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The existence of a ”-1” power-law scaling at low wavenumbers in the longitudinal velocity spec-
trum of wall-bounded turbulence was explained by multiple mechanisms; however, experimental
support has not been uniform across laboratory studies. This letter shows that Heisenberg’s eddy
viscosity approach can provide a theoretical framework that bridges these multiple mechanisms and
explains the elusiveness of the ”-1” power-law in some experiments. Novel theoretical outcomes
are conjectured about the role of intermittency and very-large scale motions in modifying the k−1

scaling.

I. INTRODUCTION

The spectral properties of turbulence at high
wavenumbers have been extensively studied in turbu-
lent flows and existing theories appear satisfactory in
describing their basic statistical properties at very high
Reynolds numbers [1–4]. Equivalent theories for the low
wavenumber range have been comparatively lacking be-
cause boundary conditions prohibit the attainment of
universal behavior. Among the few theories proposed
at low wavenumbers is a k−1 scaling in the longitudinal
(u) velocity spectrum Eu(k) at wavenumbers (kz ≤ 1)
of wall-bounded flows, where z is the height from the
boundary and k is the wavenumber. This scaling be-
havior was observed in numerous boundary-layer studies
(reviewed in [5]) and in Large Eddy Simulations of the
neutral atmospheric boundary layer [6–8]. Tchen [9, 10]
was the first to theoretically predict the k−1 scaling via
a spectral budget equation. Other approaches result-
ing in a k−1 power-law include dimensional analysis or
asymptotic matching between the so-called inner- and
outer-regions of the velocity spectra [11–14]. Nikora [15]
later showed that one possible mechanism for generating
a k−1 scaling at a given z can be explained by superpo-
sition of Kolmogorov cascades generated at all possible
distances from the ground above z. This superposition
argument leads to a turbulent kinetic energy flux equal
to the dissipation rate at wave numbers larger than 1/z
that scales as ε̄ ∼ u3

∗
k1 for kz ≤ 1. When this scaling

is combined with the well-celebrated Kolmogorov energy
cascade (Eu ∼ ε̄2/3k−5/3), it leads to an Eu ∼ u2

∗
k−1 for

kz ≤ 1, where overbar is time-averaging, ε̄ is the mean
turbulent kinetic energy dissipation rate, u∗ = (τt/ρ)

1/2

is the friction velocity, τt is the turbulent stress, and ρ
is the mean fluid density. The assumption that τt is in-
dependent of z is reasonable for a zero-mean pressure
gradient flow that is stationary, planar-homogeneous, at
very high Reynolds number, and in the absence of any
subsidence.

Interest in the onset of the k−1 power-law scaling in
Eu(k) has re-surfaced following new experiments and

analyses, including the super-pipe high Reynolds num-
ber flow experiments that showed no clear k−1 power-law
scaling [16]. Another laboratory boundary layer exper-
iment [17] suggested that a pre-requisite to the emer-
gence of a k−1 power-law scaling in Eu(k) marked by at
least one decade of scales is not only limited to a very
large Reynolds number (H+ = H u∗/ν > 50000), as was
the case for the super-pipe experiment. Additional con-
straints were proposed including a dimensionless height
from the boundary z+ = zu∗/ν > 100 so as to avoid
any viscous effects and z/H ≤ 0.02 to ensure a minimum
overlap zone between the inner and outer regions in which
the k−1 scaling is presumed to emerge [17], whereH is the
boundary-layer height, and ν is the kinematic viscosity.
Other recent studies [14, 18, 19] questioned the use of a
spectral budget approach as lacking any accounting for a
rigid boundary. The scaling analysis in [15] was also crit-
icized for ignoring coherent structures, although implic-
itly they were considered through the use of Townsend’s
attached eddies concept. However, the potentially im-
portant effects of very large scale motions (VLSM) or su-
perstructures, have not been explored. Another critique
of the spectral budget approach and the scaling analysis
in [15] is their prediction of a k−1 power-law for the ver-
tical velocity spectra Ew(k), which was not reported in
previous studies. However, a near k−1 scaling in Eu(k)
was reported in many experiments despite the fact that
the restrictions listed in [17] were not always satisfied [5].

