fig. 2. Also for refrigerators it is easy to check numerically that the

COP for the Ω̇-regime can be approximated by the semi-sum of the Carnot-COP value and

of the COP at maximum χ, εΩ ≈ (εχ + εC)/2, in any analyzed limit: ε+Ω ≈ (ε+χ + εC)/2 and

εsymΩ ≈ (εsymχ + εC)/2. Then, the semisum rule also applies to refrigerators, a result that to

our knowledge, has not been reported before.

In summary, the obtained results show that a unified low-dissipation model for heat

devices optimized under unified figures of merit (Ω̇ ,χ) allow obtaining unified behaviors for

the energetic properties, independently of the converter nature: heat engine or refrigerators.

Also, the importance of thermodynamic optimizations on the basis of a compromise between

useful energy and losses is stressed. Experimental results plotted in Fig. 4 for heat engines

and in Fig. 5 for refrigerators show that many real heat devices seem to fit their performance

near the maximum χ-region. This fact suggests that at present many of these devices are

designed to work at higher velocity or rate, rather than at higher efficiency and entropy

saving. Notable exception is the set of experimental values for a nominal 1038 kW screw-

compressor chiller which fairly agrees with the theoretical Ω̇-predictions (see upper curve

in Fig. 5),i.e., refrigerators performing at higher efficiencies and entropy saving rather that

at higher velocity. The serious coming energy shortage we face requires more efficient heat

devices than before. Along this line, the trade-off represented by Ω̇ (or another possible

compromise) could be a useful guide to design energy converters more involved with the

environmental impact and power quality.
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[28] N. Sánchez-Salas, L. López-Palacios, S. Velasco, and A. Calvo Hernández, Phys. Rev. E 82,

051101 (2010).

[29] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck, Phys. Rev. Lett. 105, 150603

(2010).

[30] F. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975).

[31] C. de Tomás, A. Calvo Hernández and J. M. M. Roco, Phys. Rev. E 85, 010104(R) (2012).

[32] Z. Yan and J. Chen, J. Phys. D 23, 136 (1990).

[33] S. Velasco, J. M. M. Roco, A. Medina, and A. Calvo Hernández, Phys. Rev. Lett. 78, 3241

(1997).

[34] S. Velasco, J. M. M. Roco, A. Medina, and A. Calvo Hernández, Appl. Phys. Lett. 71, 1130

(1997).

[35] A. E. Allahverdyan, K. Hovhannisyan, and G. Mahler, Phys. Rev. E 81, 051129 (2010).

[36] Y. Wang, M. Li, Z. C. Tu, A. Calvo Hernández, and J. M. M. Roco, Phys. Rev. E 86, 011127

(2012).

[37] Y. Izumida and K. Okuda, EPL 97, 10004 (2012).

[38] Y. Izumida, K. Okuda, A. Calvo Hernández and J. M. M. Roco, arXiv:1207.3390. EPL (In

press)

[39] F. Angulo-Brown, J. Appl. Phys. 69, 7465 (1991); L. A. Arias-Hernández, F. Angulo-Brown,
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FIG. 3: Comparison between COP at maximum χ, εχ, and maximum omega, εΩ, for the indicated

asymmetric and symmetric limits (see text) of low-dissipation refrigerators as a function of the

Carnot COP εc
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FIG. 4: Comparison between experimental results, dots, [41] and theoretical ones for heat engines.

The three curves for ηΩ and ηχ are, respectively, the three limits plotted in Fig. 1
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FIG. 5: Comparison between three sets of experimental results, points, [22] (pp. 235, 167, and

111) and theoretical ones for refrigerators. The three limits of εΩ, see Fig. 3, are indistinguishable

in the plotted scale.
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