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The number of configurations of a polymer is reduced in the presence of a barrier or an obstacle.
The resulting loss of entropy adds a repulsive component to other forces generated by interaction
potentials. When the obstructions are scale invariant shapes (such as cones, wedges, lines or planes)
the only relevant length scales are the polymer size R0 and characteristic separations, severely
constraining the functional form of entropic forces. Specifically, we consider a polymer (single
strand or star) attached to the tip of a cone, at a separation h from a surface (or another cone). At
close proximity, such that h ≪ R0, separation is the only remaining relevant scale and the entropic
force must take the form F = A kBT/h. The amplitude A is universal, and can be related to
exponents η governing the anomalous scaling of polymer correlations in the presence of obstacles.
We use analytical, numerical and ǫ-expansion techniques to compute the exponent η for a polymer
attached to the tip of the cone (with or without an additional plate or cone) for ideal and self-
avoiding polymers. The entropic force is of the order of 0.1pN at 0.1µm for a single polymer, and
can be increased for a star polymer.

PACS numbers: 64.60.F- 82.35.Lr 05.40.Fb

I. INTRODUCTION

A host of single molecule manipulation techniques [1–
5], employing atomic force microscopes (AFMs) [6], mi-
croneedles [7], optical [8, 9] and magnetic [10] tweezers,
have provided quite detailed studies of shapes and forces
in long polymers. The positional accuracy of an AFM
tip [5, 11] can be as good as a few nm, while forces of or-
der of 1 pN can be measured, with measurements carried
out in nearly biological conditions [12, 13]. The main
thrust of current experimental research is to extract spe-
cific information about molecular shapes and reactions
from force-displacement curves. The interpretation of
such data is complicated by a host of factors such as
interactions of the molecule with the probes, and non-
equilibrium effects arising from rapid and large imposed
deformations. Nonetheless, much recent activity is de-
voted to obtaining the equilibrium free energy landscape
of long molecules by processing results from repeated
non-equilibrium measurements (see, e.g., Refs. [14–16]).
Here, we consider another contribution to the force aris-
ing from the loss of entropy in the presence of constraints
imposed by the probes. While most likely weaker than
forces due to interaction potentials, the enhanced AFM
sensitivities are indeed approaching the range where en-
tropic forces of long polymers in a solvent can be sig-
nificant (even when the deformation of the polymer is
relatively slight). From the theoretical perspective, the
attraction of entropic forces on polymers is their inde-
pendence of microscopic details [17].
At a finite temperature T , a long homo-polymer in a

good solvent fluctuates between a large number of con-
figurations, and its ‘macroscopic’ properties (such as size
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and elasticity beyond a characteristic persistence length)
are governed by entropic considerations. To illustrate
entropic elasticity, consider the hypothetical situation of
a polymer with one end fixed to the origin, while the
other end explores allowed positions at ~r. In equilib-
rium, due to rotational symmetry 〈~r 〉 = 0. The symme-

try is broken if a weak force ~F is applied by a point-like
probe at the end of the polymer. Then, in d-dimensional

space 〈~r 〉 = (R2
0/dkBT )

~F , where R2
0 is the mean squared

end-to-end distance in the absence of external force [17].
This is mostly a realignment, without substantial change
of polymer conformations for F ≪ Fcr ≡ dkBT/R0.
For R0=0.1µm at room temperature Fcr ≈ 0.1pN is the
crossover value that separates weak and strong forces;
stronger force (F ≫ Fcr) leads to substantial stretching
of the polymer and associated reduction in entropy. Sim-
ilar considerations come into play when the attachment
points are replaced by macroscopic obstacles (probes):
Under a strong stretching force polymer configurations
are not very much influenced by the shapes of the probes,
and convenient models (such as Ref. [18]) have been de-
veloped for the resulting force-extension relations. Here,
we focus on the opposite limit of strong compression in
which the loss of entropy, and the corresponding force,
are dominated by confinement within boundaries.

In this work we consider setups where a polymer is at-
tached by one end to an object (the probe), while the
other end is free. The probe is then brought to the vicin-
ity of a second solid obstacle, and the loss of polymer
entropy leads to a force between the two objects. In
particular, we consider confining (probe and obstacle)
shapes that are self-similar (at least on scales compara-
ble to R0) at separations h≪ R0. Possible setups include
sharp AFM tips approaching flat surfaces covered with
polymers, as in experimental studies [19–23] of polymer
brushes. Entropic considerations in a dense brush must
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account for interactions between polymers [24], com-
plicating the calculation of forces exerted on the AFM
tip [25]. Here we consider the simpler cases of a single lin-
ear or star polymer, avoiding the dense limit. For h≪ R0

