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Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering
applications. Here we study, experimentally and theoretically, flows where a viscous liquid film
lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of
the tube. We present results on the thickness and mean speed of the film and properties of the
interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave
asymptotic model and compare properties of its solutions with those of the experiments. Traveling
wave solutions of this long-wave model exhibit evidence of different mass transport regimes: past
a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate
upward at wave speeds. This theoretical result is then confirmed by a second set of experiments
that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By
tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a
way that is predicted qualitatively by the model.

PACS numbers: 47.55.Iv,73.50.-h,87.85.gf

I. INTRODUCTION

Core-annular flows arise in many applications (cf. oil
recovery, lung pathways) where one fluid phase occupies
the core and an immiscible, more viscous fluid occupies
the annulus between the pipe wall and core. (Identical
and lower viscosity annular phases are relevant to appli-
cations outside of our interest here, cf. [1].) Interfacial in-
stabilities, their growth rates and saturation in coherent
or irregular structures, and the propagation of interfa-
cial structures in driven core-annular flow have been ex-
tensively explored both experimentally and theoretically.
Motivated by applications, these studies have focused pri-
marily on viscosity contrasts typical of oil and water, low
Reynolds numbers in both phases (creeping flows), thin
annular layers relative to the tube radius, and small cap-
illary numbers (surface tension forces dominate viscous
forces) [1–17]. Our focus here is on the mechanisms
by which forced steady airflow transports annular layers
of high viscosity fluids, conditions appropriate to (large)
lung airways. Notable experimental work on this topic
goes back to Clarke et al. [18] and to Kim et al. [19–21],
where the added complexity of a viscoelastic fluid in the
annular layer was also considered. In lung biomechan-
ics it is held that airway surface liquids move toward the
larynx as an annular creeping flow. Mechanisms driving
the flow include the coordinated motion of carpets of cilia
and airdrag from tidal breathing or cough. The relative
mass transport rates of these mechanisms are not known,
and are beyond the focus of this study.

In this work we duplicate the experiment of Kim et
al. [20] on airdrag transport of annular wetting layers,
with special attention to the mechanisms of mass trans-
port not addressed in [20]. One such mechanism certainly
involves annular waves, which are spawned via interfa-
cial instability or growth of perturbations at the annular
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FIG. 1: (a) Schematic diagram of the experimental setup. Air
is forced upward through the tube while high viscosity fluid
is supplied through an annular slit. (b) Definition sketch of
the flow variables.

fluid source. Simply by increasing the surface roughness
of the liquid phase, it is to be expected that waves could
enhance the exchange of momentum between core and
annular fluids. In this article we show that under cer-
tain conditions, these waves play a more direct role by
trapping a propagating fluid core between the wetting an-
nular layer and air. Each trapped core is a bolus of annu-
lar fluid that translates relative to the underlying creep-
ing flow, providing a mass transport mechanism. For a
traveling wave, viewed in a wave frame of reference, this
would correspond to a region of closed streamlines. We
hereafter refer to these waves as mass transport waves;
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FIG. 2: (Color online) Color montage: successive snapshots of
the tube. Plot: tracked wave crests in the tube (liquid volume
flux = 1.0 cm3/min, gas volume flux = 330 cm3/s, liquid
viscosity = 600 P, snapshots 1 s apart). Each line represents
one crest as it travels up the tube. Inset zooms in on the front
advancement whenever a crest reaches the wetting front.

conversely, we shall refer to waves without a trapped core
as shear waves since these modify the shear flow only by
fanning and constricting the corresponding open stream-
lines. Trapped cores in core-annular flow were previously
identified theoretically in models of water-oil flows at low
Reynolds numbers [2]. We show experimentally and the-
oretically that such structures likewise arise in turbulent
air-driven annular oil flow. These conditions are designed
to mimic the trachea and upper lung with oil as a high
viscosity proxy for mucus. These ring waves are distinct
from so-called plugs in lung airways which divide and dis-
connect the air core under low Reynolds number airflow
conditions [23].

The paper is organized as follows: in Section II we
present the results of experiments similar to [20]. In Sec-
tion III a long-wave asymptotic model is constructed and
briefly compared to the thin-film model in [2]. In Sec-
tion IV we find traveling wave solutions to the model
and compare them with the experiments. Section V con-
tains the results of further experiments which highlight
the role of waves in transporting mass. We conclude with
a brief discussion of the results in Section VI.

II. PRELIMINARY EXPERIMENTS

The experimental setup, after [19, 20], is depicted in
Figure 1(a). A 20.0 cm glass tube with a 1.0 cm inner
diameter represents the trachea. First, the tube is in-
serted into an O-ring-lined hole in the lid of an annular
chamber made of stainless steel and glass. Next, liquid
is forced into the annulus of the chamber at a constant
volume flux by a Harvard Apparatus Model 975 Syringe

FIG. 3: (Color online) Same as Figure 2 but with spatio-
temporal chaotic behavior (liquid volume flux = 1.0 cm3/min,
gas volume flux = 670 cm3/s, liquid viscosity = 129 P, snap-
shots 0.5 s apart).