What is evident is that beyond dimensional analysis
and asymptotic arguments, a complete phenomenolog-
ical theory that bridges these multiple arguments and
explains the occurrence or absence of a k−1 scaling is
lacking. A novel phenomenological spectral theory based
on Heisenberg’s eddy-viscosity approach [20] is proposed
here. It recovers (i) Nikora’s [15] scaling arguments for
infinite Reynolds number and a deep boundary layer, (ii)
aspects of the attached eddy pertinent to the generation
of a k−1 power-law, and (iii) some empirical conditions
proposed for the onset of a k−1 power-law. Using this
phenomenological theory, conjectures about the expected
role of coherent structures and VLMS as well as intermit-
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tency in modifying the k−1 power-law are also presented.

II. THEORY

The development commences with the turbulent ki-
netic energy viscous dissipation rate (ε) being related to
the amplitude of the squared turbulent vorticity (ωiωi)
for high Reynolds number using

ε = νωiωi = 2ν

∞
∫

0

Etke(k
′)k′2dk′, (1)

where Etke(k) is the total energy spectrum obtained as a
sum of the three-dimensional spectra of individual veloc-
ity components (u, v, and w) integrated over the surface
of a sphere of radius k where k is the scalar wavenumber,
u, v, w are the longitudinal, lateral, and vertical veloc-
ity components along directions x, y, and z, respectively,
∫

∞

0 Etke(k)dk = e2 = (σ2
u+σ2

v+σ2
w)/2 is the mean turbu-

lent kinetic energy (tke) related to the sum of the three
component velocity variances (σu, σv, and σw), and k′

is a dummy integration variable. Heisenberg’s argument
rests on the assumption that equation 1 can be re-written
via a turbulent viscosity to yield (see Appendix)

ε(k) = (ν + νt(k))

k
∫

0

2Etke(k
′)k′2dk′, (2)

where ε(k) is the turbulent kinetic energy dissipation rate
at wavenumber k, νt(k) is a wavenumber dependent tur-
bulent viscosity given as

νt(k) = CH

∞
∫

k

√

Etke(k′)

k′3
dk′, (3)

and CH is the Heisenberg constant of order unity. The
assumption behind equations 2 and 3 is that for all ed-
dies whose wavenumbers are between 0 and k (i.e. large
scales), the action of smaller eddies can be represented
by an additional turbulent viscosity νt that must depend
on the energy and wavenumbers of all smaller scale ed-
dies. This νt expression does not preclude non-local spec-
tral interactions between large and small eddies. When
ν << νt(k1) at a given k1, equation 2 reduces to

k1
∫

0

2Etke(k
′)k′2dk′ ≈ ε(k1)

CH

∞
∫

k1

√

Etke(k′)
k′3 dk′

. (4)

At the wavenumber k1 = 1/z, it can be shown that (see
Appendix)

ε(z) = ε(k1) =
u3
∗

kvz
=

1

kv
u3
∗
k1, (5)

where kv = 0.4 is the Von Karman constant. The
presence of a mean velocity gradient impacting the low-
wavenumber range primarily modifies the above result
to within a constant as shown in the Appendix. In this
Appendix, a simplified spectral budget equation that re-
tains the production term is first considered. A gradient-
diffusion approximation in the spectral domain is then
used to close the production, which alters the resulting
spectrum to within a constant. With this estimate for
ε(z), the spectral budget at this k1 = 1/z can be ex-
pressed as

k1
∫

0

2Etke(k
′)k′2dk′ =

u3
∗
k1

kvCH

∞
∫

k1

√

Coε(k1)2/3k′−5/3

k′3 dk′
. (6)

In determining νt at very large Reynolds number, the
energy spectrum for k ∈ [k1,∞] can be approximated
by the Kolmogorov spectrum Coε̄(z)

2/3k′−5/3 (hereafter
referred to as K41) where Co ≈ 1.55 is the Kolmogorov
constant. It follows that the Etke for k ∈ [0, k1] is given
as

k1
∫

0

2Etke(k
′)k′2dk′ = Ctkeu

2
∗
k21 , (7)

where Ctke = (4/3)(k
2/3
v CHC

1/2
o )−1. Assuming further

that Etke for k ∈ [0, k1] is self-similar abiding by an ex-
tensive power-law given as Etke = Ak−a, then A and a
can be determined by integrating the left-hand side of
equation 7 and equating the outcome to its right-hand
side to yield