dimensional considerations suggest the particularly sim-
ple force-separation relation F = A kBT/h, where the
‘universal’ amplitude A only depends on basic geometri-
cal properties, and gross features of the polymer.
In a previous paper we outlined some results pertain-

ing to entropic interactions, and critical exponents, for
a polymer attached to a cone [26]. In this manuscript
we expand on the details of the calculations, as well as
generalize and expand the results to other setups. Sec-
tion II demonstrates how the force amplitude A is re-
lated to the exponent η, characterizing the anomalous
scaling of polymer correlations. The latter exponent de-
pends on the shape of confining boundaries, and is the
focus of computations that follow. In Sec. III we outline
the general approach to computing η for ideal polymers

near scale-invariant surfaces, while in Sec. IV we make
explicit computations for cones and plates. The case of
self-avoiding linear polymers in d = 3 is treated by Monte
Carlo simulations in Sec. V. Perturbative ǫ = 4 − d ex-
pansions are employed in Sec. VI to compute η for linear
and star self-avoiding polymers attached to cone tips, or
to a contact point between a cone and a plate.

II. POLYMER-MEDIATED FORCES

Let us first consider an idealized setup in which a poly-
mer is attached to the tip of a solid cone, approaching a
solid plate (or another cone). This exemplifies a geometry
of obstacles in which the only (non-microscopic) length
scale is provided by the tip-plate (or tip-tip) separation
h. The polymer itself undergoes self-similar fluctuations,
spanning length scales intermediate between microscopic
(monomer size, or persistence length a) and macroscopic.
The latter is set by the typical end-to-end distance R0, or
by the radius of gyration Rg (which differs from R0 only
by a multiplicative factor of order of unity). The typical
size of the polymer grows with the number of monomers
N through the scaling relation R0 ∼ Rg ∝ Nν . The
self-similar shape of the obstacles also presumably ex-
tends only up to a characteristic scale H , say the height
beyond which the cone is terminated or changes shape.
Neglecting any structure (and hence energy) associated

with the polymer, variations in free energy as the cone
(plus tip-attached polymer) approaches the plate are en-
tirely entropic in origin and proportional to kBT . The
entropic force has dimensions of energy divided by length,
and at separations a≪ h≪ R0 ≪ H the relevant length
scale is h, and it is reasonable to posit

F = A kBT

h
. (1)

This is because the polymer configurations are con-
strained only on the scale of confinement h; increasing
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FIG. 1. (a) Polymer attached to the tip of a solid cone with
apex semi-angle Θ (configuration “c”); positions are described
by the spherical coordinates r, θ and azimuthal angle φ (not
shown). (b) The tip, where the polymer is attached, is at
a distance h ≪ R0 from the plate. (c) The tip touching
the plate (configuration “cp”). (d) Tip is at a finite distance
from a plate to which the polymer is attached. (e) Polymer
attached to both surfaces.

the length of the polymer or the size of the cone (as long
as h≪ R0 ≪ H) should not influence the force; further-
more the entropy change is independent of a.
Indeed, the simple force law of Eq. (1) applies to all

circumstances where the separation provides the only rel-
evant length scale, and follows easily from various poly-
mer scaling forms (see, e.g. the derivation below) such
as in Refs. [27–29]. The dimensionless amplitude A will
depend on geometric factors characterizing the confining
boundaries such as the opening angle of a cone Θ (and if
tilted, on the corresponding angle). It will also depend
on factors that characterize the scaling of polymeric fluc-
tuations, thus differing in cases of ideal and self-avoiding
polymers, and for linear, star, and brush polymers. In
the following we shall demonstrate that in a number of
setups, the amplitude A can be related to variations of
the (universal, but shape dependent) exponent η, char-
acterizing polymeric correlations.
A chain starting at the tip of a cone provides a first

approximation to a polymer linked to the tip of an AFM
probe as depicted in Fig. 1a. With the cone far away
from a plate (h ≫ R0), the number of configurations of
the polymer grows with the number of monomers as

Nc = b zNNγc(Θ)−1, (2)

where the effective coordination number z, as well as the
pre-factor b, depend on the microscopic details (such as
the scale a), while the ‘universal’ exponent γc only de-
pends on the cone angle. When the cone touches the
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FIG. 2. Examples of three dimensional figures without a
length scale; grey surfaces indicate truncation only for graph-
ical representations. (a) circular cone, (b) two-dimensional
sector of a circle (in three-dimensional space), (c) pyramid,
(d) wedge, (e) plane, (f) line, (g) point. A polymer is to be
attached to the point (g), to the apex of (a), (b), (c); or to
any point on the edge of (d), or the entirety of (e) or (f).
The plane and line can also be semi-infinite with a polymer
attached to their edge or end-point.