Pump and is allowed to fill the chamber up to a small
annular gap. The gap is adjustable, set to 1 mm for the
experiments reported here. Finally a constant volume
flux of air is forced through the core of the chamber by
an Aalborg Digital Flow Controller where it meets the
liquid at the gap. Over the course of the experiment,
liquid is forced into the gap and dragged upward into the
tube by sufficiently fast air flows. In a matter of minutes,
the liquid wetting front advances to the top of the tube,
completely coating the inner surface. When the liquid
reaches the top, it spills over into a collection cup. We
focus on the waves’ contribution to the advancement of
the wetting front as well as the longtime air-liquid inter-
facial dynamics.

We use two silicone oils with viscosities of 129P and
600P. Oil densities were calculated with an Anton Paar
DMA 4500 density meter to be 0.95 − 0.98 g/cm3. The
liquids are injected into the apparatus with a constant
volume flux in the range 0.5 − 1.0 cm3/min, while air
is forced through the apparatus at a constant volume
flux in the range 330− 1170 cm3/s. As each experiment
progresses, waves develop and travel from the bottom of
the tube to the wetting front. These waves are tracked
by HD video recording.

We then use a MATLAB script to track the waves and
to find the statistics of various wave properties like speed
and frequency. Figures 2 and 3 show montages of the
tube video footage paired with the results of the track-
ing. At first glance one sees a striking front advancement
phenomenon: the front advances in spurts precisely when
a new wave arrives. This strongly suggests the hypoth-
esis that these are mass transport waves as opposed to
shear waves. Furthermore, since the core air stream is
continuous, these putative mass waves are torus-shaped,
which we call ring waves by analogy with vortex rings.
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FIG. 4: (Color online) (a) Mean thickness of the liquid film for

various viscosities µ(l), liquid fluxes Q(l) and air fluxes Q(g).
Bars indicate range of values over several trials of each ex-
periment. Dotted lines indicate trends in experimental data;
dashed lines represent model predictions (see Section IV for
discussion). (b) Mean liquid cross-sectional average velocities
calculated using data in (a).

The properties of the liquid film and the interfacial
waves are worth discussion. Figure 4(a) shows the trend
of mean thickness of the film as a function of air vol-
ume flux for various viscosities and oil fluxes. The film
thickness decreases with increasing airflow rate, decreas-
ing viscosity, and decreasing liquid flux. These results
were found by letting the experiments run for several
minutes after the entire tube was coated with oil. The
liquid was then weighed using an Ohaus Adventurer high-
precision scale. The film thickness was calculated using
this weight, the oil density and the tube inner radius.
For each set of parameters several experiments were per-
formed; both the average mean thickness and range of
thicknesses are displayed. In Figure 4(b) we plot the
mean speed of the liquid film by dividing the liquid vol-
ume flux by the liquid’s cross-sectional area calculated
from the mean thickness. (Dashed lines correspond to
results from the model derived in Section III; further
discussion of these results is taken up in Section IV).

Figure 5 shows the mean wave velocity, wavelength,
and wave mass for experiments where µ(l) = 129 P and
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FIG. 5: (Color online) Mean values of wave (a) velocity, (b)
wavelength, and (c) mass with bars indicating one standard
deviation. Dashed lines represent model predictions (see Sec-

tion III). Q(l) = 1.0 cm3/min, µ(l) = 129 P.

Q(l) = 1.0 cm3/min; error bars represent one standard
deviation. The wave mass was calculated in the follow-
ing way. From the step-like advancement of the wetting
front upon the arrival of each wave, we determine the step
height per wave crashing event. The mean thickness of
the liquid film, the geometry of the tube, and the wetting
front displacement then determine the approximate mass
of liquid in each wave. Figures 6 and 7 present the distri-
butions of wave velocities and wavelengths, respectively,
used to construct Figure 5(a) and (b).

Note that an increase in airflow rate, with liquid vol-
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FIG. 6: Distribution of wave velocities in Figure 5(a) for air-
flow rates of (a) 333 cm3/s, (b) 500 cm3/s, (c) 667 cm3/s, (d)
833 cm3/s.
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FIG. 7: Distribution of wavelengths in Figure 5(b) for airflow
rates of (a) 333 cm3/s, (b) 500 cm3/s, (c) 667 cm3/s, (d) 833
cm3/s.

ume inflow rate held fixed, leads to slower, shorter wave-
length, and less massive trapped cores. These observa-
tions suggest a threshold airflow rate at which the domi-
nant mechanism of mass transport shifts from ring waves
to the more widely held mode of creeping shear flow of
the wetting layer, which is confirmed by the model and
simulations given below. This would more closely resem-
ble the exact Navier-Stokes solution for the core-annular
pipe flow problem, which is formed by nested Poiseuille
flows with constant interfacial diameter. However, such
an exact solution is far from the experimentally observed
regimes; in particular, the mean (airflow) core diameter
for the exact solution would be much smaller than that
measured in the experiments, which implies that the ac-
tual stress applied by the air to the annular liquid layer is
much larger in the experiment than in the exact Poiseuille
regime.

