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Abstract

The quantum network model with real variables is usually used to describe the excitation energy

transfer (EET) in the Fenna-Matthews-Olson(FMO) complexes. In this paper we add the quantum

phase factors to the hopping terms and find that the quantum phase factors play an important role

in the EET. The quantum phase factors allow us to consider the space structure of the pigments.

It is found that phase coherence within the complexes would allow quantum interference to affect

the dynamics of the EET. There exist some optimal phase regions where the transfer efficiency

takes its maxima, which indicates that when the pigments are optimally spaced, the exciton can

pass through the FMO with perfect efficiency. Moreover, the optimal phase regions almost do not

change with the environments. In addition, we find that the phase factors are useful in the EET

just in the case of multiple-pathway. Therefore, we demonstrate that, the quantum phases may

bring the other two factors, the optimal space of the pigments and multiple-pathway, together to

contribute the EET in photosynthetic complexes with perfect efficiency.
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I. INTRODUCTION

Photosynthesis provides chemical energy for almost all life on Earth. The initial step

of photosynthesis involves absorption of light by the so-called light-harvesting antennae

complexes, and funneling of the resulting electronic excitation to the photosynthetic

reaction center. Recent work has reported that quantum theory governs the exciton transfer

in some light-harvesting complexes that harness the absorbed energy with almost 100%

efficiency [1–7]. The experimental evidence [2–6] showing long-lived quantum coherences

in this energy transport in several photosynthetic light harvesting complexes suggests

that coherence may play an important role in the function of these systems. These

observations have generated considerable interest in understanding the possibly functional

role of quantum coherence effects in the remarkably efficient excitation energy transfer in

photosynthetic complexes.

The experimental achievements have motivated a number of theoretical works [8–30]

that consider the photosynthetic complex as a quantum system, and try to analyze the

basic mechanisms that explain the phenomena observed in the experiments. A full quan-

tum dynamic framework becomes necessary for studying coherent energy transfer. Typical

quantum theories are, the quantum network model [8–20], the hierarchic equation [21–24],

the generalized Bloch-Redfield [25] equation, the renormalization group methods [26],

and the mixed quantum-classical method[30]. Some recent theories [31] can even suc-

cessfully predict the long-lived quantum coherent phenomenon. However, all these

models cannot describe the space distribution of the pigments. As we know, the space dis-

tribution of the pigments is very important for exciton energy transfer and the experimental

evidence also shows that the optimized space distribution of the pigments is one factor for

prefect energy transfer in light-harvesting complexes [2, 3]. Therefore, it is necessary to set

up a quantum model in which the space distribution of the pigments is considered.

In this paper, we set up a quantum network model by adding the quantum phase factors

to the two-body interactions to describe the exciton (the energy carrier) transfer in the FMO

complex. The quantum phases are determined by the spatial structure of the pigments in

photosynthetic complexes, such as the length of the pigment, the barriers and the distance

between pigments. The quantum network in the absence of the phase factors has been used
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to study the EET in the photosynthetic complexes[8–18]. Some interesting results, such as

the noises may enhance the EET, the EET in a quantum model may be larger than that

of a classical model, are obtained. Compared with those studies, we find that the newly

added quantum phase factors play a key role in the EET and there exist optimized phases

at which the transfer efficiency is maximal. Furthermore, we find that the phase factors

affect the EET just in the form of the phase difference in a closed loop. Although there may

be many phase factors in the coupling terms of the system Hamiltonian, only Np − 1 are

independent variables where Np is the number of the pathways. This conclusion stems

from the fundamental property of a quantum phase: only a gauge invariant

phase is observable, while quantum phase accumulated in a closed path is such

an invariant. As for Np pathways, there exist Np−1 closed pathes. So it implies that

multiple-pathway in FMO complexes is a necessary condition for the enhancement of the

EET by the quantum phases. It provides a strong evidence to support the statement that the

multiple energy delivery pathway is also an acceptable contributing factor for perfect energy

transfer[2, 3]. Therefore, we demonstrate that, the quantum phases may bring the other two

factors, the optimal space of the pigments and multiple-pathway, together to contribute the

EET in photosynthetic complexes with perfect efficiency.