plate as in Fig. 1c, the number of configurations is re-
duced to Ncp with the same form as Eq. (2), but with
a different exponent γcp(Θ). We shall henceforth use an
exponent subscript ‘s’ (as in γs) to refer to the above
cases, with “s=c” for cone and “s=cp” for cone+plate;
the absence of a subscript (as in γ) will signify a free
polymer. The work done against the entropic force in
bringing in the tip from afar to contact the plate can
now be computed from Eq. (1) as

W =

∫ R0

a

dh AkBT
h

=AkBT ln
R0

a
= A νkBT lnN. (3)

This work can also be computed from the change in free
energies between the final and initial states, due to the
change in entropy, as

∆F = −T∆S = TSc−TScp = kBT (γc− γcp) lnN , (4)

with the entropy S = −kB lnN computed from Eq. (2).
By equating W and ∆F we find

A =
γc − γcp

ν
= ηcp − ηc ; (5)

the final result obtained from the scaling law [17]

γs = (2− ηs)ν, (6)

where the exponent η characterizes the anomalous decay
of correlations (∼ 1/rd−2+η).
The arguments presented in the previous paragraph

rely only on the fact that configurations of the obstacles
lack a length scale for both h → 0 and h → ∞. Conse-
quently, similar reasoning can be applied to a variety of
objects such as those depicted in Fig. 2, or combinations
of such objects. The force prefactor is then related to the
exponents in the initial and the final states by

A =
γinitial − γfinal

ν
= ηfinal − ηinitial . (7)

Consider, for instance, an ideal polymer in free space (or
held by a point-like object (Fig. 2g)). Its number of con-
figurations is zN , i.e. γ ≡ γ0 = 1, and correspondingly
η0 = 0, since ν = ν0 = 1/2. Subscript 0 will henceforth
indicate exponents describing ideal polymers. If the end
of the polymer is brought into contact with a plane, then
by the method of images [30] it can be shown that in any
space dimension d the number of configurations scales as
zNN−1/2, i.e. with γ ≡ γp0 = 1/2, and corresponding
to ηp0 = 1. Thus for a long polymer held by a point-like
object at a distance h from a plane, the entropic force in
Eq. (1) will have a prefactor A = 1. This result is valid
for any d. For self-avoiding polymers in d = 2, the expo-
nents are γ = 43/32, γp = 61/64 [31] and ν = 3/4 [32]
leading to A = 25/48 ≈ 0.52, while in d = 3, we get
γ ≈ 1.158 [33], γp ≈ 0.70 and ν ≈ 0.59 [34] leading to
A ≈ 0.78. Similar exact results can be derived for more
complex self-avoiding polymers, such as star polymers or
branched polymers of arbitrary topology in d = 2 [28].

Note that the force amplitude does depend on the sur-
face to which the polymer is attached. For example, con-
sider the configuration in Fig. 1d where the polymer is
attached to the plate. The initial configuration corre-
sponds to a polymer attached to an infinite surface, thus
ηinitial = ηp, while the final configuration is the same as
in Fig. 1c, with ηfinal = ηcp. This leads to A = ηcp − ηp,
as opposed to A = ηcp− ηc for the case that the polymer
is attached to the cone. There are a number of detailed
studies of small surfaces (such as AFM tips) [35–41] com-
pressing a single polymer (or few polymers) grafted to a
surface. However, all these studies concern non-scale in-
variant geometries.

When the obstacles are separated by h, the loss of
polymer entropy (and the corresponding pressure lead-
ing to the force in Eq. (1)) is concentrated in the con-
finement region. The part of the polymer that wanders
away from this area is relatively unperturbed and does
not contribute to the force. Therefore for largeN , Eq. (1)
is independent of polymer size. This is not the case when
the entire polymer contributes to the force, as for a poly-
mer held between two plates, where the force is propor-
tional to N . Thus, the argument fails when dimension-
ality of the system is changed between the initial and
final states. For example when a 3-dimensional polymer
connected to a two-dimensional plane approaches a par-
allel plane, in the final configuration the confined poly-
mer is essentially two-dimensional. Free energies in the
initial and final state have different extensive parts, and
the polymer-mediated force depends on the number of
monomers [42].

It is worth reiterating the idealizations leading to
Eqs. (1) and (7). Real obstacles are self-similar over
a range of length scales; for example an AFM tip may
be rounded, or abruptly change its angle. Equation (1)
will then be applicable to a corresponding interval, and
there may be non-trivial crossovers between the different
regimes [43]. By focusing on entropy, we have assumed
that the only interaction between the polymer and the
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obstacles is due to hard-core exclusion. Attractive inter-
actions between the polymer and surface will introduce
temperature dependent corrections, and additional size
scales [17]. Weak interactions are asymptotically irrele-
vant, but strong interactions may lead to a phase in which
the polymer is absorbed onto the obstacles [27], rendering
the entropic considerations presented here inappropriate.
At high enough temperatures we expect entropic inter-
actions to be dominant [17]. However, the absorption
of AFM constrained polymers to attractive probes is in-
deed an interesting topic which falls outside the purview
of this manuscript.