III. LONG-WAVE ASYMPTOTIC MODEL

We are interested in modeling axisymmetric distur-
bances in a two-phase vertical pressure-driven core-
annular flow with the (much) more viscous fluid in the
annulus, and we summarize the model developed in [24]
with some extensions. As our primary motivation is flow

with a gas core and liquid annulus, we refer to the core
variables with the superscript (g) and the annular vari-
ables with the superscript (l) throughout. The governing
equations for the flow of both the gas and the liquid are
the incompressible axisymmetric Navier-Stokes equations
in cylindrical coordinates,

ρ̄(ūt̄ + ūūr̄ + w̄ūz̄) = −p̄r̄ + µ̄

(
1

r̄
∂r̄(r̄ūr̄) + ūz̄z̄ −

ū

r̄2

)
,

ρ̄(w̄t̄ + ūw̄r̄ + w̄w̄z̄) = −p̄z̄ + µ̄

(
1

r̄
∂r̄(r̄w̄r̄) + w̄z̄z̄

)
− ρ̄ḡ,

1

r̄
∂r̄(r̄ū) + w̄z̄ = 0, (1)

where the coordinates are (r̄, θ̄, z̄) with associated veloc-
ity components (ū, v̄, w̄) (see Figure 1(b)). Here p̄ is pres-
sure, ρ̄ is density, µ̄ is molecular viscosity, and ḡ is gravity.
All dimensional quantities are marked by overbars, and
subscripts denote partial derivatives.

We non-dimensionalize (1) with a typical (wave)length
scale in the z̄ direction, λ̄, and a typical length scale in
the r̄ direction, R̄0, the radius of the cross section of the
gas core. If ε = R̄0/λ̄� 1 the distortions to the air-liquid
interface are long-wave. Other scales are set by the gas
core centerline laminar axial velocity W̄0 = 2Q̄(g)/(πR̄2

0)
and a radial velocity Ū0 = εW̄0.

We then nondimensionalize (1) with the following vari-
ables:

r = r̄/R̄0, z = z̄/λ̄, u = ū/Ū0, w = w̄/W̄0,

t = t̄W̄0/λ̄, p = εp̄R̄0/(µ̄
(l)W̄0), τ = τ̄ R̄0/(µ̄

(l)W̄0),

(2)

where t is the dimensionless time, τ is the dimension-
less tangential stress, and p is the dimensionless pres-
sure. Important parameters in the problem are the

Reynolds number Re(l) ≡ ρ̄(l)W̄0R̄0/µ̄
(l) and Froude

number Fr = W̄0/
√
ḡR̄0.

We substitute (2) into (1) and take the limit ε → 0.
For fixed mean radius R̄0, the liquid has fixed Reynolds
number and hence εRe(l) → 0. To leading order then (1)
becomes

0 = pr, (3)

1

r
∂(rwr) = pz +

Re(l)

Fr2 , (4)

1

r
∂r(rw) + uz = 0. (5)

The boundary condition at the wall r = a is

w = 0. (6)

At the interface r = R(z, t) we require continuity of tan-
gential stress

wr = τ (g), (7)
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and continuity of normal stress

−p(l) = −p(g) +
ε

C
(R−1 − ε2Rzz), (8)

after long-wave asymptotics is used to estimate the cur-
vature in the longitudinal direction, and where C =
W̄0µ̄

(l)/γ̄ is the capillary number. While the higher-order
terms vanish as ε→ 0 in (8), it is essential to retain the
surface tension terms at the leading order, for which one
term is of O(ε) and the other is of O(ε3). The O(ε) term
is responsible for instability growth from an initial dis-
turbance while the O(ε3) term stabilizes the instability
growth. Hence it is important to retain both of them,
regardless of the order of magnitude (see, e.g., [25] for a
discussion).

The kinematic condition at the interface is

u = Rt + wRz . (9)

Integrating the continuity equation (5) across the
annular-sectional area of the liquid and using (9) yields
the layer-mean equation,

Rt −
1

R

∂

∂z

∫ a

R

wrdr = 0, (10)

for the interface location; an approximate expression for
w would then make (10) a decoupled equation for the
evolution of the interface.

The boundary value problem (3), (4) and (6)-(8) can

be solved for w in terms of the unknown quantities p
(g)
z

and τ (g). The air flow in all our experiments is at a high
enough Reynolds number (Re(g) > 3000) to be fully tur-
bulent. Hence, to estimate these terms, we model the
gas flow using the so-called zero equation turbulence clo-
sure [26]. A crude way to account for turbulent effects
is to use an effective viscosity based on the Blasius for-
mula [26] instead of the actual molecular viscosity,

µ
(g)
eff = 0.0791

(Re(g))3/4µ(g)

16
, (11)

where Re(g) = ρ̄(g)W̄0R̄0/µ̄
(g). The mean gas flow uses

a locally Poiseuille solution with this viscosity, and we
modulate this to take into account the slow variation in z
of the gas-liquid interface. Since m = µ̄(l)/µ̄(g) = O(106),
we assume that the velocity at the interface r = R(z, t)
is of order ε or smaller. Hence we take the mean velocity
of the gas to be

w(g)(r) =
m

4

(
p(g)
z +

ρ̄(g)Re(l)

ρ̄(l)Fr2

)
(r2 −R2). (12)

