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We show that the long-established concept of a linewidth-enhancement factor α to describe carrier-induced
refractive index changes in semiconductor lasers breaks down in quantum dot (QD) lasers when describing com-
plex dynamic scenarios, found for example under high-excitation or optical injection. By comparing laser simu-
lations using a constant α-factor with results from a more complex non-equilibrium model that separately treats
gain and refractive index dynamics, we examine the conditions under which an approximation of the amplitude-
phase coupling by an α-factor becomes invalid. The investigations show that while a quasi-equilibrium approach
for conventional quantum well lasers is valid over a reasonable parameter range, allowing one to introduce an
α-factor as a constant parameter, the concept is in general not applicable to predict QD laser dynamics due to
the different timescales of the involved scattering processes.
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Semiconductor lasers are essential components in optoelec-
tronics that affect practically every aspect of our daily life.
There are amble indications that the present technology is ap-
proaching a stage where fundamental constraints are limiting
performance. The semiconductor quantum-dot (QD) laser is
a strong candidate for introducing improvements at the under-
lying physics level. A very important consideration is dynam-
ical performance, which impacts almost all applications.

In semiconductor lasers, the connection between refractive
index and optical gain plays an important role in determining
modulation response, linewidth, and occurence of dynamical
instabilities as well as pattern formation. Throughout litera-
ture, this connection is commonly described by assuming a
linear relationship between changes of the real and imaginary
parts of optical susceptibility χ , with the proportionality given
by a constant linewidth-enhancement factor α [1, 2]. For ex-
ample, with optical injection [3] or feedback [4], laser dynam-
ics depends critically on the phase dynamics of the intracavity
laser field. It is customary to describe this dynamics by intro-
ducing a constant α into the field equation [5–7].

For QD lasers, the concept of an α-factor has been con-
troversially discussed [8, 9]. Experimental values range from
near zero [10–13] to larger values [14] up to 60 [15, 16], with
different measurement techniques yielding very different re-
sults [8, 17, 18]. Furthermore, frequency chirp under large-
signal modulation was found to be inaccurately described by
α [9].

Nevertheless, the failure of α in accurately describing QD
lasers is either not widely known, or ignored. Studies of QD
laser dynamics have relied on α to describe the amplitude-
phase correlation [19–23] and experimental measurements of
the carrier-induced refractive index in QD active media have
been expressed in terms of the α-factor [18, 24–26]. In this
letter, we discuss situations where the use of the α-factor leads
to incorrect predictions. In particular, for the cases involving
optical injection or feedback, which are widely studied exper-
imentally and theoretically by the laser dynamics community
[27–36], we present examples where very different laser dy-
namics is predicted if an α-factor is used instead of the full
microscopic description.

Our model for the QD laser device includes the full time

dependence of the polarization of the active medium and al-
lows us to derive the gain and the refractive index in each
time step without the need to introduce an α-factor. We apply
a semi-classical approach using Maxwell’s equations and the
semiconductor-Bloch equations [37, 38]. Carriers are injected
from the bulk into a carrier reservoir (QW), and from there
into the QDs. A bound ground state (GS) and a twofold de-
generate (excluding spin degeneracy) excited state (ES) of the
QDs are considered, both for electrons and holes. The bound
states are labeled by the index m ∈ {GS,ES}. In order to ac-
count for the inhomogeneous broadening of the QD transi-
tions, we distribute the QDs into different subgroups, labeled
by an index j, with the transition frequency ω

j
m. The distribu-

tion function f ( j) gives the probability to find a specific QD in
the j-th subgroup, such that ∑ j f ( j) = 1. We assume a Gaus-
sian spectral distribution of the QDs with a width (FWHM) of
60meV. The following dynamic equations describe the time
evolution of the slowly varying electric field E(t) and the oc-
cupation probabilities of the QD subgroups ρ

j
b,m, as well as

the QW and bulk carrier densities per unit area nQW
b and nbulk

b ,
respectively (b ∈ {e,h} distinguishes between electrons and
holes):