III. IDEAL POLYMERS NEAR

SCALE-INVARIANT SURFACES

Having reduced the computation of the force to calcu-
lation of correlation functions, the remainder of the paper
is dedicated to computing exponents characterizing poly-
mer correlations. The behavior of idealized polymers, i.e.
in the absence of self-avoidance and other interactions, is
closely related to the diffusion problem: the spatial con-
figuration of a polymer of N -segments can be regarded
as the space–time trajectory of a random walker viewed
at integer times up to t = N . Summing over all trajec-
tories starting at r and ending at r

′ is then equivalent
to considering the probability of diffusion from r to r

′ in
time t, which satisfies the diffusion equation

∂P (r, r′, t)

∂t
= D∇′2P (r, r′, t). (8)

The prime sign on the Laplacian indicates the spatial
derivatives with respect to components of r′, and the ini-
tial condition is P (r, r′, t = 0) = δd(r−r

′). The diffusion
constant D is chosen such that in free space the mean
squared distance coincides with the random walk value
of 〈(r − r

′)2〉 = a2N = 2dDt in d space dimensions, and
thus D = a2/2d. If a polymer is confined by repulsive

walls, its configurations correspond to paths of a random
walker that does no cross these boundaries. In the lan-
guage of diffusion, the exclusion of paths that cross the
boundaries is accomplished by assuming that they are
absorbing surfaces.
To compute variations in the number of states, we

are interested in the total survival probability S(r, t) ≡
∫

P (r, r′, t)ddr′. which also satisfies the equation [44]

∂S(r, t)

∂t
= D∇2S(r, t), (9)

with absorbing boundary conditions. The initial condi-
tion for survival probability is S(r, t = 0) = 1, every-
where inside the space where the particle can diffuse,
and S(r, t) = 0 on the absorbing boundaries. (While
the space and time variables are continuous in the above
equation, appropriately discretized equations can be ap-
plied to diffusion or random walk on a lattice.)

In the absence of confinement, the number of configu-
rations N of an ideal polymer grows exponentially with
its length N . On a regular discrete lattice, N is sim-
ply related to lattice coordination number z by N = zN .
The presence of repulsive boundaries reduces the number
of configurations to

N (r, N) = zNS(r, kN), (10)

where the prefactor k = a2/(2dD) converts the dimen-
sionless number of steps N to time t in the diffusion
equation. Numerical solutions of Eqs. (8,9) can be easily
found for many geometries, and analytical solutions are
available for a number of simple shapes [45]. The gen-
erally complicated solutions simplify to some extent for
the self-similar shapes depicted in Fig. 2. In a coordinate
system centered on a special point of the object (such as
tip of a cone) the dimensionless function S can only de-

pend on the dimensionless vector w = r/
√
Dt. Thus,

S(r, t) = H(w), and Eq. (9) reduces to

∇2
w
H +

1

2
w · ~∇wH = 0, (11)

where the subscript w indicates derivatives with respect
to components of w. In terms of these dimensionless
variables, the function H vanishes on the absorbing sur-
faces and increases to unity away from the surface (at
separations of order one). For some geometries, the so-
lution to Eq. (11) can be presented in terms of a ra-
dial distance w, and a combination of angular variables.
For example, generalized cones in d-dimensional space
are described by a single polar angle θ and d − 2 az-
imuthal angles φ, ψ, · · · . (While d-dimensional wedges
can be treated similarly, it is more convenient to note
that the solution is independent of the coordinates par-
allel to the wedge, while the cross-section perpendicu-
lar to the wedge resembles a cone.) Furthermore, for
w ≪ 1 the distance dependence is expected to be a sim-
ple power law wη0Ψ(θ, φ, . . . ). In this limit, the second
term in Eq. (11) becomes negligible, and the problem re-
duces to solving the Laplace equation ∇2

w
(wη0Ψ) = 0.

The boundary conditions are now implemented solely in
terms of angular variables, and the problem is reduced
to finding a non-negative function Ψ that satisfies these
conditions, and the corresponding η0 for which such so-
lution exists. The dependence of the latter value on the
boundary shape will be emphasized by denoting it as ηs0.
Since, S ∼ wηs0 = (r/

√
Dt)ηs0 for a random walk that

starts a short distance |r| = a away from the cone, the

survival probability is S ∼ (a/
√
Dt)ηs0 , and consequently

the number of configurations of an ideal polymer grows
as zNN−ηs0/2 ≡ zNNγs0−1. We see that γs0 = 1 − ηs0/2
as in Eq. (6) for ν0 = 1/2.
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FIG. 3. (Color online) The exponent ηs0 for ideal polymers
in d =2 (dot-dashed), 3 (solid), 4 (dashed) for cone (“s=c”)
of angle Θ (bottom curves), and “s=cp” (top curves). (From
Ref. [26].)