By integrating the velocity field across the core region,

the two unknowns p
(g)
z and τ (g) can be estimated in terms

of the fixed gas flux and interface location. Substituting

p
(g)
z and τ (g) into the liquid velocity field w, and w into

(10) gives the evolution equation for the interface:

Rt + [S1f1(R; a) + S2(a)f2(R; a)]Rz

+
S3(a)

R
[f3(R; a)(Rz +R2Rzzz)]z = 0, (13)

where the fi are given by

f1(R; a) =
a2

R4

(
a2

R2
− 1

)
,

f2(R; a) = R2 − a2 + 2R2 ln

(
a

R

)
, (14)

f3(R; a) =
a4

R2
− 4a2 + 3R2 + 4R2 ln

(
a

R

)
,

and the Si by

S1 =
1

m
,

S2(a) =
(ρ̄(l) − ρ̄(g))Re(l)

2ρ̄(`)Fr2 , (15)

S3(a) =
1

16C
.

The functional notation for S2 and S3 highlights their
dependence on a. Note that (13) does not depend on
either the thickness of the annulus being small or on the
interfacial disturbances being weakly nonlinear, i.e. the
model is fully nonlinear and still contains the cylindrical
geometry of the original problem. If (13) is rescaled in
time, the dynamics of the model can be completely deter-
mined by the value of three parameters: F (a) = S2/S1,
S(a) = S3/S1, and a.

If the annular film is thin, equation (13) can be further
simplified by letting

η = 1− R

a
; (16)

η � 1 represents the thickness of the thin annular film.
Each of the functions fi(R; a) in (14) can be expanded
about η = 0:

f1(η) =

(
2

a2

)
η +

(
11

a2

)
η2 +

(
36

a2

)
η3 +O(η4), (17)

f2(η) = (−2a2)η2 +

(
2a2

3

)
η3 +O(η4), (18)

f3(η) =

(
16a2

3

)
η3 +O(η4). (19)

The gravity term f2 vanishes at leading order, i.e. the
effects of interfacial tangential stress dominate the effects
of gravity in the thin-film limit. As before, f3 = O(η3)
is retained to keep the effects of surface tension. Substi-
tuting (16)-(19) into (13) gives

ηt +
2

ma2
ηηz +

a3

3C
(η3(ηz + a2ηzzz))z = 0 (20)

whose solutions have been studied in [2, 27]. In [2] the
radial coordinate is stretched across the annular fluid,
so that the thickness of the fluid is h = a

β η where β =

a− 1� 1. Applying this stretch to (20) and rescaling in
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FIG. 8: Time snapshots showing the evolution of solutions to
equation (13) in a periodic domain for S ≈ 0.051, F ≈ 2.92,

and a ≈ 1.24 (corresponding to experiment with Q(l) = 0.6

cm3/min, Q(g) = 667 cm3/s, µ(l) = 129 P, and modified ef-
fective viscosity given by (23)). Interfacial profiles are shown
successively shifted at time intervals ∆t = 200 s. Profiles are
shown in the frame of reference moving with an undisturbed
interface. Dotted lines indicate mean thickness for the se-
lected snapshots; amplitude scale is given on the right-hand
side.

time by the speed of the undisturbed interface gives (to
leading order in β)

ht + hhz + S∗(h3(hz + hzzz))z = 0, (21)

where

S∗ =
m

6C
β2 =

πγ̄R̄2
0

12Q̄(g)µ̄(g)
β2. (22)

Note that (21) is a conservation law for h, so that mass
in a planar sense is conserved. This is in contrast to (13)
which is a conservation law for R2. (The consequences of
this will be returned to briefly in Section IV, but a full
discussion lies somewhat outside of the goals of this work
and will be discussed elsewhere.)

IV. MODEL RESULTS

The experimental observations clearly show that trav-
eling wave solutions play a central role in most experi-
mental regimes. These solutions can then be analyzed to
provide information on fluid transport independently of
time evolution. Since our model is not exactly solvable,
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FIG. 9: Same as Figure 8 but with S ≈ 2.45 and ∆t = 80 s.

we employ an iterative numerical strategy. A good ini-
tial guess for this, as well as information on time depen-
dent regimes, can be provided by solving the PDE (13)
with the method of lines and a pseudospectral method
(whereby the spatial derivatives are calculated in Fourier
space and the nonlinearities are calculated in physical
space). A second-order predictor-corrector scheme for
time integration is used.

Throughout the scheme implementation, the Fourier
modes of the derivatives and nonlinear terms were
carefully monitored to ensure conservation of volume.
The strongly nonlinear terms required dealiasing of the
Fourier coefficients after each time step. To ensure that
all suppressed modes were insignificant in the evolution,
the spectra of R, R−1 and logR were monitored, along
with the mass of the liquid. If the suppressed modes
became significant (or the total volume of liquid var-
ied), spatial resolution was increased. For initial con-
ditions, we perturb the interface with either a single
mode or multiple modes (typically 6), i.e. R(z, 0) =

R0−
∑6
k=1 b cos(2πkz+αk) where αk is a random phase

shift for each mode and typically b < 0.05(a− 1) for the
amplitude.

