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We describe an approach to quantify the length scale of a chaotic element of a Rayleigh-Bénard
convection layer exhibiting spatiotemporal chaos. The length scale of a chaotic element is determined
by simultaneously evolving the dynamics of two convection layers with a unidirectional coupling that
involves only the time varying values of the fluid velocity and temperature on the lateral boundaries
of the domain. In our results we numerically simulate the full Boussinesq equations for the precise
conditions of experiment. By varying the size of the boundary used for the coupling we identify a
length scale that describes the size of a chaotic element. The length scale of the chaotic element is
of the same order of magnitude, and exhibits similar trends, as the natural chaotic length scale that
is based upon the fractal dimension.

I. INTRODUCTION

Despite intense theoretical and experimental investiga-
tion many open questions remain in our understanding
of the dynamics of spatially extended systems that are
driven far-from-equilibrium [1]. Important examples in-
clude the dynamics of the atmosphere, oceans, and cli-
mate; fluid turbulence; and the dynamics of reacting-
diffusing-advecting systems. A common feature of these
systems is spatiotemporal chaos where the dynamics are
aperiodic in space and time. Significant progress has
been made in understanding chaos in time using dynami-
cal systems theory and chaotic time series analysis. How-
ever, a similar depth of understanding of spatiotemporal
chaos is lacking. A question of particular interest is the
identification of appropriate length scales that describe
and provide insight into spatiotemporal chaos [2–7].

We explore these questions using the canonical pat-
tern forming system of Rayleigh-Bénard convection that
results when a shallow layer of fluid is heated uniformly
from below in a gravitational field [1]. For experimentally
accessible continuous systems, such as fluid convection,
the dimension of the attractor describing the dynamics
is expected to be very large [8–10]. Using modern algo-
rithms and supercomputing resources it is now possible
to compute the fractal dimension of such systems for the
precise conditions of experiment (c.f. [10]). This has led
to a number of new insights yet many important ques-
tions remain. For example, given knowledge of the frac-
tal dimension one can estimate a time average of the size
of a chaotic degree of freedom or chaotic element [11].
For typical conditions of the spiral defect chaos state in
Rayleigh-Bénard convection [12] this length scale is of
the order of the wavelength of the pattern [8–10] which
is also consistent with the approximate size of the defects
in the pattern. However, it has been very difficult to find
a quantitative link between the chaotic length scale and a
diagnostic based upon the dynamics of the pattern such
as the time variation of the fluid velocity or temperature

field [3, 5, 8, 10].
Insights into the underlying length scales that de-

scribe spatiotemporal chaos have been gained by study-
ing the synchronization of systems exhibiting spatiotem-
poral chaos [13–16]. Relevant to our work is the fluid
study on the synchronization of coupled rotating baro-
clinic annuli which is important for understanding long-
range connections in atmospheric dynamics [17]. In this
paper we appeal to ideas from synchronization to gain
new insights into the fundamental composition of high-
dimensional spatiotemporal chaos. We quantify the spa-
tial extent required to support nearly identical dynamics
between the two convection layers and explore how this
length scale relates to the chaotic length scale determined
from the fractal dimension.

II. APPROACH

The nondimensional Boussinesq equations that govern
Rayleigh-Bénard convection are

∂tu+ (u · ∇)u = −∇p+ σRT ẑ+ σ∇2
u, (1)

∂tT + (u · ∇)T = ∇2T, (2)

∇ · u = 0, (3)

where u is the fluid velocity, T is the temperature, p is
the pressure, and ẑ is a unit vector opposing gravity. We
have used the standard convention where the layer depth
d is the length scale, the constant temperature difference
between the top and bottom plates is the temperature
scale, and the vertical diffusion time for heat is the time
scale. The nondimensional parameters are the Rayleigh
number R, the Prandtl number σ, and the aspect ratio
Γ = L/d where L is the side-length of the square domain.
Our basic approach for determining the length scale

of a chaotic element is illustrated in Fig. 1. This ap-
proach has been used to study the length scales of a two-
dimensional array of coupled map lattices [18]. Consider
a large principal domain with a box geometry and aspect
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ratio Γp where the system parameters yield chaotic con-
vection. Now consider a second convection layer with a
smaller aspect ratio Γt which we refer to as the target
domain. The target domain receives its time-dependent
lateral sidewall boundary conditions for the fluid velocity
and temperature from the dashed boundary illustrated
within the principal domain which we call the subdo-
main.
It is useful to highlight an important distinction be-

