
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Assortativity decreases the robustness of interdependent
networks

Di Zhou, H. Eugene Stanley, Gregorio D’Agostino, and Antonio Scala
Phys. Rev. E 86, 066103 — Published  5 December 2012

DOI: 10.1103/PhysRevE.86.066103

http://dx.doi.org/10.1103/PhysRevE.86.066103


EQ10856

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Networks and genealogical trees Percolation Structures and organization in complex systems

Assortativity Decreases the Robustness

of Interdependent Networks

Di Zhou,1 Gregorio D’Agostino,2 Antonio Scala,3, 4 and H. Eugene Stanley1

1Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 USA
2ENEA - CR “Casaccia” - via Anguillarese 301 I-00123 Roma, Italy

3ISC-CNR Dipartimento di Fisica, Sapienza Università di Roma Piazzale Moro 5, 00185 Roma, Italy
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It was recently recognized that interdependencies among different networks can play a crucial role
in triggering cascading failures and hence system-wide disasters. A recent model shows how pairs
of interdependent networks can exhibit an abrupt percolation transition as failures accumulate. We
report on the effects of topology on failure propagation for a model system consisting of two inter-
dependent networks. We find that the internal node correlations in each of the two interdependent
networks significantly changes the critical density of failures that triggers the total disruption of
the two-network system. Specifically, we find that the assortativity (i.e. the likelihood of nodes
with similar degree to be connected) within a single network decreases the robustness of the entire
system. The results of this study on the influence of assortativity may provide insights into ways
of improving the robustness of network architecture, and thus enhances the level of protection of
critical infrastructures.

PACS numbers: 89.75.Fb

I. INTRODUCTION

The quality of life in modern society strongly depends
on the effective delivery of basic services as water, elec-
tricity, and communications; the infrastructures provid-
ing these basic services are therefore called critical infras-
tructures. Indeed, maintaining every critical infrastruc-
ture (CI) is a growing challenge for modern society. Of
great interest is the interdependence of CIs. One clear ex-
ample of this interdependence is the “binomial” system
in which electrical power networks depend on telecom-
munication networks and vice-versa. Understanding cas-
cading failure in interdependent networks is a problem
currently receiving much attention. For example, fail-
ure propagation is a common phenomenon that can lead
to such catastrophic effects as the remarkable September
2003 total blackout across Italy [1].

One approach to understanding failure propagation is
to develop a simulation of an entire system that takes
into account all of the details associated with the system.
Although some remarkable results have been achieved
for selected regions when all the information is available
[2], these simulations are not useful in understanding the
mechanisms that induce cascading effects. Because of the
huge amount of data involved, such an approach requires
heroic efforts, even when considering a simple system [3].
Frequently privacy constraints or difficulties in accessing
or probing the system of interest become factors, and of-
ten an adequate amount of information is not available.
Thus other approaches are needed to understand the fun-
damental issues underlying cascading effects.

Here we will use the complex network paradigm to ac-
quire some understanding of possible CI vulnerabilities
to help focus more detailed analyses [4]. For example,

the complex network paradigm can address the problem
of interdependencies among CIs. It was recently demon-
strated [5] that when the degree of interdependence be-
tween networks is increased, the robustness of the system
to cascade failures decreases [6] and vice-versa.

Beside the natural applications to the protection of
CIs, the analysis of the properties of inter-dependent net-
works is a subject of growing interest in many scientific
fields, ranging from public cooperation [7], to epidemic
spreading [8–11], to human physiology [12].

Although previous research has indicated how to mit-
igate systemic risk by tuning network interdependencies
[13] , the role of topology of each component network has
yet to be investigated. The interdependency level among
a set of networks can be fixed—because of economic or
technological constraints—and thus may be untunable.

If we know the average degree of a network, degree
correlation becomes the simplest parameter for classify-
ing the internal network topology. Using the interacting
failure model (IFM) for a two-layered network system
2LNS [6], we find that assortativity decreases the robust-
ness to random failure. In particular, by considering both
Erdős-Rényi (ER) and scale-free (SF) networks, we find
that assortativity causes a sharp increase in the fragility
of coupled networks with a node distribution described
by a power law.

