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The principle of mixed convolved action provides a new, rigorous weak variational formalism 

for a broad range of initial value problems in mathematical physics and mechanics.  Here the 

focus is initially on classical single-degree-of-freedom oscillators incorporating either Kelvin-

Voigt or Maxwell dissipative elements and then subsequently on systems that utilize fractional 

derivative constitutive models.  In each case, an appropriate mixed convolved action is 

formulated and a corresponding weak form is discretized in time using temporal shape functions 

to produce an algorithm suitable for numerical solution.  Several examples are considered to 

validate the mixed convolved action principles and to investigate the performance of the 

numerical algorithms.  For undamped systems, the algorithm is found to be symplectic and 

unconditionally stable with respect to time step.  In the case of dissipative systems, the approach 

is shown to be robust and accurate with good convergence characteristics for both classical and 

fractional-derivative based models.  As part of the derivations, some interesting results in the 

calculus of Caputo fractional derivatives also are presented. 

 

I. INTRODUCTION 

Previously, a new stationary principle is established in Ref. [1] for the classical Kelvin-Voigt 

single-degree-of-freedom (SDOF) damped oscillator, by formulating a real scalar action using 

mixed variables, fractional derivatives and the temporal convolution of convolutions.  This 

principle of mixed convolved action is then generalized in Ref. [2] to multi-degree-of-freedom 

spatially discrete dynamical systems and to elastodynamic continua undergoing infinitesimal 

deformation.  The primary advantage of the mixed convolved action approach is that all of the 

governing differential equations and initial conditions for a general class of dissipative 
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dynamical systems can be derived from this scalar functional as its Euler-Lagrange equations, 

using mathematically sound operations of variational calculus.   

Although Hamilton’s principle [3, 4] has been with us for a long time and has found great 

importance throughout mathematical physics, it suffers from two main difficulties.  The first is 

related to its inability to incorporate dissipation.  Hamilton’s principle applies only to 

conservative systems.  The second difficulty is more subtle, relating to the handling of initial 

conditions and the restrictions on the function variations.  In particular, Hamilton’s principle 

requires that the variations vanish at the endpoints of the time interval, which for consistency 

implies that the functions are known at these two instants.  Of course, when attempting to solve a 

dynamical problem, under normal circumstances, one does not know the solution at the end of 

the time interval.  Rather, this is often the main objective of the analysis, which in turn suggests 

that there may be a serious philosophical or mathematical inconsistency associated with the 

application of Hamilton’s principle.  Furthermore, the initial conditions are not at all part of the 

variational statement and must be imposed outside of the process.   

Tonti [5] was perhaps the first to identify these shortcomings and to suggest that convolution 

should replace the inner product as the operator of choice in establishing variational methods for 

initial value problems.  Somewhat earlier, Gurtin [6, 7] devised a method based upon 

convolution to address dissipation within a variational approach.  However, with his method, one 

never can recover the original strong form of the problem. 

More recently, Riewe [8, 9] proposed the use of fractional derivatives to permit the development 

of a scalar functional for dissipative dynamical systems.  This is an attractive idea and, 

subsequently, many other researchers including Agrawal [10-12], Atanackovic et al. [13], 

Baleanu and Muslih [14], Cresson [15], Dreisigmeyer and Young [16, 17], El-Nabulsi and 

Torres [18] and Abreu and Godinho [19] have followed similar approaches.  Interestingly, none 

of these works include an analytical or numerical demonstration verifying that their approach can 

reproduce the many well-known closed-form solutions for classical linear mass-spring-damper 

systems.  In the present paper, discrete time formulations are developed, based upon the concept 

of mixed convolved action, and then applied to solve example problems of free and forced 
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vibration.  Initially, the classical Kelvin-Voigt and Maxwell models are considered and, as will 

be seen, excellent correlations are obtained. 

Subsequently, to investigate the further potential of the mixed convolved action approach, non-

classical constitutive models involving fractional-derivatives are considered.  Such models have 

a long history, beginning with the exploratory work by Nutting [20-22], Schofield and Scott 

Blair [23-26], Gemant [27, 28] and Scott Blair [29] in the first half of the twentieth century to 

understand the behavior of a range of viscoelastic materials, including flour dough, cheese and 

clay.  Subsequent efforts to characterize viscoelastic response in terms of fractional derivatives 

include the work by Caputo [30], Caputo and Mainardi [31, 32], Bagley and Torvik [33, 34] and 

Glockle and Nonnenmacher [35].  Alternatively, one can formulate these models equivalently in 

terms of weakly singular kernel functions.  This latter approach was taken by Gross [36], 

Rabotnov [37, 38], Gerasimov [39], and Meshkov et al. [40].  Rossikhin [41] provides a recent 

comprehensive review.  Bagley and Torvik [42] also developed finite element formulations, 

while Makris et al. [43, 44] formulated corresponding boundary integral approaches.  Through 

the years, many other applications have appeared.  For example, in the area of seismic response 

characterization, one may mention the work by Makris et al. [43-46], Koh and Kelly [47] and 

Singh and co-workers [48, 49] as illustrations.  Furthermore, the related concept of fractional 

oscillators has been developed by Mainardi [50], Achar et al. [51] and Stanislavsky [52].  In the 

present work, a variational statement for a single-degree-of-freedom oscillator with a fractional-

derivative Maxwell element is formulated, discretized in time and then solved numerically.  In 

order to develop this new mixed convolved action variational formulation, a few results in 

fractional calculus also are established.  

The remainder of the paper is organized as follows.  In Sec. II, a weak form is developed, based 

upon the mixed convolved action defined in Ref. [1], for a classically damped Kelvin-Voigt 

single-degree-of-freedom dynamical system.  Next, in Sec. III, several results are derived in 

fractional calculus that enable an effective numerical implementation for the weak Kelvin-Voigt 

formulation in Sec. IV.  Using similar ideas, an algorithm for the classical Maxwell dynamical 

system is the focus of the development in Sec. V.  Afterwards, attention shifts to non-classical 

constitutive models for the single-degree-of-freedom system.  In Sec. VI, some results in Caputo 

fractional calculus are derived and then used in Sec. VII to formulate a mixed convolved action 
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for a fractional-derivative Maxwell dynamical system.  Included in Sec. VII is the development 

of a weak form, along with the details for a numerical algorithm.  Numerical examples are then 

presented in Sec. VIII to validate all of these new formulations for problems of both free and 

forced vibration.  Finally, some conclusions are provided in Sec. IX. 

 

II. WEAK FORM FOR KELVIN-VOIGT MODEL 
 

In this section, consideration is given to the development of a computational algorithm for 

transient dynamic analysis, based upon the weak form given in Ref. [1].  The focus is on the 

SDOF Kelvin-Voigt system displayed in Figure 1, having mass m , damping coefficient c  and 

stiffness 1/k a=  with a  representing the flexibility.  Let )(u t  and )(J t  denote the displacement 

of the mass and the impulse of the internal force )(F t  in the spring, respectively.  Meanwhile, 

)(f t  is the known applied force, which in general varies with time. 