As the interface evolves, instabilities grow due to the
azimuthal curvature of the interface, which enters (13)
through the term f3(R; a)Rz. The axial curvature has
a stabilizing effect for long waves through the term
f3(R; a)R2Rzzz. The interface eventually develops into a
series of waves that either exhibit spatio-temporal chaotic
behavior or form a train of traveling waves or pulses; ex-
amples can be seen in Figures 8 and 9.

The model may be used to predict the thickness of the
liquid film by monitoring the liquid flux as the interface
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FIG. 10: (Color online) (a) Comparison of mean thick-
ness predicted by the model with modified effective viscosity
(dashed lines) with those of the experiments (dotted lines) in

Section II with µ(l) = 129 P. (b) Mean liquid cross-sectional
average velocities calculated using data in (a).

evolves. The experiments in Section II were conducted
with fixed liquid flux, but this flux condition is not au-
tomatically matched in our model simulations. By em-
ploying an iterative bisection-method strategy, the mean
film thickness that produces a flux within the desired ac-
curacy of the experimental value is found (to within 1%
here).

A comparison of the mean thicknesses predicted by the
model with those of the experiments in Section II is dis-
played in Figure 4(a). The data show how exchange of
momentum between air and liquid flow is qualitatively
captured by the model, though the model consistently
overpredicts the film thickness. We also track the speed
of the waves that develop in each simulation, and their
mean wavelength. A comparison of the speeds and wave-
lengths in our model simulations with the results from
Section II can be seen in Figure 5(a) and (b).

We note that as the effective viscosity in the turbulent
closure we used assumes a smooth wall, its value may be
too low for experiments with a wavy air-liquid interface.
We briefly examine how increasing the viscosity may im-
prove the quantitative agreement between the model and
experiments. Data from a previous study [24] suggest us-

ing a phenomenologically modified effective viscosity

µ
(g)
eff =

(
µ(l)

µ(g)

)1/5

0.0791
(ReD)3/4µ(g)

16
. (23)

We remark that the additional scaling by the ratio of
viscosities of the fluids lies outside the turbulent closure
model for the airflow and is suggested purely by phe-
nomenological comparison with a subset of the experi-
mental data; all other points in the data set also closely
follow this law. Using this modified viscosity the simu-
lations are repeated and the model is found to predict
thicknesses and liquid speeds much closer to those seen
in the experiments. Results are shown for µ(l) = 129
P in Figure 10 (cf. Figure 4; similar improvements are
found for µ(l) = 600 P). We note here that while this
agreement shows the model can offer predictive insight,
the improvement in mean thickness may be offset by less
accurate quantification of other properties, specifically
mass transport by the waves. A discussion of these quan-
titative capabilities of the model is taken up at the end
of this section and in Section VI.

Once the evolution has settled into a quasi-steady
state, we look for a traveling wave solution which sat-
isfies the ordinary differential equation

[−c + S1f1(R; a) + S2(a)f2(R; a)]R′

+
S3

R

d

dZ
[f3(R; a)(R′ +R2R′′′)] = 0, (24)

where we have moved to a frame of reference moving with
the wave, i.e. the independent variable is Z = z − ct.
With the quasi-steady PDE solution as the initial guess,
we use a collocation method 2-point boundary value
problem solver to refine the solution; conservation of vol-
ume is monitored as before.

To explore mass transport mechanisms of the annular
fluid on the basis of streamline topology, we reconstruct
the streamfunction defined by the velocity field:

u = −∂zΨ, w − c =
1

r
∂r(rΨ). (25)

The radial velocity u may be found using w (calculated
for the previous section) and the continuity equation (5).
Integrating (25) the stream function is given by

Ψ =

(
− S1

R4
+
S2

2
+

4S3

R2
(Rz +R2Rzzz)

)
×
(

1

4r
(a2 − r2)2

)
− [S2R

2 + 8S3(Rz +R2Rzzz)]

×
(

1

4r
(a2 − r2 + 2r2 ln(r/a))

)
. (26)

We are now in a position to plot streamlines within the
annular fluid for a variety of parameter values. We want
to compare flows with different parameters, e.g. capillary



8

(a)

0 1.57 3.14 4.71 6.28
0

0.05

0.10

0.15

0.20

0.25

Z (cm)

h
 =
 a
 −
 R
 (
c
m
)

(b)

h 
= 

a 
−R

 (c
m

)

0

0.1

0.2

z (cm)
5 10 15 20 25 30

FIG. 11: (Color online) (a) Streamlines in the annular fluid
phase for a traveling wave solution of model (13) with pa-
rameters F = 3.39, S = 1.5, ā = 0.5 cm, a = 1.25,
Q(l) = 3.2 × 10−4cm/s. (b) Evolution of one wavelength of
fluid during the interval t = (0, 5000)s.

number, at a fixed liquid volume flux. In order to hold
this mean liquid volume flux constant as the capillary
number is changed, the mean film thickness is adjusted
as needed.