The paper is organized as follows. In sec. II, we present the complex quantum network we

used to study the EET in photosynthetic complexes. A particularly simple and illustrative

example with three sites of complex network is presented in sec. III, where some main

conclusions, such as the phases may play an important role in the EET and the optimized

phases are insensitive to the environments, are demonstrated in this very simple example.

In sec. IV, we present a symmetric complex quantum network with Np pathways to show

that the multi-pathway is also a contributing factor for the perfect efficiency of the EET. In

sec. V, we investigate the EET in FMO with our complex quantum network model. Finally,

the conclusions are presented in sec. VI.

II. THE QUANTUM NETWORK MODEL WITH THE PHASES

The system we consider is a quantum network of N connected sites (nodes), schematically

shown in Fig.1. Each site is modelled here as a spin-1/2 particle and it may support an

excitation which can be exchanged between lattice sites by hopping. The initial (input) state
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FIG. 1: (Color online) The schematic representation of the quantum network which are a collection

of N connected sites (nodes). Each site is modelled as a spin-1/2 particle (qubit). The particles

are interacting with each other (solid lines) in the quantum network and may suffer dissipative

losses as well as dephasing. An excitation is initialled at site 1. The arrow between site N and

sink denotes an irreversible transfer of excitations from site N to the sink.

is an excitation state which describes an excitation localized at site 1 (or several sites). We

are interested to the transfer rate that the excitation transfers from the input state to the

sink. The quantum evolution of the network of N sites is usually described by a Hamiltonian

of the form

H =
N∑

j=1

ǫjσ
+
j σ

−
j +

∑

j 6=l

Vjl(σ
+
j σ

−
l + σ+

l σ
−
j ), (1)

where σ+
j and σ−

j are the raising and lowering operators for site j. σ+
j =|j〉〈0| and σ−

j =|0〉〈j|,

where |0〉 represents the zero exciton state of the system and |j〉 denotes the excitation being

at the site j. The site energy and two-body coupling strength are given by the real numbers

ǫj and Vjl, respectively. The quantum network[32] described in Eq.(1) has been used to

study the EET in photosynthetic complexes in many literature [8–17].

In this paper, we add a quantum phase factor e−iφjl with φjl a real number to the hopping

term between sites j and l. The phase factor is determined by the detailed structure of the

quantum network. As for the FMO, the phases are related to the length of the pigments as

well as the intrinsic features of the barriers between the adjacent pigments. In this case, the

Hamiltonian (1) is replaced by

H =
N∑

j=1

ǫjσ
+
j σ

−
j +

∑

j 6=l

Vjl(e
−iφjlσ+

j σ
−
l + eiφjlσ+

l σ
−
j ). (2)

Compared with the quantum network with real variables in Eq(1). This model can be named

as a complex quantum network model. We will show that the quantum phase factors paly
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the fundamental role in energy transfer of the photosynthetic complexes.

As usual, we assume that all sites are susceptible simultaneously to two distinct types of

noise processes. The first one is a dissipative process that transfers the excitation energy in

site j to the environment with rate Γj, which leads to energy loss. The second one is a pure

dephasing process with rate γj which destroys the phase coherence of any superposition state

in the system. The dissipative and the pure dephasing processes are described, respectively,

by the Lindblad super-operators [9–11],

Ldiss(ρ) =
N∑

j=1

Γj [−{σ+
j σ

−
j , ρ}+ 2σ−

j ρσ
+
j ], (3)

Ldeph(ρ) =
N∑

j=1

γj[−{σ+
j σ

−
j , ρ}+ 2σ+

j σ
−
j ρσ

+
j σ

−
j ], (4)

where {A,B} is an anticommutator. The absorption of the energy from the site k to the

sink (numbered s) is modeled by a Lindblad operator

Ls(ρ) = Γs[2σ
+
s σ

−
k ρσ

+
k σ

−
s − {σ+

k σ
−
s σ

+
s σ

−
k , ρ}], (5)

where Γs is the trapping rate. This term describes the irreversible decay of the excitations

to the sink. So the full time evolution of the density matrix ρ of the system is described by

the master equation

dρ

dt
= −

i

h̄
[H, ρ] + Ldiss(ρ) + Ldeph(ρ) + Ls(ρ). (6)