In Sec. II we review the concept of assortativity, de-
scribe the methods employed to generate sample net-
works with different assortativity coefficients, and review
the two-layer network model of cascading failures. In
Sec. III we present the results of our simulations, which
we then discuss in Sec. IV.
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II. METHODS

A fundamental quantity characterizing the structure
and driving the behavior of a large network is the proba-
bility distribution function P (k) of node degree k [14, 15].
It has been shown that both humanly-constructed and
natural networks are often characterized by a P (k) with
heavy tails leading to unforeseen effects, e.g., the disap-
pearance of epidemic thresholds [16]. Other quantities,
e.g., the local density of triangles, the modular structure,
communities, and motifs can be used to further charac-
terize network structure [14].
Assortativity is the tendency of entities to seek out and

group with those other entities that exhibit similar char-
acteristics. In networks, assortativity is the tendency of
neighbor nodes to have similar degrees and thus to be
measurable using link-averaged degree pair correlation
[17]. Using a physical approach, we improve the one-
point average-degree characterization of a network by
considering assortativity, a two-point correlation quan-
tity.
The assortativity coefficient r is defined in terms of the

correlation between the degrees of neighbouring vertices

r ≡
〈jk〉e − [〈(j + k) /2〉e]

2

〈(j2 + k2)/2〉e − [〈(j + k)/2〉e]
2
, (1)

where the averages 〈· · · 〉e are evaluated over all edges e
and j, k are the degrees of the adjacent vertices associated
with edge e. High values of the assortativity (r ∼ 1) im-
ply that neighbouring nodes have similar degrees, while
low values (r ∼ −1) imply that high-degree nodes tend
to be connected to low-degree ones; random pairing cor-
responds to r ∼ 0.
An alternative form for this expression has been given

by Newman [17]

r =

∑

jk jk (ejk − qjqk)
∑

k

[

k2qk − (kqk)
2
] (2)

in terms of the normalized degree distribution qk =
(k + 1)P (k+1)/

∑

k kP (k) and the joint probability dis-
tribution eij (i.e. the two point function) of the residual
degrees at the either ends of a randomly chosen edge.
For a single stand-alone network, increasing the as-

sortativity makes it more robust against node removal
[18, 19] and, in general, stronger with respect to diffusion-
driven dynamical processes [20]. On the other hand, as-
sortativity makes networks more unstable [21] as mea-
sured by the May criterion [22] and, in general, less con-
trollable [20, 23].

A. Varying the assortativity

We next demonstrate how assortativity affects cascad-
ing fault propagation in interdependent networks by tun-
ing r while keeping the degree distribution fixed. To pro-
duce networks of varying assortativity, several methods

(mostly based on link swapping [24] have been employed,
like accepting assortative moves with a given probability
p[25]. We believe that the most flexible way of sampling
of the space of possible networks is to introduce a simple
Hamiltonian[20, 26] as it allows to apply all the standard
tools of statistical mechanics.

Following Ref. [20], we first define A, the adjacency
matrix associated with the network (an N × N matrix
exhibiting a unitary value Aij = 1 when node i is linked
to node j and vanishing elsewhere). Next, we define
a statistical ensemble in which the probability measure
µ(G) ∝ exp [−J H(G)] of a given graph G is induced by
the Hamiltonian

H(G) ≡
∑

ij

kiAijkj . (3)

Here ki is the degree of node i, and the “coupling con-
stant” J may assume both positive and negative values.
Such Hamiltonian is a simple quadratic form in the node
degrees resembling strictly the form applied to model
classical spin systems.

Note that for a given P (k) the terms 〈(j + k)/2〉e and
〈(j2+k2)/2〉e in Eq. (1) do not depend on how nodes are
linked, but that the term 〈jk〉e is directly related to the
Hamiltonian as H ∝ 〈kikj〉. Thus large values of J will
favour graphs with large values of r and vice-versa.