IV. IDEAL POLYMERS NEAR CONES AND

PLATES

As an example, consider a polymer attached to the
apex of a cone, as in Fig. 1a, or to a point of contact
between a cone and a plane, as in Fig. 1c. When general-
ized to d-dimensions, this system has cylindrical symme-
try, and Ψ is independent of the d− 2 azimuthal angles.
Therefore, the Laplace equation simplifies to

1

(sin θ)d−2

d

dθ

[

(sin θ)d−2 dΨ

dθ

]

+ η0(d− 2 + η0)Ψ(θ) = 0 ,

(12)
with an appropriate boundary condition on Ψ(θ). For an
isolated cone, the function Ψ must be positive and regu-
lar outside the cone, with dΨ/dθ|θ=π = 0 to avoid a cusp
on the symmetry axis, and Ψ(Θ) = 0 on the cone surface.
For the cone+plate, the appropriate solution is positive
and vanishes both at θ = Θ and θ = π/2. The first case
was considered by Ben-Naim and Krapivsky [46] in con-
nection with diffusion near an absorbing boundary [47],
and we follow their derivations. The solution in general
d requires the use of associated Legendre functions, but
simplifies in a few cases described below.

• For d = 2, the problem of a cone coincides with that of
a wedge. In higher space dimensions the wedge remains
equivalent to the two-dimensional case, as the function
H is independent of the d− 2 coordinates parallel to the
wedge. Thus, the following results for d = 2 are also ap-
plicable to wedges in any d. Equation (12) now reduces
to Ψ′′ + η0

2Ψ = 0; which is solved by linear combina-
tions of sin(η0θ) and cos(η0θ). The requirement that Ψ
is positive and regular, and vanishes on the object(s),

yields

ηc0 =
π

2(π −Θ)
, and ηcp0 =

2π

π − 2Θ
. (13)

Both results (depicted in Fig. 3) go to a finite value as
Θ → 0, reflecting the strong reduction in configurations
due to the remnant (barrier) line, and η0 → ∞ when the
boundaries confine the polymer to a vanishing sector.
This computation can be easily generalized to the case

of two cones (wedges) (“s=cc”) with apex semi-angles Θ1

and Θ2 touching at their tips with a common symmetry
axis. If one of the wedges is tilted by an angle τ relative
to that axis, then the survival probability S will be de-
termined by the larger sector of free space. The resulting
exponent is

ηcc0 =
π

π − (Θ1 +Θ2 − τ)
. (14)

By proper choices of Θs and τ we can reproduce the
results of Eq. (13) as particular cases.
• For d = 4, the substitution Ψ = u/ sin θ simplifies
Eq. (12) to u′′ + (η0 + 1)2u = 0, solved by a linear com-
bination of sin[(η0 + 1)θ] and cos[(η0 + 1)θ], and we find

ηc0 =
Θ

π −Θ
, and ηcp0 =

π + 2Θ

π − 2Θ
; (15)

depicted by the bottom and top dashed lines in Fig. 3.
The cone exponent ηc0 vanishes linearly with Θ – a needle
in four dimensions is “invisible” to a random walker.
As in the two-dimensional case, we may generalize to

two touching cones aligned along common axis with apex
angles Θ1 and Θ2, with

ηcc0 =
Θ1 +Θ2

π − (Θ1 +Θ2)
. (16)

Unfortunately, when one of the cones is tilted, the prob-
lem loses its azimuthal symmetry and Eq. (12) with its
simple solutions is no longer valid.
• For d = 3, Eq. (12) becomes

(1− µ2)
d2Ψ

dµ2
− 2µ

dΨ

dµ
+ η0(η0 + 1)Ψ = 0, (17)

where µ = cos θ. The general solution to this equation is
given by regular (rather than associated) Legendre func-
tions

Ψ(θ) = a1Pη0
(µ) + a2Qη0

(µ). (18)

Note that Pα(1) = 1 for any α, while Pα(−1) diverges
for noninteger α. Similarly, Qα(±1) is divergent. The
linear combination in Eq. (18) can be made regular at -1
by a proper choice of a1/a2. For the geometry described
in Fig. 1a the solution must be regular for Θ ≤ θ ≤ π.
Instead of using combinations of P and Q, we can simply
use Pη0

(− cos θ), that will be regular at cos θ = −1. The
value of η0 is then determined by requiring