The efficiency of EET is measured by the population Psink transferred to the sink from

the site k [9–11],

Psink = ρsink(∞) = 2Γs

∫ ∞

0
ρkk(t)dt. (7)

III. BI-PATHWAY QUANTUM NETWORK

To study the role of the phase in quantum network, a particularly simple and illustrative

example shown in Fig. 2 is to study quantum transport in a system of three sites.

The exciton is transferred from site 1 to site 3 through two pathways, and finally, is

trapped by the sink with the rate Γs. The sites 1, 2, and 3 are susceptible simultaneously

to the dissipative and the pure dephasing processes. The dynamics of the system can
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be described by Eqs. (2-7). If we choose ǫ1 = ǫ2 = ǫ3 = ǫ, V12 = V23 = V13 = V ,

Γ1 = Γ2 = Γ3 = Γ, γ1 = γ2 = γ3 = γ, the analytical expression of Psink (in the Appendix)

can be obtained

Psink =
V 4Γs[A

2V 4 sin2 φ− AV Γ(DB2 + AV 2) sinφ+BD(DΓB2 + ACV 2)]

A2V 6(3Γ + Γs) sin
2 φ+G

, (8)

where the phase difference φ = φ12 + φ23 − φ13, G = (DΓB2 + ACV 2)[DΓ(Γ + Γs)B
2 +

C(2ΓΓs + γΓs + 3DΓ)V 2], A = 3Γ + Γs + 3γ, B = 2Γ + Γs + 2γ, C = 3Γ + Γs + 2γ, and

D = Γ + Γs. Note that the corresponding analytical expression of Psink for the

real coupling rates is obtained in Ref. [8]. Although there are three phase factors

φ12, φ23, and φ13 in this three-site network, it is notable that only the phase difference

φ = φ12 + φ23 − φ13 is independent. It demonstrates the fact that only the phase difference

accumulated in the two pathways ( the pathway 1 → 2 → 3 and pathway 1 → 3 ) affects

the interference at site 3.

3

2

Sink

1

FIG. 2: (Color online) The schematic representation of a bi-pathway quantum network. The

exciton is transferred from site 1 to site 3 through two pathways, and finally, is trapped by the

sink with the rate Γs.

From Eq. (8), we can easily find that Psink always increases with V , while it always

decreases with Γ. However, Psink is not monotonic functions of γ and Γs. We plot the

dependence of Psink on the different parameters in Fig.3.

Figure 3(a) shows the relation between Psink and γ for different values of φ. For φ = 0,

there exists an optimal value of γ at which Psink is maximal, which indicates that the

dephasing from the noise may even facilitate the EET. Note that the similar conclusion is

extensively reported in the previous works [9, 10, 16]. When the phase φ is considered, the

phase can change the efficiency remarkably at low dephasing (purely quantum mechanical),

while the efficiency is not sensitive to the phase at large dephasing (quantum coherent

destroyed). Therefore, the phase in EET plays a key role at low dephasing.
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FIG. 3: (Color online) The dependence of the transfer efficiency Psink on the different parameters.

(a) Psink vs γ for different values of φ. (b) Psink vs Γs for different values of φ. (c) Psink vs φ for

different values of γ. (d) Psink vs φ for different values of Γ. Unless otherwise noted, the parameters

are V = 1/5, Γs = 1/5, Γ = 1/100, and γ = 1/100.

.

Figure 3(b) shows the dependence of the transfer efficiency Psink on the trapping rate

Γs for different values of φ. When Γs is very small, the system couples weakly to the sink,

few exciton can reach the sink and the efficiency tends to zero. When Γs is too large, the

trapping rate Γs mismatches the transport rate of the exciton in the quantum network, thus

the efficiency also goes to zero. Therefore, there exists an optimal value of Γs at which the

efficiency takes its maximal value.