tween the subdomain and the target domain. The subdo-
main is embedded within the principal domain. The tar-
get domain, on the other hand, is not embedded within a
larger domain and only receives time dependent bound-
ary conditions for the velocity and temperature from the
subdomain. For incompressible fluid dynamics the pres-
sure is not an independent dynamical variable and is de-
termined implicitly to satisfy the conservation of mass
for the entire domain. In light of this, the fluid pressure
at the boundary is not passed from the subdomain to
the target domain. The pressure in the target domain,
including the values of the pressure at the lateral bound-
aries, is determined at every time step when enforcing the
incompressibility of the fluid. The pressure in the sub-
domain is determined when enforcing incompressibility
for the entire principal domain. As a result, the pressure
field for the subdomain and the target domain will be
different even when the fluid patterns of the subdomain
and target domain appear to be similar.
Overall, there is a unidirectional flow of information

from the subdomain to the target domain. We empha-
size that the entire sidewall boundary is used whereas
Fig. 1 only shows the midplane slice. The principal and
target domains start from different random initial con-
ditions in the temperature field. Both convection layers
are integrated simultaneously and the dynamics of the
subdomain and target domain are compared.
The similarity of the dynamics depends upon the as-

pect ratio of the target domain and therefore the sub-
domain since Γt = Γsd in all of our results where Γsd

is the aspect ratio of the subdomain. For Γt ≪ 1 it is
expected that the dynamics of the two convection layers
will become identical. Similarly, for Γt ≫ 1 the dynam-
ics of the two chaotic layers should be uncorrelated. We
are interested in finding the largest value of Γt that will
support dynamics that are nearly identical. We call the
side length of the largest target domain the chaotic ele-
ment length scale ξc. Furthermore, we want to quantify
how this length scale varies with the Rayleigh number
and how its magnitude compares with the chaotic length
scale determined from the fractal dimension.

III. RESULTS AND DISCUSSION

For our calculations we have numerically integrated
two copies of Eqs. (1)-(3) (one copy for each convection
layer) that include the unidirectional coupling from the
subdomain to the target domain using the approach de-

scribed by Chiam et al. [19] (see also [20]). We have used
a uniform spatial resolution of ∆ = 1/8 and a time step
of ∆t = 0.001. We have performed numerous tests in-
cluding spatial and temporal resolution tests as well as
running simulations from numerous random initial con-
ditions to ensure the validity and generality of our calcu-
lations.

We have found that a good diagnostic for the determi-
nation of ξc is to use the difference in the Nusselt number
between the two convection layers ∆N = Nsd−Nt where
Nsd and Nt are the Nusselt numbers for the subdomain
and target domain, respectively. Significant advantages
of using the Nusselt number are its experimental acces-
sibility and the fact that a single number can be used to
compare the three-dimensional states of two convection
layers at any time. Although the Nusselt number is a
global measure of the heat transport through the fluid
layer, its variation in time directly reflects the pattern
dynamics (c.f. [10, 21]). The presence of a defect hinders
the heat transport through the layer causing a dip in the
Nusselt number, the annihilation of a defect improves the
heat transport resulting in a spike in the Nusselt number,
and glide and climb dynamics result in a meandering of
N(t). The defect events can be very rapid, t ≪ 1, and
can result in sharp features of the time variation of the
Nusselt number. We have also computed ξc using the dif-
ference between the complete states of the two convection
layers and have found the same trends.

Even for two chaotic convection layers exhibiting dy-
namics that are indistinguishable to the eye there is some
variation between the target and subdomain states and,
as a result, they are not identical or synchronized. These
small variations occur spatially near the regions of rapid
birth and annihilation of defect structures. This variation
is captured in ∆N(t) near the sharp features of the Nus-
selt number and result in large rapid spikes in the time
series of ∆N . We anticipate that these deviations are
due to the non-local dynamics of a weak mean flow that
is present (c.f. [1, 22–24]). The mean flow is a long-range
flow due to wavenumber gradients, amplitude gradients,
and roll curvature that acts over length scales larger than
the roll wavelength and is well known to affect the sta-
bility of convection rolls. Due to the non-local nature of
the mean flow it will be different for the subdomain and
target domain since the target domain is only passed the
boundary information and the subdomain dynamics are
affected by the mean flow generated by the surrounding
convection pattern. We have not explored this aspect
in detail and emphasize that the deviations observed are
quite small.