Two examples with identical liquid flux but differing
capillary number and film thickness are shown in Fig-
ures 11 and 12. (We remark that the parameter values
for these waves do not correspond to those in the ex-
periment and these model results only show qualitative
agreement with the experimental data). The fluid for the
wave in Figure 11(a) flows along open streamlines only,
while the wave in Figure 12(a) displays a region of closed
streamlines under the wave crest. This closed stream-
line pattern is a trapped core – a liquid vortex ring –
that rotates while translating at wave speeds. Taking
axisymmetry into account, there is a separatrix sheet be-
tween the train of trapped cores and the wetting layer.
Closed streamlines were also identified in the water-oil
flow regime of Kerchman [2]. We remark that all travel-
ing wave solutions for this model (21) exhibit a trapped
core: this is an artifact of eliminating the cylindrical ge-
ometry and no longer conserving mass. The more refined
model (13) restores the possibility of traveling wave so-
lutions without trapped cores.

Figures 11(b) and 12(b) show the evolution of the fluid
film in each flow. The lightly shaded area represents a
region of the fluid film along one wavelength at an initial
time. Particle trajectories were calculated for particles
lying on the boundary of this region, and the location of
the fluid area after a fixed elapsed time is shown by the
darker shaded region. Note that the very fastest parti-
cles in the shear wave flow (Figure 11(b)) have traveled
almost exactly the same axial distance as the particles in
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FIG. 12: (Color online) Same as Figure 11 but with F = 4.36,

S = 8.96, ā = 0.5 cm, a = 1.17, Q(l) = 3.2 × 10−4cm/s.
The dashed (red) streamline in (a) is close to a separating
streamline.

the trapped core in Figure 12(b). However, any parcel of
fluid in the shear wave regime is continuously thinning
while stretching in the axial direction, so that the per-
centage of the fluid parcels reaching a certain location at
a given time is much smaller than its trapped core coun-
terpart, where the whole core keeps its volume and shape
intact.

This point is further illustrated in Figures 13 and 14.
Here a sampling of fluid parcels throughout the fluid do-
main in Figures 11 and 12 were tracked over time, and
their mean velocities with respect to time calculated.
These mean velocities were then sorted, giving an equiv-
alent shear velocity profile, i.e. a flat-interface shear flow
with the plotted axial velocity profiles would be equiva-
lent to the two traveling wave flows. In Figure 13(b) note
the significant portion of fluid, corresponding to trapped
cores, moving at a uniform speed faster than any parti-
cle for the shear wave case in Figure 13(a). Figure 14
displays the corresponding distribution as a histogram
for the velocities shown in Figure 13. Note the presence
of a trapped core is clearly revealed by the spike in ve-
locity at exactly the speed of the wave in Figure 14(b),
while no fluid parcels travel at the speed of the wave in
Figure 14(a). The spike corresponds to the significant
volume of fluid in the trapped core in Figure 12.

In order to be certain that waves like Figure 11(a) do
not trap a core which is masked by under-resolution in
the streamlines, we plot the axial velocity of the fluid
(relative to the wave velocity) as a function of r along
one radial slice through the wave crest of Figures 11(a)
and 12(a). Figure 15 shows the velocity profile corre-
sponding to Figures 11(a) and 12(a). For the shear wave
in Figure 11(a), the velocity is negative throughout the
fluid layer, indicating that a trapped core cannot ex-
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FIG. 13: The flat-interface shear velocity profile equivalent to
that of (a) Figure 11(a) and (b) Figure 12(a).
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FIG. 14: Distribution of velocities used to construct the shear
profiles depicted in Figure 13.

ist. For the mass transport wave in Figure 12(a), the
velocity changes signs at the stagnation point, clearly in-
dicating the existence of a trapped core. This change
of streamline pattern with parameters is typical of dy-
namical systems’s bifurcations whereby hyperbolic fixed
points coalesce with their center counterparts, leading to
the removal of connecting heteroclinic trajectories (see,
e.g., [22] for a discussion in a context appropriate to vis-
cous fluids). Note that the shear wave’s velocity profile
close to the interface very nearly approaches the speed of
the wave, so that a very small change in capillary number
would result in the formation of a trapped core.

Mass Transport

Shear wave
(Fig 11)

wave (Fig 12)

Stagnation point
(trapped core center)
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c
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−0.004 −0.002 0 0.002 0.004

FIG. 15: Liquid parcel axial velocities (measured in the trav-
eling wave reference frame) along radial slices through the
wave crest of Figures 11(a) and 12(a).

Figure 16 shows the location of each regime in pa-
rameter space for a sample fixed thickness and wave-
length. As S or F decreases, the amplitude of a travel-
ing wave solution decreases, and solutions trap a smaller
core and eventually none at all. Parameter values corre-
sponding to a sample experiment with various air viscosi-
ties, including the modified effective viscosity, are shown;
parameters corresponding to Figure 11 are also shown.
For this experiment (and all experiments conducted) the
model predicts waves which are well inside the shear wave
regime. It should also be noted that for large values of F ,
larger than those shown here, gravity dominates effects
from the airflow and upward-moving traveling wave solu-
tions give way to downward-moving solutions. These so-
lutions exhibit the same type of bifurcation, where some
combinations of parameter values result in mass trans-
port waves while others result in shear waves. As these
waves are outside the scope of the present experiments,
we leave this topic for future study.