Pη0
(− cosΘ) = 0. (19)
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Since Ψ cannot change sign in the physically permit-
ted region, the smallest possible η0 must be chosen.
The corresponding solution has been described in de-
tail in Ref. [46]. In particular, in the limit Θ → 0,
the exponent η0 vanishes through a logarithmic singu-
larity (∼ 1/| lnΘ|), while for Θ → π it diverges as
η0 ≈ 2.405/(π −Θ).
For the geometry of a polymer attached to the apex

of a cone touching an infinite plane (Fig. 1c), we need
to solve Eq. (17) with Ψ(θ) vanishing at both Θ and at
π/2. The latter condition corresponds to µ = 0 and can
be assured by setting in Eq. (18) the ratio

a2
a1

= −Pη0
(0)

Qη0
(0)

=
2

π tan(πη0/2)
. (20)

With the above choice, the angular function can be con-
veniently written as

Ψ(θ) = π sin(πη0/2)Pη0
(cos θ) + 2 cos(πη0/2)Qη0

(cos θ).
(21)

For non-integer α, Pα(µ) and Pα(−µ) are linearly in-
dependent and both solve Eq. (17) [48]. Thus for non-
integer η0, Eq. (21) can be replaced by

Ψ(θ) = Pη0
(cos θ)− Pη0

(− cos θ). (22)

Again, we must choose the smallest η0 for which this
function vanishes for θ = Θ. The resulting exponents
(which cannot be cast as simple functions), are plotted
as solid lines in Fig. 3. From bounds on the roots of
Legendre polynomials [49–51], we find that in the limit
Θ → π/2, the exponent diverges as η0 ≈ 2π/(π − 2Θ),
while as Θ → 0, η0 → 1. Indeed, the solution in Eq. (21)
has no roots for η0 < 1. Asymptotic expressions for
Pα(µ) and Qα(µ) near µ = 1 are known and can be used
to determine positions of roots in such limit, indicating
that η0 ≈ 1 + 1/| ln(Θ)|.
It is worth noting that in all cases above (d = 2, 3, 4)

the cone+plate exponent has the identical divergence
η0 ≈ 2π/(π − 2Θ) as Θ → π/2. This may be justified by
arguing that a diffuser confined between an almost flat
cone and the plate encounters absorbing boundaries not
dissimilar to that of a wedge.
• In general d, with the substitution Ψ(θ) = sin−δ θ u(µ),
where µ = cos θ and δ = (d− 3)/2, Eq. (12) becomes

(1− µ2)
d2u

dµ2
− 2µ

du

dµ
+

[

(η0 + δ)(η0 + δ + 1)− δ2

1− µ2

]

u = 0, (23)

which is solved by associated Legendre functions [48]

that can be chosen in several forms such as P±δ
η0+δ(±µ),

Q±δ
η0+δ(±µ), or their combinations. The particular choice

of one or pair of linearly independent functions depends
on the boundary conditions and the specific values of η0
and δ. For the case of cone in different dimensions the

reader is referred to Ref. [46]. To find a proper form for
u in (integer or fractional) d dimensions, we can closely
follow the case of d = 3: For a single cone we may chose
u = P−δ

η0+δ(− cos θ), since sin−δ θ P−δ
η0+δ(− cos θ) has no

cusp at θ = π. The value of η0 will be set by the re-
quirement that the function vanishes for θ = Θ. For
cone+plate configurations we may choose

u = a1P
−δ
η0+δ(− cos θ)− a2P

−δ
η0+δ(cos θ) , (24)

which for a1 = a2 vanishes on the plate (θ = π), and will
be a suitable solution as long as η0 is not integer and is
chosen such that the function vanishes for θ = Θ.
For all d, the cone becomes a plate for Θ = π/2. Cor-

relations with one point approaching a surface are easily
obtained by the method of images [30, 52] leading to
ηc0 = ηp0 = 1, which is clearly seen from the intersection
of the curves in Fig. 3.
Note that in d = 3 both cone and cone+plate expo-

nents approach their limit Θ → 0 via a logarithmic sin-
gularity, while for d = 4 they approach that limit linearly.
For intermediate dimensions 3 < d < 4, the limiting be-
havior as Θ → 0 is given by

ηc0 =
Γ(1− ǫ/2)√
π Γ(1/2− ǫ/2)

Θ1−ǫ, and

ηcp0 = 1 +
4Γ(2− ǫ/2)√
π Γ(1/2− ǫ/2)