In order to not include these rapid and sharp features
of ∆N in our criterion for ξc we first low-pass filter N(t)
to remove dynamics from ∆N that occur at frequencies
f0 & 3.3 before checking the dynamics. This corresponds
to dynamics for t . 0.3 whereas the time scale describing
the overall dynamics of the convection rolls is t ≈ 1. The
value of ξc is nearly independent (less than one percent
deviation) of the particular choice of f0 over the wide



3

range 2.5 . f0 . 5.
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Domain

FIG. 1. (color online) A principal domain with an aspect ratio
Γp = 32 (left) and a target domain with an aspect ratio Γt =
10 (right). The subdomain is within the principal domain
and is indicated by the dashed box. Color contours are of
the temperature field at the horizontal mid-plane where red
(light gray) is hot rising fluid and blue (dark gray) is cool
falling fluid. The time dependent values of the velocity and
temperature fields on the lateral boundary of the subdomain
are used as boundary conditions on the target domain and
are indicated by the arrow. The principal and target domains
begin from different random initial conditions. For the case
shown (ǫ = 2.51, σ = 1) the dynamics are not similar since
Γt > ξc.

We have chosen to explore parameters that yield the
state of spiral defect chaos in large convection layers [12]
which is anticipated to be extensively chaotic [8, 9]. To
achieve this we have used a box geometry with Γp =
32 and a fluid with a Prandtl number of σ = 1. We
anticipate that our results are independent of Γp as long
as the system size is large enough to be extensive. Flow
field images are shown in Fig. 2 as temperature contours
at the horizontal midplane. The different panels are for
different values of the reduced Rayleigh number ǫ where
ǫ = (R−Rc)/Rc and Rc ≃ 1708 is the critical value. The
value of ǫ is increasing from (a) to (d) and the small black
box in the center of each domain has a side length of ξc.
We have determined the precise value of ξc by running
many numerical simulations for different values of Γt. It
is clear from the Fig. 2 that ξc decreases with increasing
ǫ.
Figure 3 illustrates the time variation of the Nusselt

number difference between the target and subdomain for
the chaotic dynamics shown in Fig. 2(a) where ξc = 3.4.
In panel (a) the aspect ratio of the target domain is Γt =
2 and the dynamics are nearly identical where |∆N | .
5 × 10−3 for the duration of the simulation (3000 time
units are shown). Panel (b) shows results for Γt = 10
that yields chaotic dynamics that are not similar where
|∆N | . 0.1.
Figure 4 illustrates the variation of the maximum value

of |∆N | over a range of target domain sizes 2 ≤ Γt ≤ 8 for
ǫ = 2.51 and σ = 1. The circles are results for Γp = 32
which yields chaotic dynamics. The line is included to
guide the eye and the dashed horizontal line at |∆N | =

FIG. 2. (color online) The chaotic element length scale ξc for
a range of reduced Rayleigh numbers ǫ for a principal domain
with Γp = 32. The color contours are of the temperature
field. The black box inside the principal domain has a side
length of ξc. (a) ǫ = 2.51, ξc = 3.4; (b) ǫ = 3.1, ξc = 2.9; (c)
ǫ = 3.68, ξc = 2.1; and (d) ǫ = 4.27, ξc = 1.9.
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FIG. 3. The time variation of |∆N | for chaotic dynamics for
Γp = 32, ǫ = 2.51, and σ = 1. (a) Γt = 2 yields nearly identi-
cal dynamics. (b) Γt = 10 does not yield similar dynamics.

0.01 is our threshold for determining ξc. The magnitude
of |∆N | decreases rapidly with decreasing target domain
sizes. Using our approach the two convection layers are
nearly identical for Γt . 3.4 and therefore ξc = 3.4. We
point out that for Γt < ξc the magnitude of |∆N | does
not change significantly. Similar trends were observed
for our numerical results at different values of ǫ. The
squares in Fig. 4 are for a smaller sized principal domain
where Γp = 16 with ǫ = 2.51 and σ = 1 which yielded
time-periodic dynamics of the flow field. In this case, the
dynamics of the target domain was nearly identical to
that of the subdomain for all sizes of the target domain.