Such a Hamiltonian has been recently explored by
Yook and Park[27] who have found that the network con-
figuration sampled at equilibrium satisfy the power law
distribution P (k) ∼ k−3/2. We instead explore the con-
figuration space defined by link swapping: in this way not
only the initial P (k) but also each node degree is kept
constant (see fig.1). In order to sample configurations
according to µ(G), we set the link swapping probability
to be e−J,∆H. Although link-swap moves can be assor-
tative, disassortative, or neutral [28], in our case assor-
tative/disassortative configurations will be preferentially
sampled according to the sign of J with a monotonically
increasing sampling of the assortativity r with respect to
the parameter J [20].

In order to examine the effects of assortativity for both
SF and ER networks, we use both the Barabasi-Albert
(BA) [29] and the ER [30] model networks as starting
configurations for link-swapping Monte Carlo (MC) dy-
namics. We find that in ER networks MC equilibrium
is reached with a number of steps per node apparently
independent of the number of nodes [26], but that in SF
networks the situation is more complicated. We find that
in BA networks the range of assortativities reached in a
given number of steps shrinks as the system size increases
[31]. Thus similar allocated simulation times allow us to
explore a smaller assortativity range for BA networks
than for ER networks.
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B. Interdependent failures model

To model interdependent networks with assortativ-
ity we use the interdependent failure model (IFM) of
Ref. [6]. In the original IFM there are two spatial net-
works (ICT and power distribution) and only the geo-
graphically nearest nodes interact. We consider two net-
works A and B that have the same number of nodes N
and that share the same topology, and thus the same as-
sortativity (or disassortativity). We consider a case in
which a unique node bi in network B corresponds to a
unique node ai in network A, i.e., ai and bi have a mutual
dependence. In the IFM, in order for node ai to function
properly, node bi must also function properly and vice-

versa. If bi becomes dysfunctional, ai will also become
dysfunctional. This interdependence relation can be de-
scribed as a bidirectional link ai ↔ bi between ai and
bi. Thus each ai node in network A has a corresponding
counterpart bi node in network B.
To model random attack or failure, we randomly re-

move a fraction 1− x of nodes from network A (x is the
fraction of initially-surviving nodes). Because of the in-
terdependence between the two networks, the nodes in
network B that depend on the removed A-nodes are also
removed. When the nodes and links in network B are re-
moved, network B may break up into several connected
components (“clusters”). We assume that only the nodes
belonging to the largest cluster (the so-called “giant com-
ponent”) continue to be functional [6], and remove the
nodes from B that do not belong to this giant compo-
nent. Because of mutual interdependency, removing the
B-nodes in network B not in the giant component will
cause the removal of the corresponding A-nodes in net-
work A. This iterative process generates a cascade of
failures that continues until node elimination ceases. At
that point, if the two networks still have giant compo-
nents, they will be the same size. The algorithm used in
this procedure consists of the following steps:

s0: Remove the fraction 1− x of initial failed nodes in
layer A

s1: Identify the largest component SA

s2: Remove the nA nodes of A not in SA

s3: Remove the nB nodes of B not linked to SA

s4: Identify the largest component SB

s5: Remove the nB nodes of B not in SB

s6: Remove the nA nodes of A not linked to SB

s7: If nA > 0 then repeat from s1

s8: Output the final survived giant components SA and
SB

Such algorithms can be re-phrased in terms of the fix-
point of an operator. In fact, let us define QA as the
operator that selects the largest component of network
A and let PAB the operator that select the subnetwork
of A linked to the existing nodes of B. Then, the final
result of the cascading algorithm is the fixpoint of the
operator

G = PAB ◦QB ◦ PAB ◦QA (4)