d
dt

E = g(ω, t)E−κE +K
E0

τin
exp[−i(ωin j−ω)t] (1)

d
dt

ρ
j

b,m =
1
h̄

Im
(

p j
mµ
∗
mE∗

)
−Wmρ

j
e,mρ

j
h,m +

∂

∂ t
ρ

j
b,m

∣∣∣
col

(2)

d
dt

nQW
b =

2
A ∑

k2D

1
h̄

Im
(

p2D
k µ

∗
QW E∗

)
−BSnQW

e nQW
h +

∂

∂ t
nQW

b

∣∣∣
col

(3)
d
dt

nbulk
b =

J
e0
−BS

bulknbulk
e nbulk

h +
∂

∂ t
nbulk

b

∣∣∣
col

(4)

Here, κ is the optical cavity loss rate, K is the injection
strength of the external optical signal, scaled by the free-
running electric field amplitude E0 and the cavity round-trip
time τin. The injected signal is assumed to be a monochro-
matic wave with the frequency ωin j. The Einstein coefficient
Wm gives the spontaneous recombination rate in the QDs. The
charge carrier losses in the QW and in the bulk are given by
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a bimolecular recombination rate BS and BS
bulk, respectively.

The sum in Eq.(3) describes the charge carrier losses in the
QW due to stimulated recombination between states described
by an in-plane vector k2D (the factor of two accounts for spin
degeneracy). A is the in-plane device area. The pump current
density is given by J, with the electron charge e0. The com-
plex amplitude gain g(ω, t) is calculated from the adiabati-
cally eliminated microscopic polarization amplitudes of the
QD and QW transitions p j

m and p2D
k , respectively [9, 38]:

g(ω, t)=
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where µm is the respective QD dipole transition moment. Γ

is the geometric confinement factor, εbg the background per-
mittivity, hQW the height of each QW layer, NQD the QD
areal density per QW layer, and νm the degree of degen-
eracy of the confined QD states. The transition frequency
detuning is ∆ω

j
m ≡ (ω j

m −ω) and the polarization dephas-
ing time constant is T2. Here, the QW transitions are as-
sumed to be detuned far enough from the QD GS transition
to not influence the gain appreciably, such that only index
changes due to the QW are taken into account, with gQW =
(iωΓ)/(εbgε0AhQW )

[
∑k µQW p2D

k (t)/E(t)
]
. For the polariza-

tion amplitudes p2D
k of the QW transitions, an expression sim-

ilar to Eq. (6) is used, with the corresponding dipole moment
µQW and transition frequency detuning of the QW transitions.
The real and imaginary parts of g(ω, t) correspond to the elec-
tric field amplitude gain and frequency shift, respectively.

The collision terms ∂/∂ t
∣∣
col in Eqs. (2)-(4) describe the

scattering between the different carrier states in the device.
We account for direct carrier (Auger-) capture processes from
the QW into the QD GS and ES, as well as relaxation pro-
cesses between ES and GS, with microscopically calculated
scattering rates that depend nonlinearly on the QW carrier
densities [39]. Additionally, we consider carrier-carrier (c-
c) and carrier-phonon (c-p) scattering between QW and bulk
states, described within the relaxation rate approximation
[40], with relaxation rates of 20ps−1 (c-c) and 4ps−1 (c-p)
(hole rates twice as fast).

To compare with the QD laser we also model a QW laser
device by taking only the QW and bulk charge carrier subsys-
tems into account, which is obtained by eliminating Eq. (2)
from the dynamic equations. In order to describe nonequilib-
rium distributions in the QW, we model the k-resolved carrier
distribution. The amplitude gain is then given by gQW .