Figure 3(c) and (d) show the efficiency Psink as a function of the phase φ for different

values of γ and Γ, respectively. It is found that there are two optimal values (about π/2

and 3π/2) of φ at which Psink takes its extremum value, especially, it reaches a maximum

value at 3π/2. The minimal value of Psink appears at φ ≈ 0 , π and 2π. Obviously, the

maximal values of Psink are due to the constructive interference, while its minimal values

are due to the destructive interference. Interestingly, the phases which correspond to the

extremal values of Psink almost do not change with γ and Γ.

Therefore, we can conclude that quantum phase in the two-body couplings plays a key
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role in the EET, especially at low dephasing. Remarkably, the optimized phases in quantum

network are almost independent of the environments (γ and Γ).

IV. MULTIPLE-PATHWAY QUANTUM NETWORK

Since the number of the pathways is an important quantity in quantum network, it

is necessary to investigate the role of the multiple pathways on the efficiency of EET. For

simplicity, we consider a symmetric complex quantum network including Np pathways shown

in Fig. 4. The exciton is transferred from site I to site F through multiple pathways, and

2

I F

1

Sink
Np

Np-1

FIG. 4: (Color online) The schematic representation of the symmetric quantum network including

Np pathways. An excitation is initialled at site I and be transferred to site F through N pathways.

The arrow between site F and sink denotes an irreversible transfer of excitations from site F to

the sink.

finally, is trapped by the sink. Np describes the number of the pathways between the sites I

and F . The dynamics of the system can also be described by Eqs. (2-7). From Eqs. (2-7),

we can obtain the efficiency Psink for different number Np of the pathways.

Figure 5 shows the dependence of the transfer efficiency Psink on the phase φ for different

number Np of the pathways. For a symmetric network, we choose ǫj = ǫ, VIj = VFj = V ,

Γj = Γ,γj = γ, j = 1, 2, 3...Np. There are Np−1 independent phases because of Np−1 closed

loops in the system. For simplicity, we only vary φI1 (= φ) and the other phases are set to

zero. For single pathway (Np = 1), the efficiency Psink is always equal to 0.695, this is due

to the fact that no quantum interference can occur in single pathway. For double pathways

(Np = 2), the quantum interference at site F occurs and the phases take effect. Due to the
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FIG. 5: (Color online) Transfer efficiency Psink as a function of the phase difference φ for different

number Np of the pathways. The other parameters are Γ = 1/100, γ = 1/100, Γs = 1/5, and

V = 1/5.

destructive interference, there exists a minimal value of the transfer efficiency at φ = π. The

efficiency Psink takes its maximal value at φ = 0 or 2π, where the constructive interference

occurs. The efficiency of multiple pathways at constructive interference has an enhancement

compared with the single pathway. As the number of the pathways increases, the effects

of destructive interference on the efficiency decrease. We here have assumed that all other

phases in Np > 3 pathways are zero. If we further optimize those phases, the enhance-

ment by the multiple-pathway are clearer. It supports the conclusion in quantum scattering

model[28] where the resonance transport is enhanced in multiple-pathway. Therefore, the

multiple-pathway can reduce the destructive interference and facilitate EET in quantum

network. It seems that most local minima or maxima occur at multiples of π/2,

but the accumulated phases for local minima or maxima is the multiples of π/2

only when all pathways are the same. The quantum interference at the given

site is determined by the accumulated phase in the multiple pathways. When all

pathways are the same, the constructive interference and the destructive inter-

ference occur at φ = 0, π, 2π, respectively. However, when the pathways are not

the same, the interference in the closed pathways becomes complicated. The

phase conditions for the constructive interference and the destructive interfer-

ence depend on the system parameters, such as the site energy, the coupling

strength, and the number of the sites in each pathway.