The mixed convolved action associated with this problem can be written in the following form 

[1] 

( ) ( ) ( ) ( )

( )

1 1 1
2 2 2, , , ; )( , , ( ) ( ) ( ) ( )

( ( ) (0),)

KC u J J J t u m u J a J J u u c u

u f u

I u u t

t j

t t t

t

∗= − ∗ + ∗ + ∗

− ∗ −

� � � � �� � �� �� �
             (1) 

where a superposed dot represents a derivative with respect to time, while ϕ�  is used to denote 

the temporal left Riemann-Liouville semi-derivative of ϕ .  This is defined by [53, 54] 

( )
( )1/20

1

0

/2 )) ,
(1/

1 (
2)

( ( )
td

t
t t d

dt
ϕ τϕ ϕ τ

τ
+ ≡=

−
∫Γ

� D                                      (2) 

where ( )Γ ⋅  denotes the Gamma function.  Meanwhile, the symbol ∗ indicates the convolution of 

two functions over time, such that 

( )*
0

( ) ( ) ( ) .
t

t t dϕ ψ ϕ τ ψ τ τ= −∫                                                   (3) 
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The finite lower and upper limits of 0  and t , respectively, in the convolution, are chosen to 

coincide with the limits of the left Riemann-Liouville semi-derivative in Eq. (2) and the temporal 

range of interest for the initial value problems under consideration here.  The variable upper limit 

t , which appears in the integrals within both Eqs. (2) and (3), requires careful treatment using the 

Leibniz rule, when taking temporal derivatives and performing integration-by-parts operations.  

This altogether becomes quite important for the formulation and success of the mixed convolved 

action and a number of interesting results that depend in part upon the variable upper limit are 

developed in Ref. [1]. 

The last term in Eq. (1) involves )(0j , representing the initial impulse corresponding to )(f t .  

The superposed bar is used here and throughout the paper to indicate a known or specified 

quantity, which is not subject to variation. 

For the sake of consistency, all of the impulses relevant to the SDOF system may be written in a 

common manner.  Thus, let  

( ) ( ) ,
t

u t v dτ τ
−∞

= ∫                                                            (4a) 

( ) ( ) ,
t

J t F dτ τ
−∞

= ∫                                                           (4b) 

( ) ( ) ,
t

j t f dτ τ
−∞

= ∫                                                            (4c) 

where, from this perspective, displacement can be recognized as the impulse of velocity )(v t . 

Notice, in particular, that the scalar functional 
KCI  in Eq. (1) incorporates both conservative and 

non-conservative components within a unified framework.  Consequently, this resolves the long-

standing limitation of variational approaches for dissipative dynamical systems, while also 

providing an action that encapsulates the governing differential equations, along with all of the 

initial conditions of the underlying initial value problem.  In retrospect, the appearance of 

temporal convolutions, rather than inner products, in this action is quite natural [5].  A true 

Lagrangian state function cannot possibly define dissipative processes.  Instead, the introduction 
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of the convolution operator provides an opportunity to capture the history-dependent character of 

such phenomena in a systematic manner. 

For stationary mixed convolved action, the first variation of Eq. (1) must be zero, thus providing 

the following weak form in time 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) (0) 0.

KC u m u J a J J u uI t t t tJ

u c u u f u t jt t

δ δ δ δ δ

δ δ δ

∗ − ∗ + ∗ + ∗

+ ∗ ∗ − =

=

−

� �� �� �� �

� �                     (5) 

Equation (5) will provide the basis for a novel temporal finite element method for dissipative 

systems.  Further details on the numerical implementation will be provided in Section IV, but 

two points should be made here.  First, the variations at the end of the time interval are 

unconstrained in the mixed convolved action principle.  This permits the development of an 

energy-preserving finite element methodology with discrete variables at temporal nodes, time-

based shape functions and exact integration over the time interval.  On the other hand, in 

Hamilton’s principle, the variations are constrained at both the beginning and end of the time 

interval, which precludes the possibility to use a temporal finite element approach.  Secondly, 

notice that the highest order derivatives that appear in the weak form in Eq. (5) are of first order.  

As a result, the discretized temporal function approximations of displacement ( )u t , force 

impulse ( )J t , displacement variation ( )u tδ  and force impulse variation ( )J tδ  require only 0C  

continuity in time.  This will permit the use of simple linear temporal shape functions for the 

numerical implementation. 

Returning now to analytical aspects of the formulation, one may rewrite Eq. (5) after performing 

classical and fractional integration by parts on the appropriate terms as follows [1] 

{ }( ) { }( )
{ } { }

{ } { }

( ) ( )

( ) (0) (0) (0) (0) (0) ( )

( ) (0) (0) (0) ( ) 0.

u u c u J f t J J u t

u t u c u J j u u t

J t a J u J a J t

m a

m m

δ δ

δ δ

δ δ

∗ + + − + ∗ − +

+ + + − +

+ − + − − =

� ���� � �

� �

� �

                          (6) 
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For arbitrary variations, this produces the Euler-Lagrange equations, representing the governing 

balance laws for the mixed formulation 

,u c u J fm =+ + ��� �                                                               (7a) 

0,ua J +− =�� �                                                                   (7b) 

along with the initial conditions 

(0) (0) (0) (0),u c u Jm j+ =+�                                                     (8a) 

(0) (0) 0.Ja u+− =�                                                              (8b) 

In addition, the variations at the initial instant must be taken as zero.  Thus, 

(0) 0uδ = ,         (0) 0,Jδ =                                                   (9a,b) 

which from Eq. (6) then allows complete freedom in u�  and J� , as well as uδ  and Jδ , at time t . 

Clearly, all of this development based upon the convolution operator is perfectly consistent with 

the definition of an initial value problem [5, 1].  On the other hand, as noted above, Hamilton’s 

principle with an inner product-based action requires zero variations at the beginning and end of 

the time interval [3, 4], which is not consistent with the known and unknown conditions 

associated with an initial value problem [5, 1]. 

 

III. FRACTIONAL DERIVATIVES AND THE CONVOLUTION OPERATOR 

One of the primary objectives of the present work is to develop a numerical approach for the 

weak form of the mixed convolved action.  The key novel elements in Eq. (5) are terms 

involving the convolution of semi-derivatives.  If one envisions a numerical algorithm that 

employs polynomial-based temporal shape functions, then it will be necessary to evaluate the 

convolution of fractional derivatives of power functions.  Some new results in fractional calculus 

are developed in this section to enable that evaluation. 
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Notice that semi-derivatives appear in the coupling terms and in the dissipation integrals within 

the mixed convolved action of Eq. (1) and its weak form Eq. (5).  As mentioned previously, Eq. 

(2) is the left Riemann-Liouville semi-derivative of ϕ .  More generally, the left Riemann-

Liouville fractional derivative of arbitrary order α  may be written as follows [53, 54] 

( )
( )0

0

)1 (( ) ,
(1 )

td
t

t d
dt

α
α

ϕ τϕ τ
α τ

+ Γ − ∫
−

≡D                                           (10) 

for 0 1α< < . 