. The characterization of the operator G in terms of
generating functions is the starting point for the current
analytical threatments of the IFM model [6]; it has yet
to be investigated wether a generalization of such an ap-
proach would allow to take into account the role of the
assortativity.
In general, even if for simple percolation the method

of generating functions is still applicable for the case of
varying assortativity, the functions to be calculated have
rarely an analytical closed form. Numerical simulations
seem therefore to be the main way of investigation to
study the effects of assortativity in model systems.
For ER and BA networks, IFM exhibit an abrupt tran-

sition [6] at an a priori unknown value of x = xc. When
a fraction of nodes larger than 1−xc is initially attacked
or fails and hence is removed, the system experiences cas-
cading disruption and (when the iterative process stops)
ends up completely fragmented, and the relative size of
the giant component tends to vanish. When a fraction
of nodes equal to or less than 1− xc is attacked or fails,
there is always a finite fraction of nodes surviving, i.e.,
the giant component relative size does not vanish.

C. Percolation

In classical percolation [32], increasing the fraction of
removed nodes 1 − x reduces the size (i.e., the number
of nodes) S of the largest cluster. In the thermodynamic
limit N → ∞ (where N is the number of nodes) the
process experiences a phase transition, i.e., the fraction
of nodes s ≡ S/N belonging to the largest component
drops to s = 0 for x < xc. For x > xc, s is non-zero.
Depending on the order of the transition, a discontin-
uous jump is observed in the order parameter s or in
one of its derivatives with regard to x. Finite size ef-
fects round out the behavior of s and make it difficult to
distinguish a genuine weak first-order transition (small
jump in s) from a second-order transition [33]. Although
the sharpness of the transition for the IFM indicates the
possibility that IFM experiences a first-order percolation
transition [6], much care must be used in assessing the
transition order for a given network [34]. We want to re-
mark that, while classical percolation can be described in
terms of thermodynamical equilibrium states, this does
not seem to be tha case for the IFM model. Nevertheless,
both percolation and IFM share analogous concepts and
even techniques (like the use of generating functions to
produce approximate analytical solutions); therefore, all
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the standard machinery of percolation comes handy in
analysing and understanding the IFM.
We simulate the IFM and calculate the size of the

largest cluster (“giant component”) S at varying values
of the fraction x of initially surviving nodes. As an order
parameter for the percolation transition, we focus on the
fraction of nodes s ≡ S/N belonging to the giant com-
ponent. We indicate by 〈s〉 the value of s averaged both
over different layers of the same average assortativity (the
same J) and over different IFM simulations.
Next we estimate the percolation threshold xc corre-

sponding to different assortativities (i.e., different J val-
ues) using two methods:

I: We calculate the point of maximum fluctuation

〈(δs)2〉 ≡ 〈s2〉 − 〈s〉2 (5)

of the giant component, which is expected to be
large for both first- and second-order transitions
[33].

II: In order to compare the estimates of xc obtained
by Method I we must also consider the numerical
derivative

∆〈s〉 ≡
〈s(x + ǫ)〉 − 〈s(x− ǫ)〉

2ǫ
(6)

in the critical region, and we use ǫ = 10−3; such
a choice is dictated from the fact that the deriva-
tives do not show appreciable numerical changes for
smaller values of ǫ.

In classical percolation ∆〈s〉 is equivalent to
〈(δs)2〉,

∆〈s〉 ≈ ∂x〈s〉 ∝ 〈(δs)2〉 (7)

for a second order transition, and it measures the
jump 〈s(x+

c )〉 − 〈s(x−
c )〉 at x = xc in the order pa-

rameter near a first order transition

ǫ∆〈s(xc)〉 ≈ 〈s(x+
c )〉 − 〈s(x−

c )〉, (8)

where

〈s(x±
c )〉 ≡ lim

ǫ→0
〈s(xc ± ǫ)〉 (9)

are the values just before and after the discontinu-
ity.

Due to the finite size effect, the xc values found using
these two methods may differ, but as system size in-
creases we expect the corresponding xc values from the
two methods to converge.