Note that the similar findings are also found in Ref.[30]. They defined an
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effective hopping rate as the leading order picture and nonlocal kinetic couplings

as the quantum correction and found that the optimized multiple pathways

can suppress the destructive interference in nonlinear network configurations.

Although the model and the method are different from ours, the impact of closed

paths on the transport are the same in nature.

V. EXCITATION ENERGY TRANSFER IN FMO COMPLEX

The architecture of antenna light-harvesting complexes varies widely among photosyn-

thetic organisms. A well-studied example is the water-soluble FMO complex of green sulfur

bacteria. The FMO complex essentially acts as a molecular wire, transferring excitation

energy from the chlorosomes, which are the main light-harvesting antennae of green sulfur

bacteria, to the membrane-embedded reaction center. The FMO is a trimer made of three

identical subunits, each containing seven pigments[34]. Because the inter-subunit coupling

is vanishingly small, we only consider the dynamics of the EET within one subunit. The

subunit containing seven pigments shown in Fig. 6(a) can be modelled as a network of seven

sites with site dependent coupling and site energies. We use the experimental Hamiltonian

of FMO given in [33], and the matrix of the Hamiltonian takes the form

H =




215 −104.1 5.1 −4.3 4.7 −15.1 −7.8

−104.1 220.0 32.6 7.1 5.4 8.3 0.8

5.1 32.6 0.0 −46.8 1.0 −8.1 5.1

−4.3 7.1 −46.8 125.0 −70.7 −14.7 −61.5

4.7 5.4 1.0 70.7 450 89.7 −2.5

−15.1 8.3 −8.1 −14.7 89.7 330.0 32.7

−7.8 0.8 5.1 −61.5 −2.5 32.7 280




(9)

with units of cm−1 and a total offset of 12230cm−1 to set the lowest site energy to zero for

convenience (This overall shift in energy does not affect the dynamics of the system). In

units with h̄ = 1, we note that the rate 1ps−1 ≡ 5.3 cm−1. By neglecting the couplings

weaker than 15 cm−1 (only bold entries in the Hamiltonian are considered) in this model

Hamiltonian, the transport in an individual monomer of FMO can be mapped to a quantum

network shown in Fig. 6(b).
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FIG. 6: (Color online)(a) The spatial structure of one monomeric subunit of the FMO complex

[16, 21]. Each monomer has seven pigments labelled by 1©− 7©. The initial state is taken to be a

superposition state located at the pigments 1 and 6. and pigment 3 is in the vicinity of the reaction

center (RC). (b) The simplified network for the monomeric subunit of the FMO. The thickness

of two-head arrow indicates the coupling strengths and only couplings above 15 cm−1 are shown.

The exciton is transferred from sites 1 and 6 to site 3 through the network, and finally, trapped by

the reaction center with the rate Γs.

However, the Hamiltonian in Eq.(9) may not be sufficient to describe the EET in the

FMO. We here focus on the possible effects of the newly added phase factors in the coupling

terms. From Eq. (2) and Fig. 6(b) we can find that there are eight phases, φ12, φ23, φ34,

φ45, φ47, φ56, φ67, φ16, but only two phase differences, φ1 = φ61 + φ12 + φ23 − φ67 − φ74 − φ43

and φ2 = φ67 + φ74 − φ65 − φ54, are independent since there are just two independent closed

loops. Therefore, without loss of the generality, we vary the phases φ12 and φ67 and the

other phases are set to zero in our numerical simulations.

The initial state for our simulation is a superposition state localized at pigments 1 and 6

which are close to the chlorosome antenna (donor). It can be written as |Ψ(0)〉 = α|1〉+β|6〉

with |α|2+ |β|2 = 1. The pigment 3 is the main excitation donor to the reaction center. The

energy trapping rate from pigment 3 to the center in the literature [9–11] ranges from 1 ps−1

to 4 ps−1. In our calculations, we chose Γs = 20/1.88 cm−1 corresponding to about 2ps−1.