From Eqs. (2) and (10), the Riemann-Liouville fractional derivative may be viewed as the first 

derivative of a fractional integral.  Thus, 

( ) ( )1
0 0( ) ( ),dt t

dt
α αϕ ϕ+ +

−=D I                                                   (11) 

where 

( )
( )0

0

1 1 (( ) for 1) 0, 0.
(1 )

t

t
t d tα

α
ϕ τϕ τ α

α τ
+
− > >

Γ
≡ −

− ∫
−

I                          (12) 

Then, from Eq. (12), it is clear that a fractional integral is simply the convolution of the original 

function ( )tϕ  with a singular power function t α− . 

For some special functions, the required integrals and subsequent derivatives may be expressed 

in closed form.  In particular, the fractional derivative of power functions mt  may be evaluated 

quite simply in closed form in terms of the Gamma function, such that 

( )0 ( (1 )
(1

) ,
)

m mmt
m

t tα α

α+
−Γ +

Γ + −
=D                                               (13) 

for integer powers 0,1,2,m = … and fractional derivatives with order 0 1α< <  [53]. 

Now consider the convolution of the fractional derivatives of power functions, which can be 

expressed as 

( ) ( )( )
0

0 0

(1 ) (1 ) ( ) .
( ) 1

)
( )

(
1

t
m mn nm n t d

m
t t

n
tα β α βτ τ τ

α β+ +
−−Γ + Γ + −∫Γ + − Γ + −

∗ =D D                 (14) 
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Through a change of variable, this can be reformulated as follows 

( ) ( )( ) 1
0 0

( ) ((1 ) (1 ) ,1 )
(1 ) (1

1 ,
)

m m nn m nt t t B m n t
m n

α β α βα β
α β+ +

+ + − −Γ + Γ + + −
Γ + − Γ

∗
−

=
+

+ −D D         (15) 

by introducing the Beta function ( , )B ⋅ ⋅ , where 

1
1 1

0
( , ) (1 ) .x yB x y dξ ξ ξ− −= −∫                                                 (16) 

Notice that ( , )B ⋅ ⋅  itself is a convolution, which ultimately can be expressed in terms of the 

Gamma function as 

( ) ( )( , ) .
( )
x yB x y
x y

Γ Γ
Γ +

=                                                       (17) 

Now substituting Eq. (17) into Eq. (15), one obtains the very interesting result 

( ) ( )( )0 0
1(1 ) (1 )

(
) ,

)
(

2
m m nn mt t n

n
t t

m
α β α β

α β+ +
+ + − −Γ + Γ +

Γ + + − −
∗ =D D                          (18) 

with 0 , 1α β< <  and , 0,1,2,m n = ….  Notice, in particular, Eq. (18) specifies that the 

convolution of fractional derivatives of power functions depends not on the individual fractional 

orders α  and β , but only on their sum α β+ .  This result will have some significance for the 

numerical implementation of the weak form of the mixed convolved action and for the range of 

fractional derivatives that may be included in constitutive model formulations. 

Although not required for the algorithm development here, the result in Eq. (18) can be 

generalized easily to non-integer powers.  In that case, 

( ) ( )( )0 0
1( ) (1 ) (1 )

(2 )
,t t t tα μ β ν μ ν α βμ ν

μ ν α β+ +
+ + − −Γ + Γ +

Γ + + − −
∗ =D D                          (19) 

for 0 , 1α β< <  and 1,μ ν > − . 
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IV. COMPUTATIONAL METHOD FOR UNDAMPED AND KELVIN-VOIGT MODELS 

There are many different numerical approaches that can be used to solve second order undamped 

systems.  In deciding on a particular approach, one can consider several key criteria, including 

short-term accuracy, long-term stability, energy conservation, symplecticity and time 

reversibility [55, 56].   For example, one may write the problem in state-space form and then 

integrate the set of first order evolution equations with an adaptive Runge-Kutta method or one 

of a class of predictor-corrector algorithms [57].  Generally, these methods may provide high 

quality short-term solutions, but suffer from long-term energy drift and the lack of symplecticity 

and time reversibility.  Alternatively, the undamped second order differential equation can be 

discretized directly with the Newmark-beta method [58] or the related Hilber-Hughes-Taylor 

algorithm [59].  Under certain parameter settings, these can be shown to be unconditionally 

stable and energy conserving.  Another approach, for the undamped case, invokes ideas relating 

to Liouville’s theorem to create a family of symplectic numerical methods, including the second 

order Verlet algorithms, which tend to provide modest short-term accuracy, but maintain very 

good long-term performance [60-62]. 

Methods based on Hamilton’s principle also are possible using the discrete calculus of variations 

[63-65].  An analogous approach could be adopted here for the principle of mixed convolved 

action.  However, this new principle affords the opportunity to develop instead an energy-

preserving temporal finite element method.  An initial version of this approach using low order 

temporal shape functions is examined below for the single-degree-of-freedom dynamical system 

with a Kelvin-Voigt element. 

Recall from Section II that the weak form of Eq. (5) includes at most first derivatives of the 

primary variables ( )u t  and ( )J t , as well as the variations ( )u tδ  and ( )J tδ .  Consequently, only 

0C  continuity is required for the discretized representations.  As an initial approach to discretize 

Eq. (5), consider a single step numerical algorithm from time 0  to time tΔ  and introduce linear 

temporal shape functions, as follows 

0 0 1 1( ) ( ( ,) )u t N t u N t u= +                                                   (20a) 



11 
 

0 0 1 1( ) ( ( ,) )J t N t J N t J= +                                                   (20b) 

for 0 tt≤ ≤ Δ  and similarly for ( )u tδ  and ( )J tδ .  Then, with linear variations through the time 

step, the usual shape functions can be invoked, such that 

0 ( ) 1 ,tN t
t

= −
Δ

                                                            (21a) 

1( ) .tN t
t

=
Δ

                                                              (21b) 

Required also for the weak form are the first derivatives 

0
1( ) ,N t
t

= −
Δ

�                                                              (22a) 

1
1( ) ,N t
t

= +
Δ

�                                                              (22b) 

and semi-derivatives [53] 

( ) ( )
( )

( )
( )
( )

0

1/2 1/2

1/2 1

1/2 0 1/2
0

/

0

2

( )

1 2
1/ 2 3 /

1( ) ( )

1 ,

2

2

N t
t

t t

t

t
t

t

t

t

t t

π π

+ +

−

−

=
Δ

Γ Γ
= +

Γ Δ Γ

= +
Δ

−

−

−

�
D D

                                        (23a) 

( )
( )
( )

1/2 1

1/2
1

/2

0( )

2

1 ( )

2
3 / 2

.

N t
t

t
t t

t

t

t

π

+

=

=
Δ

Δ
=

Γ
+

Δ Γ

�
D

                                     (23b) 

 

Next, consider each term in order of appearance in Eq. (5).  For the first term 
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[ ]

[ ]

[ ]

00
0 1 0 1

11

00 0 0
0 1

1

1

01 1

0
0 1

1

1

 

1 1
.