In general, the α-factor is defined as the ratio of the deriva-
tives of the real and imaginary part of the optical suscepti-
bility χ(ω) with respect to the total charge carrier number
N = ∑b

(
nQW

b +nbulk
b +2NQD

∑ j,m f ( j)νmρ
j

b,m

)
. Rewritten in

terms of the amplitude gain g(ω, t) defined in Eq. (5) this
leads to α ≡−

[
∂

∂N Img(ω)
]
/
[

∂

∂N Reg(ω)
]

where the relation
χ(ω) = 2εbg/(iωΓ)g(ω) between the optical susceptibility
and the optical gain g(ω) was used. The derivative ∂/∂N in

symbol value symbol value symbol value
κ 0.05 ps−1 τin 48 ps T2 100 fs
µGS 0.60e0nm µES 0.40e0nm µQW 0.50e0nm
WGS 0.44 ns−1 WES 0.24 ns−1 BS(QD) 540 ns−1nm2

Γ 0.15 h̄ω 0.952 eV BS(QW) 54 ns−1nm2

εbg 14.2 hQW 4 nm NQD 1011 cm−2

Table I. Numerical parameters used in the simulation.

the above definition is, however, ill defined. The contribution
to the optical susceptibility, and thus to α , is different for each
charge carrier transition in the considered laser system. Near-
resonant transitions affect mainly the gain, while having little
effect on the refractive index, whereas off-resonant transitions
mainly contribute to the index change. To overcome this prob-
lem, we define an α-factor via the response of the laser to an
optically injected signal, as also done in several experimental
studies [41, 42]. We define

αin j ≡−
∂

∂K Img(ω)
∂

∂K Reg(ω)
. (7)

The above definition overcomes the need to make assump-
tions about the exact shape of the charge carrier variation ∂N
required for evaluating α . Instead, the charge carrier variation
is determined from the response of the system to the injected
signal and thus from the intrinsic system dynamics. Other ex-
perimental setups yield different charge carrier variations and
thus different variations in g(ω) leading to apparently differ-
ent α . We show below that this issue can be resolved by a full
dynamic simulation.

When injecting a monochromatic optical signal from a
master laser into a semiconductor slave laser, a phenomenon
called phase locking emerges, where the phase difference be-
tween the electric field inside the cavity and the injected signal
becomes constant [43]. The slave laser then emits a constant-
wave signal with the same frequency as the injected signal.
Outside the locking range the laser exhibits complex dynam-
ics, including chaos, excitability and multistability [44–46].
The parameter space consists of the injection strength K and
the frequency detuning ∆νin j ≡ (ωin j −ω f r)/(2π) between
the injected master laser signal and the free-running laser fre-
quency ω f r of the slave laser.

The parameter region in the (K,∆νin j)-plane for which
phase-locking is possible is shown by the colored region in
Fig. 1(a) and (b) for the QW and QD laser, respectively. It
forms Arnold tongues. For low injection strengths, the phase-
locked region is limited by saddle-node bifurcations (black
solid lines), and becomes limited by Hopf bifurcations (black
dashed lines) at higher K. Since the injection of the optical
signal affects the charge carrier distribution of the laser de-
vice, we expect the α-factor to change when changing the pa-
rameters K,∆νin j due to the change of operating conditions.
In order to determine an effective α inside the phase-locked
parameter range, we apply Eq. (7) at each parameter point, by
slightly increasing K and evaluating the changes in gain and
index after the transient time. The resulting values for αin j
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Figure 1. (Color online) Locking tongues in the (K,∆νin j) phase-
space for (a) the QW laser, (b) the QD laser. The phase-locked re-
gion is bounded by saddle-node (solid lines) and Hopf bifurcations
(dashed lines). Black lines correspond to the locking tongue deter-
mined for the full model and gray lines to a static effective α̃ . The
color code shows the calculated α-factor inside the phase-locked re-
gion. J = 2Jth

are shown by the color code in Fig. 1. It can be seen that the
effective α-factor indeed varies with the injection parameters,
showing a considerable decrease inside the locking tongue for
both the QD and the QW laser. To identify the differences
arising from using a constant α-factor across the parameter
space, we additionally simulate the QD and QW lasers using
a gain term corresponding to those used in conventional laser
models, by assuming a linear relationship between the refrac-
tive index and the gain, given by g̃(ω) = (1− iα̃)Reg(ω)
where the effective α̃ can be arbitrarily chosen. We use
α̃ ≡ αin j at K = ∆νin j = 0 as defined in Eq. (7), which should
approximate the α-factor of the laser under optical injection in
the best way possible (α̃ = 0.73 in the QD case and α̃ = 1.72
in the QW case). Surprisingly, the limits of the locking tongue
shown in Fig. 1 can be very well described by using constant
α-factors (grey lines) both for the QW and the QD lasers.