III. RESULTS

A. Generating the networks

To generate networks with varying assortativity, we
start with a network with a given degree distribution

P (k) and apply MC rewiring for different values of J ac-
cording to the sampling probability exp [−J H(G)] [20].
Negative values of J lead to a disassortative network,
and positive values to an assortative network. In other
words, when employing a positive J , rewiring connect-
ing nodes of similar degree are accepted more frequently,
whereas when employing a negative J , rewiring connect-
ing nodes of very different degrees are preferred. The
absolute value of J behaves like an inverse temperature:
the higher its value, the stronger the selection. In order
to improve the statistics over the configurations, we start
with uncorrelated initial conditions (i.e., we restart the
procedure from scratch) and generate 100 independent
networks for each value of J .

We duplicate each configuration to create two topolog-
ically identical monolayers (A and B). Linking each node
in layer A to one and only one node in layer B provides
the two layere network systems (2LNS) we will employ
in our IFM simulations. To avoid correlations among the
degrees of the two layers, we first perform a random per-
mutation of the labels of one of the two layers and then
create a connection Ai ↔ Bi that represents the mutual
dependence of the nodes. For each 2LNS, we perform
100 independent simulations of the IFM model. Thus
for each J we perform 104 simulations starting from 100
different initial networks.

To compare the ER case with the SF case, we generate
in both cases networks with N = 10, 000 nodes and an
average degree 〈k〉 = 6. To generate ER networks (ER-
nets) with varying assortativity, we employ 17 different
J values that produce networks with an average assorta-
tivity that ranges from r = −0.8 to r = 0.8. To generate
SF networks (SFnets) with varying assortativity, we use
the Barabasi-Albert network [29], employ eight different
J values, and produce networks with an average assorta-
tivity that ranges from −0.12 to 0.16.

B. Breakdown of coupled SF networks

We simulate the IFM and calculate the fraction of
nodes belonging to the giant component. Figure 2 shows
the behavior of the order parameter 〈s〉 as a function of
the fraction of survived nodes for the SFnets. Note that
the size of the giant component increases significantly in
a limited region that depends on the assortativity; in a
system of inite size, this is an indication for a percola-
tion phase transition. Two different regions of stabil-
ity can be identified that correspond to the two different
phases, (i) a percolative phase in which the giant com-
ponent includes a number of nodes proportional to N
(S ∼ N , i.e., a non-vanishing s) and (ii) a broken phase
in which the largest component is negligible (S ∼ o(N),
i.e., s ∼ 0). The amount of damage needed to destroy
the giant component decreases with assortativity, and we
find the sharpness of the transition to decrease at fixed
system size.
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Such an effect can be understood by observing that
the breakdown process consists in repeated applications
of a percolation algorithm on single networks. In the
case of a single network [17] increasing the assortativity
reduces the extension of the largest component. In other
words, at each iteration, the fraction of removed nodes
(complementary to the giant component) increases; thus,
the iterations over the two networks amplify the effect of
the assortativity easing the breakdown of the coupled
system.

To estimate the percolation threshold xc that corre-
sponds to different J values (i.e., to the different assorta-
tivities r), we calculate the point of maximum fluctuation
for the size of the giant component. Figure 3 shows the
fluctuations of the largest component 〈(δs)2〉 in a SFnet
as a function of x for sample values of the SFnet. To
attain a better estimate xc, we perform more simulations
in the region where the maximum of 〈(δs)2〉 is attained.

Figure 4 shows that the numerical derivative ∆〈s〉 also
shows a peak in the critical region. Note that one may
also estimate the critical threshold as the inflection point
of the largest component profiles, i.e., from the peak of
the numerical derivative ∆〈s〉. Nevertheless, no signifi-
cant difference is observed within the accuracy of our sim-
ulations, i.e., the inflection points of 〈s〉 coincide, within
the error bars, with a maximum of 〈(δs)2〉.

Using the two methods above (via the peak of 〈(δs)2〉
or via the peak of ∆〈s〉) we can obtain the dependence of
the percolation threshold xc on the assortativity r. Fig-
ure 5 shows data for the SFnets and provides evidence
that the percolation threshold is an increasing function
of the assortative coefficient r; therefore, robustness de-
creases with increasing assortativity.