The wave profiles displayed in Figures 11(a) and 12(a)
each exhibit a slight depression in front of the wave crest
(traveling left to right) regardless of the presence or ab-
sence of closed streamlines. This depression is also seen
in the thin-film model [2]. Indeed, this fore-aft asymme-
try in the wave profiles is also observed in simulations of
propagating liquid plugs [23]. It is interesting to specu-
late that some features of the free surface and liquid flow
pattern in [23] survive through many orders of magnitude
scalings of surface shear stress and Reynolds number of
the gas phase.

We remark that, while the model captures the qualita-
tive dynamics seen in the experiment, more work remains
to be done to achieve a quantitative comparison between
wave parameters generated by the model and those ob-
served in the experiment. For instance, the experiments
in Section V show evidence of trapped core waves (i.e.,
waves with closed streamlines as in Figure 12) in param-
eter regimes that lie outside of those where this class of
waves can be found as model solutions. The modified
phenomenological effective viscosity (23) improves thick-
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FIG. 16: (Color online) Mass transport and shear wave
regimes for traveling wave solutions with fixed ā = 0.5 cm,
a = 1.25 and λ̄ = 2π cm. Values of S and F which corre-
spond to the experimental parameters µ(l) = 129 P, Q(l) = 0.6
cm3/min, Q(g) = 667 cm3/s and various air viscosities are in-
dicated by the dashed line; the modified effective viscosity is
indicated by the purple ’x’. Parameter values corresponding
to Figure 11 are indicated by the purple ’o’.

ness predictions, at the expense of traveling wave prop-
erties, by generally leading to smaller amplitudes and
hence open streamlines. This can be due to a number
of reasons: first, the closure assumption for turbulence
of the air flow we have used is fairly simple and may be
insufficient for modeling the stress at the liquid/air inter-
face. Next, the boundary conditions used in the model
are periodic unlike those of the experiment. Modeling of
the inflow and outflow boundary conditions within the
asymptotic approximations brings up a number of math-
ematical technicalities (mainly due to the higher order
derivatives in the PDE) that lie outside the scope of this
experimental investigation.

V. MASS TRANSPORT EXPERIMENTS

We turn now to an experimental verification of mass
transport by trapped-core ring waves. While Figure 2
certainly suggests discrete advances of the wetting front
when waves arrive, the data are insufficient to discrim-
inate mass waves from shear waves. To do so we con-
struct a variation of the previous experiment, this time
with two glass tubes, two chambers, and two silicone oils,
one dyed blue and the other left clear. Other than color,
both oils are identical in viscosity and density. As before
each chamber is filled with liquid at a constant volume
flux, and air is forced upward through each tube.

Dual experiments progress until the wetting front
reaches a predetermined height in both tubes. The tubes
are then quickly swapped, so that the tube partially wet-
ted with a clear oil layer is thereafter supplied with dyed
oil, and vice versa. In the shear wave scenario, dyed oil
introduced into the tube will remain near the bottom of
the tube, while clear oil will continue to occupy the ad-
vancing front. In the mass waves scenario, dyed oil will
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FIG. 17: (Color online) Snapshots of a tube coated partway
with clear oil, then coated with blue dyed oil. Companion
plots register the color intensity along an average slice. Above
(a,b): gas volume flux = 500 cm3/s. (a) t = 183.5 s, (b)
t = 348.5 s after dyed coating begins. Below (c,d): gas vol-
ume flux = 1000 cm3/s. (c) t = 113 s, (d) t = 217 s after
dyed coating begins. The horizontal line represents the color
intensity of a tube coated only with clear oil.

be transported, with some mixing, over the clear wet-
ting layer to the advancing front. The result of the mass
transport will be to saturate both the bottom of the tube
and the wetting front with dye, while leaving clearer oil
in between.

Experiments at relatively low airflow rate (Q(l) = 500
cm3/s) match the latter, mass transport, expectation.
They reveal that some dyed oil introduced into the clear-
coated tube remains in the lower portion of the coating
(see Figure 17(a-b)) while the rest of it is transported
all the way to the wetting front. Thus we find that a
significant portion of dyed oil in the ring wave flows rela-
tive to the clear wetting layer. The rest of it mixes with
the wetting layer as it travels. At some later time, the
top and bottom tube sections consist mostly of dyed oil,
while the middle consists mostly of clear oil. In a com-
panion experiment, this time with clear oil pumped over
a blue layer, the dynamics appear to be the same.

Figure 17 shows snapshots of a tube that was partially
coated with clear oil, then coated with dyed oil at two
different airflow rates. The color intensity of the snap-
shots is plotted below each with low intensity indicating
darker blue. To generate these plots, the intensity was
averaged along nine parallel slicing lines connecting one
end of the tube to the other. The horizontal line rep-
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resents the color intensity of the tube coated only with
clear oil.

In Figure 17(a-b) the bottom (left) of the tube has
fallen well below this baseline value indicating the clear
oil has been ‘pushed’ further up the tube and replaced by
the dyed oil. The top (right) of the tube has also fallen
well below this baseline value indicating the dyed oil has
been transported via waves past the clear oil. The waves
are the dark bands in the snapshots, and they advance
up the tube, here from left to right. A rise in the middle
of the intensity plots indicates that there is a greater con-
centration of clear oil in the annular layer at the center of
the tube; blue mass waves have glided over the layer and
dumped blue oil at the front. This phenomenon matches
what is seen in traveling wave solutions of the model (13),
cf. Figure 12(b).