1 1

N
u m u u u m N N

N

N mN N mN
u u

u
u

u
u

u
u

N mN N mN

mu u
t

δ δ δ

δ δ

δ δ

⎡ ⎤ ⎡ ⎤
⎡ ⎤∗ = ∗⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦⎣ ⎦

⎡ ⎤∗ ∗ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥∗ ∗ ⎣ ⎦⎣ ⎦

− ⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥−Δ ⎣ ⎦ ⎣ ⎦

�
� �� � �

� � � �
� � � �                                   (24) 

Similarly, 

[ ] 0
0 1

1

1 1
.

1 1
aJ a J J J
t

J
J

δ δ δ
− ⎡ ⎤⎡ ⎤

∗ = ⎢ ⎥⎢ ⎥−Δ ⎣ ⎦ ⎣ ⎦
� �                                   (25) 

 

As a typical term involving the convolution of semi-derivatives, consider 

[ ] 1

1

00 0 0
0 1

1 10 1
.

N N N N
J u J J

N N N N
u
u

δ δ δ
⎡ ⎤∗ ∗ ⎡ ⎤

∗ = ⎢ ⎥ ⎢ ⎥∗ ∗ ⎣ ⎦⎣ ⎦

� � � �
� � � � � �                                   (26) 

Each component in the 2 2×  matrix can be evaluated directly using Eqs. (23a) and (23b), along 

with the relation Eq. (18).  Thus, 

( ) ( ) ( ) ( ) ( )1/
0

2 0 1/2 1/2 0 1/2
0 0 0 0

1 1
2

0

2

2

2
2

2

1 1 (

2

( ) )

(1) (1) (2) (2)
(1) (2) (3)

1

1 2 ,

t t tN N t t
t t

t

t t
t t

+ + + +
⎛ ⎞ ⎛ ⎞= − ∗ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝

∗ Δ Δ
Δ Δ

Γ Γ Γ ΓΔ + Δ
Γ

⎠

= −

= − +

Δ Γ ΓΔ

= −

� �
D D D D

                 (27a) 

( ) ( ) ( ) ( )1/2 0 1/2 1/2
0

2

1 0 0 0

1 1
2 2

2
2

( ) )

(1) (2) (2)
(2) (3

1 1 (

1

1 ,

)
1

N N t t
t t

t t
t

t t t

t

+ + +
⎛ ⎞ ⎛ ⎞= − ∗∗ Δ Δ

Δ Δ

Γ Γ ΓΔ − Δ
Δ Γ Γ

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

= − =

Δ

� �
D D D

                           (27b) 
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( ) ( )1 0 1
1
20( ) ( ) ,N N t N N t=∗ Δ ∗ Δ =

� � � �
                                                                   (27c) 

( ) ( ) ( )1/2 1/2

2
2

2

1 1 0 0

1
2

( ) )

(2)

1 1 (

1
(3)

.

t tN N t t
t t

t
t

+ +
⎛ ⎞ ⎛ ⎞= ∗∗ Δ Δ

Δ Δ

Γ Δ
Γ

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=
Δ

=

� �
D D

                                            (27d) 

Consequently, substituting Eqs. (27a-d) into Eq. (26), one finds 

[ ]
1 1

02 2
0 1 1 1

12 2

.J u
u
u

J Jδ δ δ
⎡ ⎤− ⎡ ⎤

∗ = ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

� �                                            (28a) 

In a similar way, 

[ ]
1 1

02 2
0 1 1 1

12 2

,u J
J
J

u uδ δ δ
⎡ ⎤− ⎡ ⎤

∗ = ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

��                                            (28b) 

and for the viscous dissipation term 

[ ] 02 2
0 1

12 2

.
c c

c cu c
u

u
u

u uδ δ δ
⎡ ⎤− ⎡ ⎤

∗ = ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

� �                                            (29) 

Before moving on to the applied loading contributions, let us consider the fractional derivative 

orders employed for the action definition in Eqs. (1) and (5), which ultimately lead to the final 

matrix expressions in Eqs. (28a), (28b) and (29).  In Ref. [1], there was no compelling reason to 

write these action contributions strictly in terms of semi-derivatives.  Any other fractional 

derivatives could have been selected, as long as the two orders, say 1α  and 2α , involved in each 

term are both positive and complementary; that is, the two orders in any term must sum to unity 

[1].  Now, based upon the property in Eq. (18), one can understand that the specific orders do not 

matter.  Any complementary pair 1α  and 2 11α α= −  will yield exactly the same matrices defined 

in Eqs. (28a), (28b) and (29). 

Finally, turning to the loading term in Eq. (5), let 
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0 0 1 1( ) ( ( .) )f t N t f N t f= +                                                     (30) 

Then, 

[ ]

[ ]

1

1 1

0 0 0 0
0 1

0 1

06 3
0 1

13

1

6

.
t t

t t

N N N N f
u f u u

N N N N f

f
u u

f

δ δ δ

δ δ
Δ Δ

Δ Δ

∗ ∗ ⎡ ⎤⎡ ⎤
∗ = ⎢ ⎥⎢ ⎥∗ ∗⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

                                  (31) 

Substituting Eqs. (24), (25), (28a), (28b), (29) and (31) into Eq. (5) yields the following 

discretized weak form 

[ ] [ ]

[ ] [ ]

[ ] [ ]

0 0
0 1 0 1

1 1

1 1 1 1
0 02 2 2 2

0 1 0 11 1 1 1
1 12 2 2 2

0 06 32 2
0 1 0 1

1 13 62 2

m m a a
t t t t
m m a a
t t t t

t tc c

t tc c

u u J J

J J u u

f
u u u u

u J
u J

u J
u J

f
u
u

δ δ δ δ

δ δ δ δ

δ δ δ δ

Δ Δ Δ Δ

Δ Δ Δ Δ

Δ Δ

Δ Δ

⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤
−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− −⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤− ⎡⎡ ⎤
+ − ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣⎣ ⎦ ⎣ ⎦

[ ]1 0 0.u jδ

⎤
⎢ ⎥

⎦

− =⎡ ⎤⎣ ⎦

                      (32) 

With 0u  and 0J  known from the initial conditions at 0t = , the variations 0uδ  and 0Jδ  are taken 

as zero.  Therefore, the weak form reduces to the following 

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

0 0 01 1
1 1 1 2 2

1 1 1

0 0 01 1
1 1 1 1 02 2 2 2 3 6

1 1 1
0.

m m a a
t t t t

c c t t

u J u
u J u

J u
J

u J J

f
u u u u j

fu

δ δ δ

δ δ δ δ

Δ Δ Δ Δ

Δ Δ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎡ ⎤+ + − − =⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

        (33) 

Then, grouping the terms according to the variations, one obtains 
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[ ]

[ ]