As a general result, it has been observed that a phase
transition in a numerical model often coincides with a
peak in the number of operations required to calculate
the significant quantities (order parameters and poten-
tials). In our case the number of iterations (NOI) needed
for the IFM algorithm to converge represents a natural
measure for the computing operations. Consistent with
the general principle, Fig. 6 shows that the NOI for the
IFM algorithm exhibits a peak close to the critical thresh-
old. As a possible interpretation, we note that the NOI
represents the sum of a set of stochastic variables (one for
each iteration) that are null when the removal of nodes
does not fragment the giant component and are unitary
elsewhere. Therefore the NOI measures the stability of
the largest component upon further node removal.

As mentioned above, we generate ER networks with
the same average degree. Thus configurations with a
given size N and a given assortativity r are distinguish-
able only by their degree distributions. So if we plot
the properties of networks of the same size versus r, we
can pinpoint and compare the difference between the be-
havior of ER and SF networks. In Fig. 7 we show that
the phase transition requires an increasing number of
damaged sites with increasing assortativity for ERnets as
well. Unlike SFnets, the effect on the critical threshold in

ERnets is much more limited. In Fig. 8 we compare the
estimated thresholds in the two cases. It is clear that in
a SFnet the critical threshold xc varies dramatically, but
that in a ERnet it is almost flat. This effect of enhanced
response to assortativity in the SFnets with respect to
the ERnets is consistent to what is observed in single
layer networks [20].

C. Order of the phase transition

It is difficult to determine the order of a phase transi-
tion from simulations. To see whether this kind of phase
transition is first-order or second-order, we analyze the
fluctuations of the size of the giant component.
In fact, for a second order transitions the divergence of

the fluctuations 〈(δs)2〉 at xc would be signaled at finite
system sizes by an increase in the peak of 〈(δs)2〉 and
by the narrowing of the width of the peak. In Fig. 9
we show that, although there is a slight narrowing of
the peaks with system size, there is no sign of a second
order-divergence. Figure 7 shows the fluctuation profiles
for SFnets for different sizes (N = 5, 000, 10,000, and
14,000). We find analogous results for ERnets.
To further check whether this kind of phase transition

is first-order or second-order, we analyze the size of the
second largest cluster S2 and its counterpart s2 ≡ S2/N .
In a second order transition, the presence of a sharp peak
in s2 is coupled to a sharp increase of s near x = xc.
In fact, at criticality, the size of the second percolating
cluster has the same scaling as the giant component [35]
also for systems above the critical dimension [36]. On
the other hand, first order transitions are characterized
by finite size clusters and by S2/N → 0.
The second largest cluster is found by following the al-

gorithm IIB but starting from the second largest cluster
(instead of the largest) at the first iteration. When we
vary x in our simulations we do not observe a peak in s2.
The size of the second largest cluster is flat and always
of order ∼ 1/N .
Therefore, all these arguments support the presence

of a first-order transition as predicted by mean-field ER
network-of-networks models [37, 38].
Let us finally comment on the role of the hysteresis

in signalling the order of the transition. In a first order
transition, local minima of the free energy develop be-
fore the transition point and become the favoured one at
the transition point; on the same footings the local free
energy minimum corresponding to the equilibrium state
before the transition persists as a metastable state for
some range of the parameters. The switch of the favoured
minima at the transition point is signalled by a jump
in any macroscopic quantities that discriminates among
such minima; nevertheless, if minima are deep enough,
the system can persist in the metastable state for a fi-
nite time before jumping to equilibrium. Such behaviour
results in hysteresis curves and is therefore linked to the
equilibrium description of the system in terms of free en-
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ergy. In the IFM there is not a free energy description
of the system, but a characterization of the final state
as fix-points of an operator: therefore the applications
of statistical mechanics observables is just a guidance in
studying the system; on the other hand, distinguishing
the cases where the transition is abrupt (first order) is of
great interest and importance for real systems.