2A
k3−a
1

3− a
= Ctkeu

2
∗
k21 , (8)

resulting in a = 1 and A = Ctkeu
2
∗
, and hence Etke =

Ctkeu
2
∗
k−1 for kz < 1. The Etke, not the spectrum of

individual velocity components, scales as k−1 for kz ≤ 1.
This finding does not require that each individual veloc-
ity component spectra possess a k−1 scaling; only the
ones contributing most to the overall tke (i.e. Eu(k) and
Ev(k)). To illustrate why Eu and Ev contribute most
to the overall tke, recall that in the logarithmic region
of boundary layers, e2 = 1

2

(

A2
u +A2

v +A2
w

)

u2
∗
, where

Au ≈ 2.3, Av ≈ 2.1, and Aw ≈ 1.25. Hence, σ2
w con-

tributes under 15% of the total tke. The Ew(k) gener-
ally does not exhibit any k−1 scaling due to wall-effects
[21]. The considerations presented above are valid for
the logarithmic layer where the global tke production is
aaproximately balanced by its dissipation, and where the
inhomogeneity does not contribute significantly to the
spectral energy balance (i.e. the energy flux due to the
inhomogeneity is constant within the log layer and can be
viewed in terms of energy fluxes as a locally homogeneous
shear layer [22]).
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III. EXPERIMENT

Figure 1 shows measured Etke (in regular and pre-
multiplied form) computed using orthonormal wavelet
transforms (OWT) for flows over a number of surfaces, in-
cluding a smooth-walled laboratory flume at two heights
(z+ = 55.0, 92.0), an Antarctic ice sheet (z+ = 3.6×105),
a grass-covered forest clearing (z+ = 1.6 × 105), a pine
stand (z+ = 1.6 × 105), and a hardwood forest (z+ =
6.6− 7.4× 105). These data sets, briefly described next,
are also used to explore the scaling laws of Eu and Ew

using conventional Fourier transforms to supplement the
OWT analysis. For the canopy experiments, the canopy
height is denoted by hc and z is defined from a zero-plane
displacement ( 2/3 hc). The amount of canopy foliage is
characterized by the leaf area index (i.e. foliage area per
ground area), denoted by LAI.

A. Flume Experiments

The open channel (OC) experiments were conducted
at Cornell University in a 20 m long, 1.0 m wide, and 0.8
m deep open channel tilting flume with a smooth stain-
less steel bed. The channel slope was set at 0.0001 m
m−1 resulting in an H = 10.3 cm of water depth. The
longitudinal and vertical velocity components were mea-
sured using a two-dimensional split film boundary layer
probe (TSI 1287W model). The sampling frequency and
period were 100 Hz and 81.92 seconds per flow variable
per depth. The velocity measurements were performed
at z = 0.1, 0.2, 0.3, 0.4, 0.6, and 1 cm from the channel
bottom. The turbulent stresses were found to be inde-
pendent of height from z = 0.6 cm to z = 1 cm. The
friction velocity was determined to be around u∗=0.9 cm
s−1 using three separate methods that agree to within
10% as discussed elsewhere [5]. The data reported here
are for z = 0.6 and z = 1.0 cm, corresponding to z+ = 55
and z+ = 92. The mean velocity is about 0.2 m s−1 and
σu/u∗=2.5 at both heights.

B. Ice Sheet

The experiment was conducted from November 12 in
1994 until January 6 in 1995 above the Nansen Ice Sheet
( 50 by 30 km2) in a coastal area close to the Terra
Nova Bay Italian station in Antarctica. The site experi-
ences frequent katabatic winds flowing from the Antarc-
tic Plateau toward the Ross sea along the Reeves glacier.
Velocity measurements were performed at 20.8 Hz using
symmetric three axis ultrasonic anemometry (Gill Inst.
Ltd.) positioned at z=22 m above the surface (highest
measurement level) and described elsewhere [23]. The
data reported here are about a 7 hour composite run
made up of 14 consecutive 30-minute stationary runs
with a u∗=0.24 m s−1 resulting in z+ = 3.6 × 105. The
mean velocity was about 7.8 m s−1 and σu/u∗=3.1.