Θ1−ǫ, (25)

where d = 4 − ǫ. The singular behavior in the above
equations is a power law Θp0 with p0 = d − 3, which
has a simple geometric interpretation. The ideal poly-
mer can be regarded as a self-similar object with fractal
dimension 2, while the remnant of the cone as Θ → 0 is
a (semi-infinite) 1-dimensional line. When embedded in
d-dimensional space, the intersection of the two entities
(random walk and remnant line) spans a space of dimen-
sion d− (2+1) = p0. Indeed, for d < 3 the limiting value
is different from the case without any cone indicating the
finite probability of intersection of the polymer with the
semi-infinite barrier line.
In both d = 2 and d = 4, we found simple expres-

sions for the ideal polymer attached to the contact point
between two coaxial cones of opening angles Θ1 and
Θ2. However, in general d the solution has the form in
Eq. (24). The vanishing of u on the first cone requires
a1/a2 = cos(Θ1)/ cos(−Θ1). With this choice, the only
free parameter left is the exponent η0. To satisfy the
condition u(θ = Θ2) = 0, we must have

P−δ
η0+δ(− cosΘ1)P

−δ
η0+δ(− cosΘ2)−
P−δ
η0+δ(cosΘ1)P

−δ
η0+δ(cosΘ2) = 0. (26)

Unfortunately, values of η0 satisfying the above equation
cannot be expressed as simple functions. However, for
small Θ1 and Θ2, we can prove that

ηcc0(Θ1,Θ2) ≈ ηc0(Θ1) + ηc0(Θ2), (27)
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i.e. the exponent for two sharp cones is approximately
the sum of exponents for individual cones of opening an-
gles Θ1 and Θ2.

V. SELF-AVOIDING POLYMERS:

SIMULATIONS

Self-avoiding walks (SAWs) provide a convenient
model for exploring universal aspects of swollen (coil)
polymers with short-range interactions. The number
of SAWs in three-dimensional space (without obstacles)
is governed by the critical exponent γ ≈ 1.158 [33]
(corresponding to η ≈ 0.03), while in two dimensions,
γ = 43/32 [53] (η = 5/24). (For ideal polymers these ex-
ponents do not depend on d: γ0 = 1 and η0 = 0.) Several
important results regarding γs (with obstacles) for poly-
mers confined by wedges or planes are known [31, 34, 54–
57]. For example the exponent γwedge of a SAW confined
to a wedge (in d = 2 or d = 3), and anchored at its sharp
end, depends on opening angle and diverges to −∞ as
the confining angle vanishes. Polymers attached to the
tip of a two-dimensional sector in d = 3, and to the apex
of a cone also were studied [58]. Numerous analytical
[59, 60] and numerical [34, 57] studies of SAWs anchored
to flat surfaces in d = 3 find γs ≡ γp in the range of 0.70
[57] to 0.68 [61] (ηp = 0.81 or 0.84, respectively). (Again,
for ideal polymers these exponents do not depend on d:
γp0 = 1/2 and ηp0 = 1.) We are particularly interested
in geometries depicted in Fig. 1, and provide below our
numerical and analytical estimates of the relevant expo-
nents.
We employed a dimerization method [62, 63] to nu-

merically generate SAWs on a cubic lattice. In this (re-
cursive) method two N/2-step SAWs are joined in an
attempt to create an N -step walk. If the resulting walk
does not self-intersect, the process is successful and the
N -step walk is used to generate even larger SAWs. If
the combined walk has intersections, it is rejected and
both N/2-step components are discarded. The process
is then repeated. As the rejection rate increases slowly
with N , this is an extremely efficient method for creat-
ing an unbiased collection of SAWs. We generated 108

SAWs of lengths N = 16, 32, · · · , 1024. Each SAW
was attached to the origin, and we checked whether it
intersects the imposed obstacles.
The probability that a SAW does not intersect the con-

fining boundaries is the ratio of the number of SAWs sat-
isfying the geometrical constraints to the total number
of such walks, i.e. pN = Ns/N ∼ Nγs−1/Nγ−1 = N∆γs ,
and therefore pN/p2N = 2∆γs . This result becomes ac-
curate for N → ∞, and we extract the limiting value
of γs by plotting its finite-N estimates as a function of
1/

√
N . The estimated errors in the extrapolated values

of the exponents are caused both by the limited sam-
ple size, and by values of N that are not long enough.
The resulting exponents ∆ηs ≡ ηs − η = (γ − γs)/ν (full
symbols in Fig. 4) are somewhat lower than the corre-

0 0.2 0.4 0.6 0.8
Θ/π

0

1

2

3

4

∆η
s

FIG. 4. (Color online) Dependence of the exponent difference
∆ηs = ηs − η on apex semi-angle Θ for the cone+plate (top
curves), and an isolated cone (bottom curves). The dotted
curves are the exact values for an ideal polymer. The full
diamonds and circles represent numerical results for SAWs in
the same geometry. Error bars show the uncertainty in N →