It is insightful to compare quantitatively the chaotic
element length scale and other important length scales
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FIG. 4. Variation of the maximum value of |∆N | over a range
of target domain aspect ratios Γt for σ = 1 and ǫ = 2.51.
Squares are for Γp = 16 which yields time-periodic dynamics
where dynamics of the target domain and subdomain were
nearly identical for all Γt. Circles are for Γp = 32 which
yields chaotic dynamics (pattern images are shown in Fig. 2).
The threshold of |∆N | ≤ 0.01 is indicated by the dashed line.
The chaotic element length scale for the chaotic dynamics is
ξc = 3.4. The solid lines are included to guide the eye.

in the problem. Figure 5 illustrates the variation of the
pattern wavelength ξL, the chaotic length scale ξδ, and
ξc over a range of reduced Rayleigh numbers 1 . ǫ . 4.5.
Squares are the time-averaged value of the pattern wave-
length determined using the structure factor [1]. Over
the range shown the pattern wavelength increases slightly
and the dashed line is a curve fit through the data of the
form ξL = 2.6ǫ0.33. Circles are ξc which decreases with
increasing ǫ and the solid line is a power-law curve fit of
the form ξc = 8.1ǫ−1. The error bars shown for ξc reflect
the precision in terms of the discretization used in deter-
mining the largest Γt yielding ξc. This could be improved
by performing more simulations for different values of Γt.

The natural chaotic length scale ξδ is computed from
the fractal dimensionDλ. To compute Dλ we have simul-
taneously integrated many copies of the tangent space
equations (c.f. [8, 10]) and used the standard approach
of frequent Gram-Schmidt reorthonormalizations to com-
pute the spectrum of Lyapunov exponents. For these
computations we used a highly efficient, parallel, and
spectral element solver that is discussed in detail else-
where [10, 22]. Given the spectrum of Lyapunov ex-
ponents the fractal dimension is Dλ = K + SK/|λK+1|
where K is the largest n for which Sn =

∑n
i=1

λi > 0 [1].

A volume of size ξds

δ contains a single chaotic degree of

freedom on average [11] where ξδ = (Dλ/Γ
ds)−1/ds and

ds is the number of spatially extended dimensions (where
ds = 2 for large shallow convection layers) [1]. In order to
compute Dλ, and therefore ξδ, one must compute enough
Lyapunov exponents such that their linearly interpolated
sum equals zero. For chaotic Rayleigh-Bénard convection
in large domains this is a large number requiring signifi-
cant computing resources [10]. The expense of these cal-

culations has limited the range in ǫ for which we present
values of ξδ. For our calculations, Dλ ≈ 11 for ǫ = 1.34
and Dλ ≈ 61 for ǫ = 2.22. Our results for ξδ are shown
as triangles in Fig. 5 where the dash-dotted line is the
power-law curve fit ξδ = 17ǫ−2. We have included error
bars on ξδ that reflect its standard deviation in time.
Although the pattern wavelength is increasing with in-

creasing ǫ, both ξc and ξδ exhibit similar trends and are of
the same order of magnitude. Therefore the length scale
of a chaotic element is on the order of the chaotic length
scale determined from the fractal dimension. These re-
sults support the idea that it may be possible to decom-
pose a spatiotemporally chaotic flow field into spatial el-
ements that contain a single chaotic degree of freedom
on average.
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FIG. 5. Variation of the chaotic element length scale ξc (cir-
cles), the natural chaotic length scale ξδ (triangles), and the
pattern wavelength ξL (squares) with the reduced Rayleigh
number ǫ for a principal domain with an aspect ratio of
Γp = 32. The dashed line is ξL = 2.6ǫ0.33 , the solid line is
ξc = 8.1ǫ−1, and the dash-dotted line is ξδ = 17.0ǫ−2. Error
bars are included for ξc and ξδ.

IV. CONCLUSION

In conclusion, we have quantified the length scale of a
chaotic element by coupling the dynamics of two convec-
tion layers using only information passed unidirectionally
to the boundary of the target domain. We have used this
to show that ξc is of the same order of magnitude and
exhibits similar trends as the computationally intensive
chaotic length scale ξδ. Although the connection between
the two is not rigorous our results suggest that there is
a length scale associated with the pattern dynamics that
can be linked with the chaotic length scale. This pro-
vides an avenue of investigation that does not require
the expensive computation of the Lyapunov spectra. It
may be possible to investigate experimentally these ideas
using time dependent boundary conditions and it would
be interesting to explore the robustness of our results in
situations accessible to experiment.
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