0 0 0 01 1
1 02 2 2 2 3 6

1 1 1 1

0 01 1
1 2 2

1 1
0.

m m c c t t
t t

a a
t t

f
u j

f
u J u
u J u

J
J u

J
u

δ

δ

Δ Δ
Δ Δ

Δ Δ

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤− + + − − ⎡ ⎤⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤+ − + =⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎣ ⎦ ⎣ ⎦⎝ ⎠

              (34) 

Consequently, for arbitrary variations 1uδ  and 1Jδ , Eq. (34) provides the following pair of 

equations for 1u  and 1J  

01 1
1 1

2 2 2 2
1 1

12 2 0 0
,

m c m c
t t

a a
t t

uu
JJ

JΔ Δ

Δ Δ

⎡ ⎤ ⎡ ⎤+ − − ⎡ ⎤⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

                                   (35) 

where 

01 13 6 0.t tJ f f jΔ Δ+ +=                                                         (36) 

 

More generally, for the thn  time step with nt n t= Δ , one may write 

1 1
2 2 2 2

1 1
2 2

1

1
,

0

m c m c
t t

a a
n n n

t tn n

u u
J J

JΔ Δ −

Δ −Δ

⎡ ⎤ ⎡ ⎤+ − − ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

                              (37) 

where 

1 13 6 .n
t

n n
t

nJ f f jΔ Δ
− −+ +=                                                    (38) 

 

For the undamped case with no external forcing, Eq. (37) reduces to 
1 1
2 2

1
12

1
1
2

.n
m m

t t
a a

t

n

nt n

u u
J J

Δ Δ

Δ

−

−Δ

⎡ ⎤ ⎡ ⎤−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

                                       (39) 

Notice that Eq. (39) is time reversible.  One can recover exactly the state 1n −  from state n  by 

setting t tΔ → −Δ .    

Equation (39) can be rewritten in matrix form as 

 =1 n 0 n-1x A xA ,                                                         (40) 
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or simply 

=n n-1x Ax ,                                                            (41) 

where 
1−= 01A A A .                                                           (42) 

The stability and dissipative character of the computational method can be determined by 

considering the eigenvalues of A .  For the undamped case, the two eigenvalues of A  become 

complex conjugate pairs with 
2

1,2 2

4 1
4

i 4
1

λ Τ − Τ=
Τ +

± ,                                                    (43) 

where ( )1/2 /ma tΤ = Δ  represents a non-dimensional time.  Notice that 

21 1λ λ= = .                                                          (44) 

Consequently, in addition to being time reversible, the present temporal finite element mixed 

convolved action algorithm is also symplectic, energy conserving and unconditionally stable for 

the undamped case.  

 

V. WEAK FORM FOR CLASSICAL MAXWELL MODEL 

In the previous section, a numerical formulation has been provided for the principle of mixed 

convolved action applied to a dissipative single degree-of-freedom dynamical system represented 

in terms of a Kelvin-Voigt element.  This is just one particular application.  A broad range of 

classical models can be formulated in terms of mixed convolved action.  As an additional 

example, in this section, the dynamical system displayed in Figure 2, involving a classical 

Maxwell element is considered. 

The mixed convolved action associated with this problem can be written: 

( ) ( ) ( ) ( )
( )

1 1 1
2 2 2, , , ; )( , , ( ) ( ) ( ) ( )

( ) (( )) 0 ,

MC Mu J J J t u m u J a J J u J d J

u f u

I u u t

t t j

t t t∗= − ∗ + ∗ ∗

− ∗

−

−

� � � �� � �� � �� �

           (45) 

where /M Md a τ=  with Mτ  as the relaxation time. 
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For stationary mixed convolved action with the Maxwell model, the first variation of Eq. (45) 

must be zero, which leads to the following weak form in time suitable for numerical 

implementation 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) (0) 0.

MC

M

u m u J a J J u uI t t t tJ

J d J u f u tt jt

δ δ δ δ δ

δ δ δ

∗ − ∗ + ∗ + ∗

∗ =

=

∗ −− −

� �� �� �� �
� �                       (46) 

In order to recover the Euler-Lagrange equations associated with the strong form, one can 

perform classical and fractional integration by parts on the appropriate terms.  The resulting 

statement becomes 

{ }( ) { }( )
{ } { }

{ } { }

( ) ( )

( ) (0) (0) (0) (0) ( )

( ) (0) (0) (0) (0) ( ) 0.

M

M

u u J f t J J d J u t

u t u J j u u t

J t a J d J u J a

m a

m

J

m

t

δ δ

δ δ

δ δ

∗ + − + ∗ − − +

+ + − +

+ − − + − − =

� �� ��� �

� �

� �

                          (47) 

For arbitrary variations, this produces the appropriate Euler-Lagrange equations, representing the 

governing balance laws for the mixed formulation with a Maxwell element 

,m u J f=+ ���                                                                  (48a) 

0,MJ J ua d− =+−�� � �                                                             (48b) 

along with the initial conditions 

(0) (0) (0),Jm u j=+�                                                          (49a) 

(0) (0) 0(0) .MJ Ja ud +− − =�                                                     (49b) 

In addition, as with the Kelvin-Voigt model, the variations at the initial instant must be taken as 

zero.  Thus, 

(0) 0uδ = ,         (0) 0.Jδ =                                                   (50a,b) 
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After discretization of Eq. (46) using the linear temporal shape functions Eq. (20a) and (20b), 

one finds for the thn  time step with nt n t= Δ  

1 1
2 2

1 1
2 2 2

1

2 1
,

0M M

m m
t t

d da a
t t

n n n

n n

Ju u
J J

Δ Δ

Δ

−

−Δ

⎡ ⎤ ⎡ ⎤− ⎡ ⎤⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − − − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

                              (51) 

where again 

1 13 6 .n
t

n n
t

nJ f f jΔ Δ
− −+ +=                                                         (52) 

 

VI. CAPUTO FRACTIONAL CALCULUS 

The following alternative expression for the left Riemann-Liouville fractional derivative may be 

developed by using the commutativity property of the convolution operator in Eq. (10), along 

with the Leibniz rule [54] 

( ) ( )0 0
1(0)

(1
1( ) )

)
( .u t t

t
u uα α

αα+ +
−

Γ −
= + �D I                                        (53) 

From this it is clear that the left Riemann-Liouville fractional derivative can easily become 

unbounded as 0t → .  In particular, from Eqs. (13) and (53), one finds that the α -order 

fractional derivative of the constant function produces a t α−  singularity.  Because these are weak 

(i.e., integrable) singularities, this causes no difficulty within mixed convolved action principles. 

On the other hand, the application of Riemann-Liouville fractional derivatives in constitutive 

modeling is problematic due to this singular character.  Instead, Caputo fractional derivatives 

[30] may be more appropriate, where 

( )
( )0

0

) ,
(1 )

1 (( )
t

C u dut
t

α
α

ξ ξ
α ξ

+

−
=

− ∫Γ
�

D                                            (54) 

or from Eq. (12), one may write 

( ) ( )0 0
1( ) ( ).C t uu tα α

+ +
−= �D I                                                    (55) 

Notice, then, in comparing Eq. (55) with Eq. (53), one finds that by definition the Caputo 

fractional derivative simply excludes the term containing the 0t →  singularity.  In fact, Caputo 

introduced this idea within the context of constitutive modeling of dissipative media [30].  
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However, this difference has consequences for a number of fractional calculus operations, which 

are developed in the following. 