C. Grass Surface

The experiment was conducted from July 12-16 in
1995 at a grass site within the Blackwood division of
the Duke Forest near Durham, North Carolina. The site
is a 480 m by 305 m grass-covered forest clearing, and
a mast, situated at 250 m and 160 m from the north-
end and west-end portions of a 10 m Loblolly pine forest
edge respectively, was used to mount a triaxial ultra-
sonic anemometer (Gill Instruments/1012R2) at z=5.2
m above the ground surface. The hc=1.0 m and LAI
was around 1.5 m2 m−2. The sampling frequency and
period per run were 56Hz and 19.5 minutes, respectively.
Further details can be found elsewhere [24]. The data
reported here are for a 3.9 hour composite run made up
of 12 consecutive runs with a u∗=0.45 m s−1 resulting in
z+ = 1.6 × 105. The mean velocity is about 4.1 m s−1

and σu/u∗=3.4. The selected day here had the highest
u∗ values.

D. Pine Forest

The experiment was conducted from October 610 in
1997 at the Blackwood Division of the Duke Forest near
Durham, North Carolina as part of a spatial variability
in turbulent statistics campaign. The site is a uniformly-
aged managed loblolly pine plantation that extends at
least 1000 m in the north-south direction and 300 m to
600 m in the east-west direction. The stand, originally
grown from seedlings planted at 2.4 m by 2.4 spacing
in 1983 following clear cutting and burning, is approxi-
mately 14 m tall (= hc). The measurements were per-
formed at 5 Hz using a CSAT3 triaxial sonic anemome-
ter (Campbell Scientific Inc., Logan, UT) positioned at
z=15.5 m above the forest floor. The LAI spatially var-
ied from 2.65 to 4.56 m2m−2 across the stand [25]. The
data reported here are for a 7 hour composite run made
up of 14 consecutive 30-minute runs having a u∗=0.38 m
s−1 and resulting in z+ = 1.6 × 105. The mean velocity
is about 1.1 m s−1 and σu/u∗=2.0.

E. Hardwood Forest

The hardwood (HW) experiment was conducted from
June 16 - July 11 in 1996 at an 80-100 year old second-
growth Oak-Hickory forest situated at the Blackwood
division of the Duke Forest, near Durham, North Car-
olina. The mean hc=33 m and the LAI is about 6
m2m−2. The velocity measurements were performed at
10 Hz using a symmetric three axis ultra sonic anemome-
ter (Gill Inst. Ltd.) positioned at the canopy top (z=hc).
Three days in which strong and steady winds occurred
were used here, and are presented separately. Further
details of the experiment can be found elsewhere [26].
The data reported here are for three separate days in
which 5 consecutive hours were used per day resulting in
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a near-constant across days of u∗=0.63,0.56,0.57 m s−1

and z+ = 7.4, 6.6, 6.7× 105. The mean velocity for those
runs were 1.9, 1.5, 2.0 m s−1 and σu/u∗=2.0,1.9, and 1.9,
respectively.

Because of their differencing properties, OWTs are
usually preferred for spectral analysis when some non-
stationarity is expected (as is the case here). A drawback
of OWT spectral analysis is their poor locality in the
wavenumber domain due to dyadic scale arrangement.
Hence, repeating the analysis in the Fourier domain al-
lows some assessment of how robust the findings are to
the analyzing basis functions. Fig. 2 shows the Fourier
spectra for Eu and Ew along with the −1 and −5/3
scaling exponents. The Fourier based spectral density
calculations are conducted using Welch’s averaged mod-
ified periodogram method in which each time series is
first divided into 10 sections with 50% overlap, then each
section is processed using a Hamming type window and
the resulting periodograms are computed and averaged
with no prior detrending. Note that while the Fourier
based Eu(k) exhibit an approximate −1 power-law scal-
ing for all the sites, Ew(k) does not. As earlier noted,
Etke(k) is primarily driven by Eu(k), not Ew. Hence,
the -1 power-law in Etke(k) is primarily due to the onset
of a −1 power-law in both - Eu (shown here for refer-
ence) and Ev. Fig. 3 also presents the Fourier-based
Etke in pre-multiplied form to emphasize the range of
scales exhibiting an approximate −1 power-law. In this
representation, a −1 power-law appears as a constant.
As with the orthonormal wavelet analysis, the inhomo-
geneous grass site does not exhibit a clear −1 power-law
scaling in the expected range of normalized scales (shown
as dashed vertical lines). The other experiments do ex-
hibit an approximate −1 power-law, though variations
around a constant Ctke are not small across experiments
(e.g 0.6 to 1.5) for kz bounded between 0.1 and 1.0. In-
terestingly, the lower Ctke values appear to be associated
with rougher forested sites (pines and hardwoods) col-
lected within the canopy sublayer while the higher Ctke