IV. CONCLUSION

We have examined the influence of assortativity on the
robustness of interdependent systems consisting of two
interacting networks. Both scale-free (SF) and Erdős-
Rényi (ER) network models have been taken into ac-
count. The simulation of cascading faults caused by
random attack or failure in the interdependent pair of

networks provides evidence for a first order percolation
transition.
The percolation threshold decreases with increasing as-

sortativity and therefore assortative networks are more
fragile in both the ER and SF cases but, generally speak-
ing, SF networks are less robust than ER interdependent
pairs. Even a low assortativity can make a SF network
100% more fragile than its corresponding ER version.
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FIG. 1. (Color online) The link-swap procedure consists in
deleting two edges AB and CD and adding either the edges
AC,BD or the edges AD,BD respecting constrains like the
absence of multiple links. Such a procedure leaves always
the number of links attached to each node unchanged and
therefore it leaves the degrees of the nodes unchanged.
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FIG. 2. (Color online) Fraction 〈s〉 of sites in the giant com-
ponent as a function of the fraction x of initially undamaged
nodes for N = 10, 000 scale-free networks. Curves are ob-
tained by averaging 1000 simulations over 100 independent
networks for each value of x.
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FIG. 3. (Color online) Fluctuations 〈(δs)2〉 of the order pa-
rameter s as a function of the fraction x of the initially undam-
aged nodes for N = 10, 000 scale-free networks. The position
of the peak for 〈(δs)2〉 can be used to estimate the critical
fraction of non-damaged sites xc. Curves are obtained by av-
eraging 1,000 simulations over 100 independent networks for
each value of x.
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FIG. 4. (Color online) Normalized numerical increment ∆〈s〉
of the order parameter s as a function of the fraction x of ini-
tially undamaged nodes for N = 10, 000 scale-free networks.
In conventional percolation ∆〈s〉 ∼ 〈δs〉 can be used to esti-
mate the the critical fraction of damaged sites xc. Curves are
obtained by averaging 1,000 simulations over 100 independent
networks for each value of x.
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FIG. 5. Estimated values of the percolation threshold xc as
a function of the assortativity coefficient r for N = 10, 000
scale-free networks. The values of xc are estimated as the
maxima of 〈(δs)2〉, as well as the peaks of the ∆〈s〉 profiles.
Note that the two estimates are very close for disassortative
nets but differ a bit more for assortative nets.
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FIG. 6. (Color online) Number of iterations (NOI) for the
IFM algorithm to converge as a function of the initially un-
damaged node fraction. Peak positions for different assorta-
tive coefficients are close to xc as estimated from 〈(δs)2〉.



10

0,36 0,39 0,42 0,45
x

0,1

0,2

0,3

〈s〉

r = -0.80
r =  0.08
r =  0.44
r =  0.82

FIG. 7. (Color online) Fraction 〈s〉 of sites in the largest com-
ponent as a function of the fraction x of initially undamaged
nodes for N = 10, 000 Erdős-Rényi networks. Curves are ob-
tained by averaging for each x value 104 simulations over 100
independent networks.
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FIG. 8. (Color online) Comparison of the percolation thresh-
olds xc for both the Erdős-Rényi and scale-free interacting
networks. Scale-free networks exhibit a significant variation
upon a small increase of the assortativity r, but Erdős-Rényi
networks exhibit only a small variation over the whole possi-
ble range of assortativities. Inset: the estimates of xc via the
normalized increment ∆〈s〉 are very close to the estimates of
xc via the peaks of 〈(δs)2〉 also for Erdős-Rényi networks.
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FIG. 9. (Color online) Fluctuations 〈(δs)2〉 of the order pa-
rameter s as a function of the fraction x of initially undamaged
nodes for scale-free networks of different sizes. The peaks on
the left correspond to disassortative networks (J = −10, i.e., r
from −0.086 to 0.051) while the peaks on the right correspond
to assortative networks (J = 10, i.e., r = from 0.181 to 0.163).
The different curves correspond to sizes N = 5, 000 (circles),
N = 10, 000 (squares), and N = 14, 000. For the sizes anal-
ysed, there is no significant evidence for the growth and nar-
rowing of the peaks that would be expected in a second-order
transition.