Consider, first, the composition of left Caputo fractional derivatives and Riemann-Liouville 

integrals of order α  operating on any summable function ( )u τ , with 0 1α< < .  The results can 

be written as 

( )( ) ( )0
0 0

(0)
( ) ( 1) ,

(1 )
C

u
u u

α
α α

ατ τ
α τ

+

+ + −=
Γ −

I
D I                               (56a) 

while by reversing the order 

( )( )0 0 ( ).) (C u uα α τ τ+ + =I D                                                 (56b) 

In a similar manner, one finds for the composition of right fractional operators 

( )( ) ( )
( )

1 ( )
( ) )

)
( ,

(1
t

t
C

t

u t
u u

t

α
α α

ατ τ
α τ

−

− − −
Γ

=
− −

I
D I                                  (57a) 

and 

( )( ) ( ( ).)t
C

t u uα α τ τ− − =I D                                                  (57b) 

Equations (56) and (57) for Caputo fractional derivatives should be compared with Eqs. (31) and 

(32) in Ref. [1] for Riemann-Liouville derivatives.  Cleary, the omission of the singular term in 

the Caputo definition affects significantly the composition of fractional operators. 

Furthermore, integration-by-parts relations are also affected.  Based upon an extension of the 

Love and Young result for fractional integration by parts [66], one may write for Riemann-

Liouville fractional derivatives [1] 

( ) ( ) ( ) ( )1
0

0 0

1
0( ( ) ( ) ( ( ) ( ) (0) (0)) ) ,

t t

t td d t tα α α αϕ τ ψ τ τ ϕ τ ψ τ τ ϕ ψ ϕ ψ++ − −
− −−∫ ∫= +D D I I              (58) 

for 0 1α< < , while for Caputo fractional derivatives this simplifies to the following 

( ) ( )0
0 0

) )) .( ( ( ) (C C
t t

td dα αϕ τ ψ τ τ ϕ τ ψ τ τ+ −∫ ∫=D D                                     (59) 

Notice that, in both forms, the inner product of one function with the left fractional derivative of 

another converts to the inner product of the latter function with a right fractional derivative of the 
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former function.  When operating with Riemann-Liouville fractional derivatives as in Eq. (58), 

boundary terms involving both left and right fractional integrals are released during this process; 

whereas these are absent in Eq. (59) when operating with Caputo derivatives.  This difference is 

again due to the removal of the singular contributions in the Caputo definition. 

Finally, consider integration-by-parts for convolutions with fractional derivatives.  The relations 

associated with left and right Riemann-Liouville fractional derivatives can be written, 

respectively, as [1] 

( ) ( ) ( ) ( )0 0 0 0
0

1 1

0
( ( ) ( ) ( (0) ( ) ( ) 0),) ()

t t
t d t d t tα α α αϕ τ ψ τ τ ϕ τ ψ τ τ ϕ ψ ϕ ψ+ ++ +

− −= +− − −∫ ∫D D I I          (60a) 

( ) ( ) ( ) ( )1 1

0 0
( ( ) ( ) ( ( ) (0) (0) ( ),) )

t t

t t t tt d t d t tα α α αϕ τ ψ τ τ ϕ τ ψ τ τ ϕ ψ ϕ ψ− − − −
− −− − −∫ ∫= +D D I I          (60b) 

whereas for Caputo fractional derivative operators, one finds the simple relations 

( ) ( )0 0
0 0

) )( ( ) ( ) ( ,C C
t t

t d t dα αϕ τ ψ τ τ ϕ τ ψ τ τ+ +− −∫ ∫=D D                             (61a) 

( ) ( )
0 0

) )( ,( ) ( ) (C C
t t

t tt d t dα αϕ τ ψ τ τ ϕ τ ψ τ τ− −=− −∫ ∫D D                             (61b) 

without the released end point terms. 

 

VII. WEAK FORM FOR FRACTIONAL-DERIVATIVE MAXWELL MODEL 

Many possibilities exist for constructing fractional derivative constitutive models.  For a first 

example, the previous mixed convolved action formulation for the classical Maxwell element is 

generalized in this section to incorporate a fractional damper of order β  with 0 1β< < , as 

illustrated in Figure 3.  The governing differential equations for balance of momentum and 

compatibility of velocities, respectively, can be written 

,m u J f=+ ���                                                                  (62a) 

( )1 0
0,C

F

J Ja ua β
βτ +−− − =+�� � �D                                                    (62b) 

along with the initial conditions 
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(0) (0) (0),Jm u j=+�                                                          (63a) 

(0) (0) (0) 0.FJ ua u+− − =�                                                       (63b) 

Here, Fτ  represents the relaxation time and (0)Fu  is the displacement across the fractional 

damper at time zero, which is not subject to variation.  Notice that the Caputo fractional 

derivative is used in Eq. (62b) to assure bounded velocities at the initial instant. 

The objective now is to define a mixed convolved action that returns Eqs. (62) and (63) as its 

Euler-Lagrange equations.  Let us consider the following 

( ) ( ) ( )

( ) ( )
( )

1 1
2 20

1

(1 )/2

(1 )/2 (1 )/2
12 0 0

, , , , ;( , , ( ))

(0)

(

( ) ( )

( ) ( )

( ) ) (0).

F

C
C

C C
F

F

u J J J J t u m u J a J J u

J J u

u

I u u t

f u t

t t

a t J t

t j

β

β β
βτ

+

+ +

+

+ +
−

∗ −=

⎛ ⎞
− −⎜ ⎟

⎝ ⎠

∗ + ∗

∗

− ∗ −

� � �� � �� �� �D

D D      (64) 

Then, setting the first variation to zero produces the weak form 

( ) ( ) ( ) ( )

( ) ( )
( )

(1 )/2 (1 )/2
10 0

(0)

(

( )

)

( ) ( ) ( )

( ) ( )

( ) (0) 0,

FC

C C
F

F

I t t t t

a t J

u m u J a J J u u J

t

t

J J u

u f u t j

β β
β

δ δ δ δ δ

δ δ
τ

δ δ

+ +
+ +

−

∗ − ∗ + ∗ + ∗

∗

− ∗ −

=

⎛ ⎞
− −⎜ ⎟

=

⎝ ⎠

� �� �� �� �

D D          (65) 

which is suitable for numerical solution.  By performing classical, Riemann-Liouville fractional 

and Caputo fractional integration by parts on the appropriate terms, the variational statement 

becomes 

{ }( ) ( )
{ } { }

{ } { }

01( ) ( )

( ) (0) (0) (0) (0) ( )

( ) (0) (0) (0) (0) ( ) 0.