values are associated with the smooth-wall cases (open
channel and ice sheet). Considering that (i) the atmo-
sphere is non-uniformly heated during the day, (ii) the
boundary layer dynamics cannot be ignored over several
hours, (iii) Taylor’s hypothesis is used in high intensity
flows and this usage is likely to distort the scale range
upon which the −1 power-law ought to be detected, and
(iv) several data sets are collected just above tall forested
sites and hence are within the canopy sublayer, some 20%
variations in Ctke within a given experiment or site is not
surprising. Thus, the findings here do suggest that the
results derived from the OWT analysis are robust to the
analyzing basis function.

The geophysical flows here are characterized by an
H+ > 100z+ or z/H < 0.01 resulting in at least one
order of magnitude larger Reynolds number when com-
pared to the super-pipe experiments in [16], while for
the open channel flow, z/H = 0.05− 0.1. The measure-
ments in Figure 1 suggest that Etke is roughly dominated
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FIG. 1. Color online: Measured normalized Etke(k) (right)
using OWT for open channels (open circles, z+ = 55, z+ = 92
closed symbol), ice sheet (plus), grass site (squares), a pine
stand (diamond), and a hardwood canopy (triangles for differ-
ent days). The normalizing velocity and length scales are the
measured u∗ and z. The −1 (solid) and −5/3 (dashed) power-
laws are shown. The pre-multiplied spectra for tke are pre-
sented to emphasize the region over which the −1 power-law
exist (left). Because time is converted to wavenumber space
using Taylor’s frozen turbulence hypothesis, the wavenumbers
shown must be interpreted along the x direction and not 3-
dimensional. Due to their differencing properties, OWT are
less sensitive to non-stationarities when compared to their
Fourier counterparts and are preferred for such data sets.

10
−2

10
0

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

E
u
/(

z 
u

*2 )

kz
10

−2
10

0
10

2
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

E
w

/(
z 

u
*2 )

kz

FIG. 2. Color online: Measured normalized Eu(k) and Ew(k)
using Fourier analysis. The normalizing velocity and length
scales are measured u∗ and z. The −1 (solid) and −5/3
(dashed) power-laws are shown. The time domain is con-
verted to wavenumbers using Taylor’s frozen turbulence hy-
pothesis and wavenumbers shown must be interpreted along
the x direction, not 3-dimensional.
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by the exponents −5/3 (when kz > 1) and an approxi-
mate −1 (when kz < 1) with the k−1 scaling spanning
just under 1 decade (except for the grass site). If the
transition wavenumber from k−1 to k−5/3 occurs sharply
at k1 = 1/z as suggested by all the data here, then

Ctke = Cok
−2/3
v , which implies that CH = (4/3)C

−3/2
o , a

reasonable choice given that CH should be of order unity
and not dependent on kv. For a Co = 1.55, CH ≈ 0.7
and upon setting kv = 0.4, Ctke = 0.84, consistent with
a number of studies, including atmospheric surface layer
flows [11]. The constant Ctke = kEtke/(u∗)

2 of the −1
power-law range for the experiments in Figure 1 devi-
ates from 0.84 and varies from 0.5 to 1.4. The highest
Ctke = 1.4 is for a highly inhomogeneous grass-covered
forest clearing, where u∗ may not be constant with z
as assumed due to forest-edge disturbances. Moreover,
Ev is mediated by nearby forest edges, while the low-
est Ctke = 0.5 are for the tall hardwood forest canopy
measurements (z/hc < 1.5, where hc is the mean canopy
height). These measurements are impacted by momen-
tum flux-transport terms [27] unbalancing the produc-
tion and dissipation of tke. Some laboratory measure-
ments report Ctke = 0.8 for zero-pressure gradient [17],
minor increases in Ctke = 0.6 − 0.8 with 3 orders of in-
crease in Reynolds number [14], and lack of a k−1 scaling
in adverse pressure gradient flows but a presence of a
k−1 scaling in the range of 0.06 < kz < 1 for zero- and
favorable-pressure gradients with Ctke = 0.8 − 1.0 [28].
In short, agreement between the phenomenological the-
ory predictions for the −1 scaling and the plausible range
of values of Ctke appears consistent with a wide range of
geophysical flows (at least, when the inhomogeneity is
not too large as is the case with the grass site) and a
large number of laboratory experiments.