The measured lifetime of excitons is of the order of 1ns which determines a dissipative decay

rate of 0.5/188cm−1. Unless otherwise noted, we choose Γ = 0.5/188cm−1 and γ = 0.01Γ in

this paper and assume that Γ and γ are the same for each site. From Eqs. (2-7), we can

numerically obtain the efficiency Psink of the EET in FMO complex for different cases.
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FIG. 7: (Color online) Transfer efficiency Psink as a function of the phase φ12. (a)For different

dephasing rates γ at Γ = 0.5/188 cm −1. (b) For different dissipative rates Γ at γ = 0.5/18800

cm−1. The other parameters are Γs = 20/1.88 cm−1, φ67 = 0 and α = β =
√
2
2
.

Figure 7(a) and (b) shows the phase dependent efficiency for different dephasing and

dissipative rates with φ67 = 0 and α = β =
√
2

2
. It is found that there exist two optimal

values of φ12 (e. g. φ12 ≈ π/2 or 3π/2) at which the transfer efficiency Psink takes its maximal

value. When the dephasing rate γ or dissipative rate Γ varies, the shape of the curve in

Fig. 7 almost does not change, which indicates an important feature that the optimized

phases are not sensitive to the environment. The phases denote the distance between the

pigments and the barriers between pigments, which are determined actually by the spatial

distribution of seven pigments. When the pigments are optimally spaced, the exciton can

pass through the FMO with optimal efficiency. Therefore, the phases from the two-body

interactions play a key role in energy transfer of the FMO complex.

Figure 8 shows the dependence of the transfer efficiency Psink on the phases φ12 and

φ67 for different initial states. To study the significance of the phases, we can define the

the difference ∆P between the maximal efficiency Pmax
sink and the minimal efficiency Pmin

sink ,

∆P = Pmax
sink − Pmin

sink . We find that ∆P = 0.2467 for Fig. 8 (a) (α = β =
√
2

2
), ∆P = 0.6459

for Fig. 8 (b) (α = 0, β = 1) and ∆P = 0.1432 for Fig. 8 (c) (α = 1, β = 0). Obviously, the

phase can cause a significant change in the efficiency and the change just slightly depends

on the initial states. The role of the phase coherence is to overcome local energetic traps

and aid efficient trapping exciton energy by the pigments facing the reaction center. In

this cases we can still find that there exist some optimal phase regions where the transfer

efficiency takes its maxima. The optimal phase regions only slightly vary with the initial

states. Therefore, we demonstrate that the phase plays a significant role in the EET and
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FIG. 8: (Color online) Transfer efficiency Psink as a function of the phases φ12 and φ67 for different

initial states. (a)α = β =
√
2
2
. (b)α = 0 and β = 1. (c)α = 1 and β = 0. The other parameters are

Γs = 20/1.88 cm−1, γ = 0.5/18800 cm−1 , and Γ = 0.5/188 cm−1.

the optimal phase can facilitate the energy transfer in FMO complex.

The experimental evidences [2, 3] show that beside the optimal space distribution of the

pigments, the multiple energy delivery pathway is another acceptable contributing factor for

perfect energy transfer. Therefore, it is necessary to study the role of the multiple pathways

in our model. In Fig. 9, the efficiency of one pathway is compared with that of the multiple

pathways. It is found that the transfer efficiency Psink gets a significant enhancement when

the number of the pathways increases. The efficiency is only 0.6425 for single pathway, while

it can reach 0.8 for multiple pathways. Remarkably, the efficiency in the full FMO (case III)

even at destructive interference is larger than that in single pathway (case I). This suggests

that the dephasing noise in the system destroy the destructive interference and

thus opens both paths for the transport [8, 10]. This result supports the conclusion

in quantum scattering model[28] where the resonance transport is enhanced in multiple-

pathway. Therefore, we can conclude that multiple pathways can also facilitate EET in
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FIG. 9: (Color online) Transfer efficiency Psink as a function of the phase φ56 for different cases at

α = 0 and β = 1. (I) One pathway: 6©→ 5©→ 4©→ 3©, namely,V12 = V23 = V16 = V67 = V47 = 0.