C

F

F

am a

m

u u J f t J J J u t

u t u J j u u t

J t J u u J a J

m

a t

β
βδ δ

τ

δ δ

δ δ

+−− −

− −

⎛ ⎞⎧ ⎫⎪ ⎪∗ + − + ∗ +⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠

+ + − +

+ + − − =

� �� ��� �

� �

� �

D

                   (66) 

With arbitrary variations uδ  and Jδ  throughout the time interval, Eq. (66) leads immediately to 

the governing differential equations Eqs. (62a) and (62b) and initial conditions Eqs. (63a) and 
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(63b), along with the requirement for zero variations (0) 0uδ =  and (0) 0Jδ =  at the initial 

instant.  Consequently, the functional 
FCI  defined in Eq. (64) does afford a principle of 

stationary mixed convolved action for the fractional Maxwell dissipative system of Figure 3. 

For the numerical implementation, it is perhaps most convenient to begin with the weak form 

given in Eq. (65).  The discrete matrix formulations already have been defined for all of the 

individual terms, except for those on the second line of Eq. (65) associated with the fractional 

damper.   

Let us begin by replacing the Caputo fractional derivatives with fractional integrals, where 

( ) ( ) ( ) ( )(1 )/2 (1 )/2 (1 )/2 (1 )
0 0 0 0

/2
1 1( ) ( ).C C

F F

J Ja J Jat tβ β β β
β βδ δ

τ τ+ + + +
+ + − −

− −

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝
∗

⎠
∗ � �D D I I         (67) 

Then, assuming linear temporal shape functions for J  and Jδ , the quantities J�  and Jδ �  are 

constant within each time step and the only necessary convolutions required in Eq. (67) reduce to 

the following 

( ) ( )( )(1 (1 (1 (1)/2 )/2 )/2 )/

0
0

2
2

2

2

0

2

1 1 ( )
( ) / 2)

) / 2, ) / 2)
( ) / 2)

(

1( )
(3

1 ((3 (

3 )

3
(3

.

t
t d

t

t

t

B

β β β β

β

β

τ τ τ
β

β β
β

β

+ +
− − − −

−

−

=
−

∗ −∫
Γ

Γ

Γ

− −
−

=
−

=

I I

                  (68) 

Then, for a time step of duration tΔ  

( ) ( ) [ ] 0(1 )/2 (1 )/2 2 2
0 11 0

12 2
0

( ) ,
F F

F F

d d
C C

d d
F

Ja tJ J J J
J

β β
βδ δ δ

τ+ +
+ +

−

⎡ ⎤− ⎡ ⎤
⎢ ⎥∗ Δ ⎢ ⎥
⎢ ⎥− ⎣ ⎦⎣

⎛ ⎞
=⎜ ⎟

⎝ ⎠ ⎦
D D                (69) 

where  

13 )
2 .

(F
F

a
t

d β ββ τ −Γ − Δ
=                                                        (70) 

Next, the total displacement across the fractional damper Fu  must be evaluated at the beginning 

of each time step for use in the initial condition contribution in Eq. (65).  In general,  
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( )1
1 0

(0),( ) ( )F F
F

u t t ua Jβ
βτ +

−
−= +�I                                               (71) 

which in discretized form becomes 

( ) ( ) ( ) ( ){ }
1

1

1 / 1 / (0),
(1 )

( ) 1,1 1,1n
F n l l l n Fl n

F

n

l

tat J J B Bu u
t

β

β β
β τ

−

−
=

−
⎛ ⎞

= − − − − +∑⎜
⎝ ⎠Δ Γ − ⎟          (72) 

where ( ),xB ⋅ ⋅  is the incomplete Beta function, with the special case [67] 

( ) ( )1 1
1, .

y

x
x

B y
y

− −
=                                                              (73) 

Consequently, the fractional damper displacement at time nt  can be written 

( )
1

1 1 1

1 (0).
(1 )

1)
)

(
(1

n
F n l l F

F

n

l

ta n l n lt J J
n

u
t n

u
β β β

β β τ =

− − −

−

⎧ ⎫⎛ ⎞ − + −⎪ ⎪⎛ ⎞ ⎛ ⎞= − − +∑ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎪ ⎪⎩ ⎭Δ − Γ −

      (74) 

Finally, merging Eqs. (69) and (74) into Eq. (51) by replacing the classical Maxwell damper 

terms, one obtains a discretized mixed convolved action formulation for the fractional Maxwell 

dissipative dynamical system in the following form 
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                            (75) 

Here Fd  and nJ  are defined in Eqs. (70) and (52), respectively, while ( )Fn F nu u t=  with )(F nu t  

given in Eq. (74).  Note that 0 (0)F Fu u=  represents the initial displacement across the fractional 

damper, which must be specified at time zero. 

 

VIII. NUMERICAL EXAMPLES 

For all of the numerical examples considered here, with no loss of generality, the model 

parameters are taken in non-dimensional form.  In particular, let 1m =  and ( )21/ 4a π= , thus 

providing a natural circular frequency 2ω π=  and a natural period 1T = .   
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In the first example, let us consider the free vibration of an undamped linear oscillator.  Thus, 

0c =  and 0f =  in the weak formulation defined in Eq. (37).  For initial conditions, let (0) 1u = , 

(0) 0J =  and (0) 0j = , which from Eq. (8a) implies that the initial velocity (0) 0u =�  for the 

undamped system, while from Eq. (8b) the initial force in the spring (0) (0) / 1/u aJ a= =� . 

 

The numerical solutions for displacement ( )u t  versus time t , based upon the mixed formulation 

of Eq. (37) using several different time steps tΔ , are compared in Figure 4 with the analytical 

solution.  The accuracy is quite good for sufficiently small time steps and convergence to the 

analytical solution is obtained.  Meanwhile, Figure 5 provides the corresponding phase space 

plot of velocity ( )u t�  versus displacement ( )u t , which demonstrates the symplectic character of 

the mixed convolved action numerical formulation of Eq. (37).  Figure 6 presents a plot of 

energy versus time, which confirms that the energy preserving nature of the algorithm is 

independent of time step.   

 

As noted previously in Section IV, the two eigenvalues of the discrete update operator matrix A  

in Eq. (41) are complex conjugates with unit modulus.  Consequently, the spectral radius of A  is 

one and Eq. (37) represents an unconditionally stable, symplectic formulation for the undamped 

linear oscillator with no numerical dissipation [68, 69].  Interestingly, in numerical simulations, 

the total energy is conserved at time 5000t =  to at least nine significant digits for a range of time 

steps from 0.001tΔ =  to 100tΔ = .  Notice that in the former case, this entails five million time 

steps, while in the latter simulation each time step is one hundred times the period of the 

oscillator.  Of course, for such very large time steps, detailed accuracy in terms of displacement 

( )u t  or force impulse ( )J t  cannot be maintained, but the solution continues to conserve overall 

energy. 