IV. DISCUSSION

The present theory can also be linked to the framework
of Townsend’s attached eddies [29] in several ways. Both
approaches assume an approximate balance between tke
production and dissipation rates. Moreover, the charac-
teristic velocity of an eddy of size kz = 1 in this frame-

work is given as (kEtke)
1/2

=
√
Ctkeu∗ ≈ u∗. Hence,

analogous to the characteristic velocity of Townsend’s
attached eddies, eddies of size z here do have a repre-
sentative velocity that is almost identical to u∗. The
dissipation rate of e in Nikora [15] can also be reconciled
with the spectral budget approach when assuming (i) in-
finite Reynolds number (needed when assuming the K41
spectrum represents all k ∈ [k1,∞] with no intermittency
or dissipation corrections for kz ≥ 1), and (ii) very deep
boundary layer allowing the extension of a single self-
similar spectrum Etke = Ak−a to represent k ∈ [0, k1].
Departures from these conditions can fingerprint absence
of a k−1 in the Etke.
The proposed theoretical framework also allows us to

analyze possible corrections to the k−1 scaling. One obvi-
ous departure is due to intermittency corrections to K41.
Such corrections, either produced internally via heavy-
tailed fluctuations from ǭ [3, 30] or externally via in-
teractions between coherent structures and inertial scale
eddies within the logarithmic region [31], can lead to a
revised K41 spectrum whose simplest form is given as

Ciε(k1)
2/3

k′−5/3(k′/k1)
−µ, where Ci is a revised Kol-

mogorov constant. For this spectrum, and upon assum-
ing an extensive Etke = Ak−a range for k ∈ [0, k1], the
spectral budget with intermittency corrections to K41
scaling at kz > 1 now requires that

2A
k3−a
1

a− 3
=

(8 + 3µ)

6k
2/3
v CHC

1/2
i

u2
∗
k2+µ
1 . (9)

It follows that a = 1 − µ, resulting in a scaling not as
steep as k−1. For the internal intermittency corrections,
a conventional µ ≈ 0.06 [4] results in Etke ∼ k−0.94.
If coherent structures or large scale motion (including
VLSM) interact with inertial size eddies (e.g. exter-
nal intermittency) within the logarithmic region, then
µ is expected to be larger than 0.06 and dependent on
the Reynolds number, thereby weakening any evidence
or universal signature of a k−1 scaling. Some studies
reported a µ ≈ 0.15 due to external intermittency ef-
fects [31, 32], which would produce an a ≈ 0.85 rather
than near unity. As a result, the argument here sug-
gest that modulations or even absence of a k−1 scaling
may be partially attributed to ’steepening’ in the k−5/3

for kz > 1 or even ’censoring’ its occurrence as may oc-
cur when the viscous dissipation ’cutoff’ significantly in-
trudes into the inertial subrange. The converse is also
true, if for kz >1 the exponent describing the Etke is
lower than -5/3 (i.e. µ < 0), as may occur when the
spectrum is gradually transitioning from production to-
wards an inertial subrange regime, the spectral budget
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requires that a > 1. If a finite upper wavenumber bound
is imposed on the K41 spectrum at the Kolmogorov

dissipation wavenumber scale kd ∼ η−1 =
(

ε/ν3
)1/4

and νt is evaluated in the range k ∈ [k1, kd] instead of
k ∈ [k1,∞], then νt/ν can be explicitly derived and is
given as νt

ν = 3
4

√
Co

(

u∗z
ν − 1

)

>> 1, which results in

z+ >> 1 + 4/(3
√
Co) ≈ 2.78. Assuming that this cor-

responds to z+ > 30, a conventional value typically as-
sumed to reach a fully turbulent boundary layer [33],
any steepening of the spectrum due to viscous dissipa-
tion encroaching into the inertial subrange from higher
wavenumbers would substantially increase this threshold
by a factor of 2 − 4, based on numerical model calcu-
lations (not shown). These increases are consistent with
the necessary conditions for the onset of a k−1 power-law
previously noted [17]. Finally, to naively include some ef-
fects originating from VLMS on ε̄, it is useful to decom-
pose the low k range on the left-hand side of equation (6)
as

klow
∫

0

2Etke(k
′)k′2dk′ +

k1
∫

klow

2Etke(k
′)k′2dk′. (10)