(II) Two pathways: 6©→ 5©→ 4©→ 3© and 6©→ 7©→ 4©→ 3©, namely, V12 = V23 = V16 = 0. (III)

Three pathways: the full quantum network of the FMO with φ16 = 0.1π. Γs = 20/1.88 cm−1,

γ = 0.5/18800 cm−1 , and Γ = 0.5/188 cm−1. The other phases are set to zero.

FMO complex which agrees with the experimental statement [2, 3].

VI. CONCLUDING REMARKS

In this paper, we have investigated the efficiency of the EET in FMO complexes by adding

the quantum phase factors to the quantum network model. The phase describes the length

of the pigments, the distance and the barriers between pigments and is then determined

by the space distribution of the pigments. We found that the optimal distribution of the

pigments can lead to the high efficiency of the EET. Moreover, the optimal phase is not

sensitive to the environments. If the distribution of the pigments is optimized, the efficiency

always takes it maximal value, which is indeed significant for high transfer efficiency. As

we know, the biological system governed by Darwinian selection has the optimal structure,

which can ensure that the quantum coherence occurs in the optimal spatial distribution.

In addition, we also find that the multiple-pathway can facilitate EET in FMO complex.

Therefore, we can conclude from the studies of the complex quantum network model that,

the optimal space distribution of the pigments, the multitude of energy delivery pathways

and the quantum effects, are combined together to contribute to the perfect energy transport

in the FMO complexes.
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In this paper we just add the phase factors phenomenally to the two-body

couplings in the Hamiltonian (9). Qualitatively, the quantum phases are de-

termined by the spatial structure of the pigments in photosynthetic complexes;

however, how to determine them quantitatively in a microscopic theory or from the

experimental measurements is an important open question which deserves further study.

Though we only have studied the transport process through the FMO protein, the meth-

ods and conclusions can be extended to other photosynthetic light-harvesting complexes.

Furthermore, understanding the mechanism of efficient energy transfer in natural light-

harvesting systems can help developing low-cost and highly-efficient man-made solar energy

apparatus, including photovoltaic devices and artificial photosynthesis.

This work was supported by the NNSFC (Nos.11175067, and 11125417), the SKPBRC

(No.2011CB922104), and the NSF of Guangdong (No.S2011010003323).

Note added. – Shortly after we submitted the paper, there was a preprint pasted in

arXiv[36], where the effects of the complex coupling are discussed.

Appendix A: The derivation of Eq. (8)

In terms of the density matrix elements in the site basis ρij(t), the equations of motion

for N = 3 are

dρij
dt

= −[2Γ + Γs(δiN + δjN + 2γ − 2γδij ]ρij + iV [
∑

l 6=j

e−iφilρil −
∑

l 6=i

eiφljρlj ], (A1)

dρsink
dt

= 2Γsρ33. (A2)

Since the exciton is transferred from site 1 to site 3, the initial conditions are

ρ11(0) = 1, ρsink(0) = 0, (A3)

and the other density matrix elements ρij = 0.

The system of coupled differential equations can converted into a set of algebraic equations

via the Laplace transform. The above equations can be rewritten by the following set of

equations for the Laplace s-domain variables, for ρ̃11
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(s + 2Γ)ρ̃11 − 1− iV [
∑

l 6=j

e−iφil ρ̃il −
∑

l 6=i

eiφlj ρ̃lj ] = 0, (A4)

and the other density matrix elements are

[s+ 2Γ + Γs(δiN + δjN + 2γ − 2γδij ]ρ̃ij − iV [
∑

l 6=j

e−iφil ρ̃il −
∑

l 6=i

eiφlj ρ̃lj ] = 0, (A5)

sρ̃sink(s)− 2Γsρ̃33 = 0. (A6)

From Eqs. (A4-A6), we can easily obtain the expression of ρ̃sink(s). From the relation of

the Laplace transform for t and s, we can find that

Psink = ρsink(∞) = lim
s→0

sρ̃sink(s), (A7)

and then the Eq. (8) is obtained.
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