Outside of the phase-locked parameter range, the optically
injected laser exhibits oscillatory intensity pulsations [3, 35].
These oscillations occur on a timescale comparable to the
charge carrier scattering lifetimes of QD lasers. We therefore
expect the dynamics of the gain and refractive index of the
QD laser to become important here. Fig. 2 shows a compari-
son of the laser dynamics outside of the phase-locked region
calculated with the full model (black solid lines) and with a
constant effective α̃ (red (gray) dashed lines). The time-series
of the intensity in Fig. 2(a) reveal qualitatively similar dynam-
ics in the case of the QW laser. Also a near-linear relation
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Figure 2. (Color online) Laser dynamics with optical injection out-
side the locking range. (a) Time-series of the intensity for the QW
laser with K = 0.3,∆νin j = −4.0GHz (left), and for the QD laser
with K = 0.5,∆νin j = −4.25GHz (right), with dynamically calcu-
lated phase dynamics (black solid line) and with constant effective
α̃-factor (dashed red (gray) line). (b) Trajectory in the complex sus-
ceptibility plane, shifted by the free-running laser susceptibility χ0
for the QW (left) and QD laser (right). Same parameters as in (a).
J = 2Jth

between the real and imaginary susceptibility exists as shown
in Fig. 2(b), which justifies the assumption of a constant α̃ .
However, for the QD laser case displayed in the right column
of Fig. 2(a) the assumption of a constant α̃-factor leads to
qualitatively different dynamics (dashed line showing period-
2 oscillation) if compared to simulations with the full model
(period-4 oscillations). The reason for this becomes apparent
in Fig. 2(b), where the trajectory in the complex susceptibility
plane deviates appreciably from the linear relationship given
by α̃ = 0.73. Here the independent dynamics of resonant and
off-resonant states leads to a desynchronization of gain and
refractive index in the full model. The time evolution of the
optical susceptibility in this case cannot be described by a sin-
gle α-factor. Note that the desynchronization of the real and
imaginary part of the susceptibility is observed for all K in the
QD laser.

To shed more light on the differences in the dynamics aris-
ing from using a constant α̃ , we calculate bifurcation dia-
grams of the QD and QW laser dynamics outside of the lock-
ing range, using the full model on the one hand, and a constant
α̃ on the other hand (see Fig. 3). By sweeping the injection
detuning downwards from the phase-locked parameter range
for a constant K and plotting the intensity extrema of the time-
series, we can numerically trace bifurcations in the (K,∆νin j)
parameter plane. As discussed before, the assumption of con-
stant α̃ does not lead to qualitative differences in the dynamics
of the QW laser (see Fig. 3(a)). The QD laser, instead, reveals
remarkable differences in the bifurcation structure outside the
phase-locked region if a constant α̃ is used (see Fig. 3(b)). At
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Figure 3. (Color online) Bifurcation diagrams of the output inten-
sity extrema determined by sweeping the injection detuning ∆νin j
from the phase-locked detuning range towards lower values for (a)
the QW laser at K = 0.5 (left), K = 0.6 (right), and (b) the QD laser
at K = 0.5 (left), K = 0.7 (right). In (a) and (b) red (top, gray) data
are obtained using constant α̃ and bottom (black) data using the full
model. The saddle-node (SN) bifurcation limiting the phase-locked
regime is shown by the vertical dashed line. J = 2Jth

K = 0.5 the full model exhibits large region of chaotic dynam-
ics, followed by inverse period-doubling bifurcations, below
the saddle-node bifurcation. These bifurcations are missing
completely if a constant α̃ is used. Also at K = 0.7 the con-
stant α̃-factor leads to more complex periodic orbits, while
the full model predicts only period-1 oscillations outside the
locking range. This reveals that the assumption of a linear
relation between refractive index and gain is not justified in
QD lasers and will eventually lead to an incorrect prediction
of the QD laser dynamics. Note that in QW lasers the use of
α is justified only for sufficiently low injection current and in-

jection strength (K / 0.7). Otherwise non-equilibrium effects
become important, invalidating the use of an α-factor also for
studying complex dynamics in QW lasers.