To further separate finite boundary depth from contribu-
tions originating from VLMS, it is initially assumed that
the first term is small compared to the second and that
Etke = Ak−a extends only from a finite klow ∼ (αH)

−1

to k1 ∼ z−1, with α ≤ 1 being a fraction defining the size
of the detached eddies in relation to H . This argument
leads to

C2k
3−a
1

[

1− (y)
3−a

]

= Ctkeu
2
∗
k21 , (11)

where y = klow/k1 and C2 = 2A/(3− a). With klow ∼
(αH)−1 necessitates a z/H << α at minimum to recover
the k−1 scaling. This condition is similar to the condi-
tion that the overlap region between inner- and outer-
layers be sufficiently wide to admit asymptotic match-
ing arguments. If, on the other hand, the VLSM ad-
mit self-similar spectrum of the form Etke = B k−b for
k ∈ [0, klow], then the revised equation (11) reads

C2k
3−a
1

[

1− (y)
3−a

]

= C3k
2
1

(

1− C4 (y)
2
k1−b
low

)

, (12)

where C3 = Ctkeu
2
∗
and C4 = 2B/((3 − b)C3). Again, if

klow << k1, then the onset of k−1 requires that 3−a = 2
(or a = 1) provided b < a. However, for VLSM, the

B ∼ u2
∗
(HV LSM )

1−b
and noting that C3 ∼ u2

∗
results in

a new and far more stringent condition for the onset of
the k−1, given as

( z

H

)2
(

HV LSM

H

)1−b

<< α3−b. (13)

A number of studies already reported HV LSM/H ∼ 10
[19, 34]. For an α = 0.8, b = 0, and HV LSM/H ∼ 10
results in z/H << 0.23. Hence, the small range of z/H

needed is not only to ensure an adequate overlap region
between inner and outer layers as earlier noted, but also
to minimize modulations originating from VLSM. In fact,
these modulations require an even more stringent z/H
range. It should be noted that detecting the spectral
contributions of VLMS in Figure 1 for the geophysical
flows may be complicated by the fact that the spectra
are composites of several hours during the day where H
may be evolving in time. It is difficult to separate VLSM
from non-stationarity in H within such setup.

V. CONCLUSION

The multiple mechanisms explaining a ”-1” power-law
scaling at low wavenumbers in Etke (and in Eu) of wall-
bounded turbulence can be unified via a phenomeno-
logical theory rooted in Heisenberg’s eddy viscosity ap-
proach. The theoretical framework accounts for intermit-
tency corrections within the inertial subrange and the
presence of very-large scale motion, resulting in expo-
nents not as steep as k−1, at least for eddy sizes larger
than z but much smaller than H .
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APPENDIX: A SIMPLIFIED SPECTRAL

BUDGET

Consider the Reynolds-averaged turbulent kinetic
energy (tke) budget in a stationary and planar-
homogeneous flow with no mean vertical velocity (i.e.
W̄ = 0)) given by [35]

∂e

∂t
= 0 = −u′w′

dŪ

dz
− ∂

∂z

(

w′e+ w′p′
)

− ε̄, (14)

where e is, as before, the turbulent kinetic energy =
1
2

(

σ2
u + σ2

v + σ2
w

)

, Ū is the mean velocity at z, u′w′ is
the momentum flux, and the first, second, and third
terms are the mechanical production, the TKE trans-
port by turbulence and pressure-velocity interactions,
and viscous dissipation, respectively. In the equilibrium
or logarithmic region of a boundary-layer, the transport
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terms are usually small resulting in a near-balance be-
tween production and dissipation of tke as was assumed
by Townsend and many others [35].
If the mean tke dissipation rate (= ε̄) is a conservative

quantity in the energy cascade, then a spectral budget
can be derived as [36]:

ε̄ = −dŪ

dz

∞
∫

k

τ(p)dp + F (k) + 2ν

k
∫

0

p2Etke(p)dp, (15)

where the first, second, and third terms represent the pro-
duction of turbulence in the range of [k,∞], the transfer
of turbulence energy in the range [k,∞], and the vis-
cous dissipation in the range of [0, k]. Here, the functions
F (k), τ(k), and Etke(k) are averaged over all directions in
the wavevector space as the turbulence is non-isotropic,

and k =
√

k2x + k2y + k2z , where x, y, and z are the longi-

tudinal, lateral, and vertical directions, respectively. The
treatment of dŪ/dz as a constant external to the spec-
tral budget is a major simplification permiting analytical
tractability. Two asymptotic conditions must now be sat-
isfied so that this spectral budget recovers the classical
results of turbulent boundary layers in the equilibrium or
logarithmic regions. The first is that at k = 0, F (0) = 0,
and

ε̄ = −dU

dz

∞
∫

0

τ(p)dp = −dŪ

dz

(

u′w′

)

, (16)

so that
∞
∫

0

τ(p)dp =u′w′. This is the main result for the

equilibrium region as earlier noted necessitating a bal-
ance between mechanical production and ε̄. The second
is that as k → ∞, F (∞) → 0, and

ε̄ ≈ 2ν

∞
∫

0

p2Etke(p)dp, (17)

or the mean TKE dissipation rate is primarily occurring
via the viscous term at very large k.
As noted in the main text, the Heisenberg model for

F (k) is given as

F (k) = νt(k)|curl ũ|2 ≈ 2νt(k)

k
∫

0

p2Etke(p)dp, (18)

where the eddy viscosity coefficient νt(k) is produced
by the motion of eddies with wavenumbers greater than
k, and ũ is the ’macro-scale’ component of the velocity.
With these approximations, the spectral budget can be
expressed as

ε(k) = ε̄+
dŪ

dz

∞
∫

k

τ(p)dp = 2(νT (k) + ν)

k
∫

0

p2Etke(p)dp.

(19)

Noting that

∞
∫

0

τ(p)dp =u′w′ = −ν̄t
dŪ

dz
, (20)

and assuming an analogous gradient-diffusion closure in
the spectral domain yields,

dŪ

dz

∞
∫

k

τ(p)dp ≈Atνt(k)

(

dŪ

dz

)2

, (21)

where At is a normalizing constant needed to ensure that
equation 16 is satisfied for a given Etke(p) shape, and as
before,

νt(k) = CH

∞
∫

k

√

Etke(p)

p3
dp, (22)

is the Heisenberg eddy-viscosity. If Etke(p) =
Coε̄

2/3p−5/3 is also assumed for p ∈ [1/z,∞], then

νt(k) =
3

4
CH

√

Coε̄
1/3 k−4/3. (23)

Noting that in the equilibrium layer, dŪ/dz = u∗/(kvz),
the production term associated with the spatial gradients
can now be estimated and is given as

dŪ

dz

∞
∫

1/z

τ(p)dp ≈−AtCH
3
√
Co

4k
4/3
v

u3
∗

kvz
. (24)

Hence, the spectral budget equation in the vicinity of
kz ≈ 1 is

ε̄+
dŪ

dz

∞
∫

k

τ(p)dp ≈
(

1

kv
u3
∗
k

)

[A′] , (25)

where

A′ =

[

1−AtCH
3
√
Co

4k
3/4
v

]

. (26)

The original spectral budget equation is now given as:

A′
1

kv
u3
∗
k ≈ 2(νt(k) + ν)

k
∫

0

p2Etke(p)dp. (27)

Depending on the value of At, the spatial gradient term
remains significant at kz ≈ 1 and may not be neglected,
but the fact that it scales with u3

∗
/(kvz), as shown here,

allows us to recover the original argument leading to the -
1 power-law to within a constantA′. To further illustrate,
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note that upon adopting the Heisenberg representation
of the eddy-viscosity results in

A′
1

kv
u3
∗
k ≈



2CH

∞
∫

k

√

Etke(p)

p3
dp





k
∫

0

p2Etke(p)dp,

(28)

where Etke(p) = Coε̄
2/3p−5/3 is again assumed for p ∈

[1/z,∞] but a general power-law spectrum of the form
Etke(p) = Apα is assumed for p ∈ [0, 1/z]. This result
differs from the original version of the manuscript only
by a constant A′.
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