We underscore that the strength of this mass transport
phenomenon depends on the experimental parameters.
Figure 17(c-d) shows the same experiment described
above, this time completed with higher airspeed. Note
that unlike Figure 17(a-b) the top (right) of the tube does
not approach the intensity of the blue oil. The waves are
not transporting blue oil to the top as efficiently as they
did at lower airspeed. This can be attributed to two ef-
fects. With less coherent wave motion, and partial loss
of axial symmetry occurring at higher airspeeds, leakage
and mixing of the trapped wave-cores is increased. More-
over, as the model suggests, the smaller amplitude waves
occuring at higher airspeeds imply smaller trapped cores
or even their absence, i.e., streamlines open in the man-
ner depicted by Figure 11(a). Both effects would make
mass transport by waves less efficient. (The slight offset
of the intensity for a dry portion of the tube noticeable
from Figures 17(a) to (b) and (c) to (d) can be accounted
by the camera aperture adjusting for the darker portion
of the tube.)

It is also interesting to note the presence of very thin
bands of dyed oil near the wetting front in Figure 17(c).
Each band appears to correspond to a single wave that
has dumped its mass (containing dyed oil) at the wet-
ting front, advancing the front up the tube. The bands
then provide a record of the location of successive break-
ing waves at the wetting front. (Over time, as the dye
concentration at the front increases, these bands become
less distinguishable, e.g., no bands are visible in Fig-
ure 17(b)).

Figure 18 presents the time history counterpart of the
spatial snapshots from the experiment in Figure 17. We
fix two locations along the tube for which the arrival
time of the wetting front is the same and record one-
pixel wide cross-sectional images as time progresses at
30 fps. The montage of these images thus gives the evo-
lution of blue dye concentration at each fixed location
in time. In Figure 18(a) the blue oil appears coinciden-
tally with the liquid wetting front. Here mass waves have
brought blue oil quickly to the front, dumping the highly
concentrated dye. By contrast, Figure 18(b) shows that
a shear-dominated flow pulls blue color up the tube more
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FIG. 18: (Color online) Evolution of a vertical slice of pixels
from the same tube as in Figure 17. Companion plots once
again register the color intensity along an average horizontal
slice. (a) Gas volume flux = 500 cm3/s, location = 8.9 cm
from bottom of tube. (b) Gas volume flux = 1000 cm3/s,
location = 10.6 cm from bottom of tube. Blue color increases
abruptly with the liquid front in (a), in contrast with the
gradual increase in (b).

slowly. The dark band in this montage is not blue; it is
merely the dark refractive cast of the slow-moving front.
Thus the fastest way for newly injected particles to move
up a wetting tube is to catch a ride on the next available
mass transport wave.

In lung airways, the mucus layer interfaces with a less
viscous lining called the periciliary layer (PCL). The
dyed/clear oil experiment was repeated with the pre-
wetted clear oil having a lower viscosity in order to see
how this viscosity contrast affects the mass transport
waves. As before the tube was partially coated with
the clear (less viscous) oil, then coated with the dyed
(more viscous) oil. The ring waves of dyed oil are less
stable gliding on this less viscous layer; some breakup
and asymmetry of the waves were observed. Neverthe-
less, the same phenomenon of waves carrying dyed oil to
the wetting front persists.

The mass transport features identified above persist
over a large experimental and theoretical range. As de-
scribed above, our wave-tracking experiments were con-
ducted with various air flow rates (333, 500, 667, 833,
1000, 1167 cm3/s), liquid flow rates (0.6, 1.0 cm3/min),
and liquid viscosity (129, 600 P). (An example of less
regular wave activity is shown in Figure 3.)

VI. DISCUSSION

We have identified both theoretically and experimen-
tally a mass transport mechanism for a wide range of
core-annular flow regimes where the annular-to-core vis-
cosity ratio spans many orders of magnitude. The mech-
anism is due to vortex ring waves of the annular fluid
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spawned by air-driven interfacial instabilities and inflow
irregularities which amplify as they propagate upward.
The strength of this mass transport mechanism is ex-
perimentally and theoretically tunable, e.g. by varying
airflow rate. While the long-wave asymptotic model de-
rived here qualitatively captures many of the features
seen in the experiments, achieving quantitative predic-
tive agreement requires further work. Nonetheless, the
present study establishes the groundwork for future im-
provements at the modeling level, and preliminary results
in ongoing studies suggest that one area to focus atten-
tion on for improvements would be that of careful esti-
mates of the interfacial stress created by the (turbulent)
gas flow.

From an application viewpoint, while the conditions
under which the experiments were performed clearly do
not match those found in the lungs and airways (e.g. rigid
glass tube, unidirectional airflow, Newtonian fluids), the
fundamental aspects of this mass transport mechanism,
in large lung airways, are potentially relevant and can
even be important for optimizing therapeutic strategies.
More study of this phenomenon under conditions closer
to those found in airways is needed, some of which is
currently underway.
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NSF DMS-0509423, DMS-0908423, DMS-1009750, RTG
DMS-0943851 and NIEHS 534197-3411.
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