So far we showed that the use of an α-factor in QD lasers
is only valid when discussing steady-states. However, even
then the α-factor needs to be treated with care as it changes
for each operation point (i.e., pump current) and experimental
setup. Apart from the optical injection, common ways of de-
termining α include the evaluation of frequency modulation
and amplitude modulation response [47, 48] and the evalua-
tion of amplified spontaneous emission (ASE) spectra [49].
From simulations of the different experiments for the QW
laser, the calculated α is similar for all setups. This is due
to very fast relaxation processes coupling the resonant (near
band-edge) and off-resonant (higher k) states. As long as non-
equilibrium effects can be neglected, i.e., for sufficiently low
injection strengths, the charge carrier distribution closely fol-
lows a quasi-Fermi distribution. Therefore a functional re-
lationship of the k-resolved carrier distribution on the total
charge carrier number exists, and thus the derivative ∂/∂N
is well-defined. In QD lasers, however, we find that differ-
ent experimental setups yield different values for α , even at
the same operation point [38] due to the considerably slower
carrier scattering between resonant and off-resonant states.
Consequently, measurements of the refractive index dynamics
gathered from one experiment should not be used to predict
the laser response in a different setup, since the underlying
charge carrier dynamics may be different.

To summarize, by applying a semi-classical model to evalu-
ate the concept of an α-factor in QD and QW lasers, we show
that the refractive index dynamics in QD lasers is inaccurately
described by α . We find that in the context of an optical in-
jection setup it is possible to define an effective α-factor both
for QD and QW lasers when dealing with cw output, but its
value varies appreciably with the operating conditions. The
dynamic response of the QD laser to the injected signal out-
side of the locking region differs crucially from the dynamics
predicted by using a constant α , due to the desynchronization
of gain and refractive index. Thus the concept of α breaks
down. We expect that result to hold also, e.g., in modulation
and optical feedback scenarios where the laser emits non-cw
output. We conclude that the approximations inferred by in-
troducing an a-factor for the field dynamics are reasonable for
QW lasers operated close to equilibrium but are too limiting
for modeling complex dynamic scenarios in QD lasers.
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(2010).

[40] W. W. Chow and S. W. Koch, IEEE J. Quantum Electron. 41,
495 (2005).

[41] G. Liu, X. Jin, and S. L. Chuang, IEEE Photon. Technol. Lett.
13, 430 (2001).

[42] C. H. Lin, H. H. Lin, and F. Y. Lin, Opt. Express 20, 101 (2011).
[43] H. L. Stover and W. H. Steier, Appl. Phys. Lett. 8, 91 (1966).
[44] T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M.

Alsing, Phys. Rev. A 51, 4181 (1995).
[45] S. Osborne, K. Buckley, A. Amann, and S. O’Brien, Opt. Ex-

press 17, 6293 (2009).
[46] S. Wieczorek, B. Krauskopf, and D. Lenstra, Phys. Rev. Lett.

88, 063901 (2002).
[47] H. Su and L. F. Lester, J. Phys. D: Appl. Phys. 38, 2112 (2005).
[48] J. Minch, S. L. Chuang, C. S. Chang, W. Fang, Y. K. Chen, and

T. Tanbun-Ek, IEEE J. Quantum Electron. 33, 815 (1997).
[49] T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. J. Mal-

loy, and L. F. Lester, IEEE Photonics Technol. Lett. 11, 1527
(1999).