 

Next, consider the damped free vibration of the same system, having mass 1m =  and spring with 

flexibility ( )21/ 4a π=  to provide an undamped natural circular frequency 2ω π= , but now with 

a damper positioned in parallel to the spring.  Assume that this Kelvin-Voigt system has a 

damper of coefficient c , sized to deliver a non-dimensional damping ratio cr/ 0.05K c cζ ==  
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with cr 2c mω= .  For initial conditions, again let (0) 1u = , (0) 0J =  and (0) 0j = .  From Eq. 

(8a), this implies that the initial velocity (0) (0) / 2 Kcu mu ζ ω= − = −� , while the initial force in the 

spring (0) (0) / 1/u aJ a= =�  from Eq. (8b).  Figure 7 displays the numerical solution of 

displacement versus time, based upon the formulation of Eq. (37), in comparison with the well-

known analytical solution.  Notice once again that excellent correlation is obtained for 

sufficiently small time steps.  As the time step is enlarged, the amplitude decay per cycle appears 

from Figure 7 to remain consistent with the analytical solution.  The errors are primarily due to 

period elongation, as in the undamped case.  This behavior of the numerical formulation is 

confirmed in the phase space plot of Figure 8, where the radius of the decaying spiral is correctly 

maintained, even for rather large time steps 0.100tΔ = .  

 

Interestingly, one can obtain exactly the same damped free vibration response from either a 

Kelvin-Voigt or Maxwell element.  The only requirements are that the initial conditions in terms 

of displacement, velocity and applied force impulse must be the same, and consistent definitions 

of the non-dimensional damping ratio must be specified.  As the third example, consider the 

same Kelvin-Voigt system from the previous case having 0.05Kζ = , but with (0) 1u = , (0) 0u =�  

and (0) 0j =  for the initial conditions.  The numerical results are displayed in Figure 9, along 

with the corresponding analytical solution.  In addition, the figure includes the numerical 

solution for the damped Maxwell mixed convolved action formulation of Eq. (51) with non-

dimensional damping ratio ,cr/ 0.05M M Md dζ = = , where ,cr 2Md aω= .  Clearly, from Figure 9, 

the result is identical to that for the Kelvin-Voigt system with the same non-dimensional 

damping ratio.  Lastly, the fractional Maxwell formulation of Eq. (75) can provide exactly the 

same free vibration response by setting 0β = , ( )1 / 2F Fτ ζ ω=  and 0Fu  with 0.05Fζ = , in 

which case /F Fd a τ=  in Eq. (75).  For 0.001tΔ = , all three models coincide to at least five 

significant digits. 

 

Figure 10 provides the numerical solutions, based upon Eq. (75), for the fractional Maxwell 

model with three different values of β .  In all three cases, the mass m , flexibility a , relaxation 

time Fτ  and initial conditions are taken as the same values specified in the previous example.  
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The lines in the figure represent the numerical solutions with time step 0.001tΔ = , while the 

discrete symbols denote the solutions using a time step 0.020tΔ = . These results illustrate the 

good convergence characteristics of the present mixed convolved action formulation for 

fractional derivative Maxwell models. 

 

The three algorithms for Kelvin-Voigt, Maxwell and fractional Maxwell damping also apply to 

cases of forced vibration.  Figure 11 provides the displacement results for the previous Kelvin-

Voigt model now subjected to an applied force in the form 0 0( ) sin ( )f t f tω=  with 0 100f =  

and 0 10ω =  in non-dimensional units.  The numerical results are obtained with the algorithm of 

Eq. (37) with a time step 0.001tΔ = .  The correlation with the analytical solution is excellent 

throughout the time interval. 

 

Finally, damped forced vibration of the fractional Maxwell model from above is examined under 

excitation by the sinusoidal load of the previous case.  Results are shown in Figure 12 for three 

different values of β .  Again, the lines represent the numerical solutions with time step 

0.001tΔ = , while the discrete symbols correspond to the results for a time step 0.020tΔ = .  The 

mixed convolved action weak form of Eq. (75) clearly provides converging numerical solutions 

for these fractional derivative Maxwell models.   

 

IX. CONCLUSIONS 

In recent work, the principle of mixed convolved action was formulated as a fully consistent 

variational statement for dynamical systems, including those with dissipation [1].  The 

formulation involves mixed variables, fractional derivatives and the temporal convolution of 

convolutions.  Initially, in Ref. [1], the principle of mixed convolved action was developed in 

detail for the classical single-degree-of-freedom Kelvin-Voigt linear oscillator.  Unlike previous 

variational approaches for this problem, with this new principle there is no need for an 

accompanying fictitious negatively damped system, a separate dissipation function with ad hoc 

rules for taking variations, external specification of initial conditions, or restrictions on the 

variations that are inconsistent with the nature of an initial value problem. 
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Here the principle is extended in a straightforward manner to the classical Maxwell linear 

oscillator, having the spring and viscous dashpot in series.  In addition, a principle of mixed 

convolved action is developed for non-classically damped systems, incorporating fractional 

derivatives.  As a result, such systems, which have significant advantages from a constitutive 

modeling perspective, can now be represented in terms of a consistent variational principle 

governing their dynamical response. 

 

Furthermore, low-order discrete time formulations are developed for all three of the systems and 

numerical simulations are conducted to demonstrate the potential of this new approach.  These 

numerical algorithms are shown to be symplectic and unconditionally stable for the undamped 

case and accurate and robust for cases involving classical and non-classical damping elements, 

under both free and forced vibrations.   

 

The applicability of the mixed convolved action approach is quite broad, spanning many fields of 

mathematical physics and mechanics.  In particular, future work will be directed toward 

development of higher-order time-stepping methods, fast convolution algorithms [70-72] for the 

fractional derivative models and the application of these concepts to multi-degree-of-freedom 

dynamical systems, continuum dynamical systems and coupled multi-physics problems, 

following the ideas in Refs. [65, 73-77, 2]. 
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FIG. 1.  Single-degree-of-freedom Kelvin-Voigt damped oscillator 
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FIG. 2.  Single-degree-of-freedom Maxwell damped oscillator 
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FIG. 3.  (Color online) Single-degree-of-freedom fractional Maxwell damped oscillator 
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FIG. 4.  (Color online) Free vibration displacement response for undamped oscillator 
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FIG. 5.  (Color online) Free vibration phase space response for undamped oscillator 
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FIG. 6.  (Color online) Free vibration energy response for undamped oscillator 
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FIG. 7.  (Color online) Free vibration displacement response for Kelvin-Voigt damped oscillator 
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FIG. 8.  (Color online) Free vibration phase space response for Kelvin-Voigt damped oscillator  
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FIG. 9.  (Color online) Free vibration displacement response for damped oscillators 
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FIG. 10.  (Color online) Free vibration displacement response for Fractional Maxwell damped 

oscillator 
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FIG. 11.  (Color online) Forced vibration displacement response for Kelvin-Voigt damped 

oscillator 
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FIG. 12.  (Color online) Forced vibration displacement response for Fractional Maxwell damped 

oscillator 