∞ extrapolation. The dashed line depicts the ǫ-expansion
result in Ref. [58] (with ǫ = 1) for ‘weak surface repulsion.’
The solid lines show the values of ηc from Eq. (38), and ηcp
from Eq. (50), with ǫ = 1. For the latter, ∆ηs = ηs since
η = 0 +O(ǫ2) in free space.

sponding values for ideal polymers (indicated by dotted
lines). The difference primarily originates in the change
in ηs as a result of self-avoiding interactions. (This trend
is slightly moderated by a small shift of η in free space.)
Figure 3 of Ref. [26] presents ∆γs as a function of Θ, in
which form results for SAWs are much closer to those of
ideal polymers due to multiplication by the self-avoiding
and ideal values of ν, respectively.

The dashed line in Fig. 4 represents the result of an
ǫ = 4−d expansion [58] that treats both the self-repulsion
of the polymer, as well as its repulsion by the two-
dimensional surface of the cone, as weak perturbations.
A renormalization group computation is then carried out
to the lowest order in ǫ, resulting in ∆ηc = (3ǫ/4) sinΘ.
For small Θ this expression resembles the expected be-
havior, but for Θ > π/2 the function (incorrectly) de-
creases. This is because, faced with the weakly repulsive
potential at the surface of the cone, the polymer sim-
ply jumps from the decreasing exterior into the larger
internal space of the cone. This approach also produces
an incorrect Θ → 0 behavior. Deficiencies of the results
of Ref. [58] can be remedied by exclusion of the entire
interior of the cone, as was done by Cardy [31, 55] for
the wedge geometry. The analogous computations for a
cone, described in the following section, are more com-
plicated, and build upon more recent results pertaining
to the electrodynamic Casimir interactions between con-
ducting cones and plates [64].
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VI. SELF-AVOIDING POLYMERS:

EPSILON EXPANSION

A. Cone

The constraint of self-avoidance is relevant in dimen-
sions d ≤ 4, where exponents are computed perturba-
tively in ǫ = 4 − d. A primary element of such calcula-
tion is the Green’s function in the absence of interactions
(self-avoidance), but in the presence of obstacles. For the
latter we need the full solution to the Laplace equation in
four dimensions; therefore we should go beyond Eq. (12)
which is only applicable at large separations. In general,
one should find the Green’s function in 4− ǫ dimensions.
However, we are interested in finding corrections to the
first order in ǫ. With the strength of the interaction being
of the same order, we can safely limit ourselves to com-

puting the Green’s function in four dimensions. Subject
to appropriate boundary conditions, the Green’s function
is the solution to

−∇2
(4)G0(x, x

′) = δ4(x− x′), (28)

where x and x′ are spatial coordinates, and the subscript
4 emphasizes the space dimension. Since we are inter-
ested in conical boundaries, it is convenient to break up
the Green’s function along the polar angular coordinate.
In order to accomplish this, we need a complete set of
functions of the other three coordinates including the
radius. One can exploit the Kontrovich-Lebedev trans-
form [65] to formulate the completeness relation. The
procedure is analogous to Ref. [64] where some of the au-
thors have carried out a similar analysis. Details of the
calculation are given in the Appendix; the final result for
the Green’s function for a single cone is

G0(x, x
′) =

∑

nlm

(−1)lπΓ(ρn + l + 1)

2 sin(ρnπ)Γ(ρn − l)

P
−l−1/2
ρn−1/2 (cosΘ)

∂ρnP
−l−1/2
ρn−1/2 (− cosΘ)

rρn−1
<

rρn+1
>

P
−l−1/2
ρn−1/2 (− cos θ)Ylm(ψ, φ)

√
sin θ

P
−l−1/2
ρn−1/2 (− cos θ′)Y ⋆

lm(ψ′, φ′)
√
sin θ′

,

(29)

where the summation is made over a triplet of integers
n > 0, l ≥ 0, and −l ≤ m ≤ +l. The exponent ρn
labeled by the integer n is the root of the equation

P
−l−1/2
ρn−1/2 (− cosΘ) = 0. (30)

In the above equation, r< and r> refer to the smaller and
larger radial coordinate for x and x′. Such division of the
Green’s function is appropriate since one endpoint of the
polymer is close to the tip of the cone and the other end
is far away.
For an interacting Green’s function, one should sub-

tract polymer configurations which self-intersect. In the
perturbative analysis, the strength of self-repulsion is
indicated by a parameter u, and to lowest order one
must subtract contributions forming a single intermedi-
ate loop, such that

G1 = G0− u

∫

d4x′′G0(x, x
′′)Gr

0(x
′′, x′′)G0(x

′′, x′). (31)

Similar expansions arise in the context of quantum field
theories, in which language the first term in the last
equation is the “free” propagator (in the presence of
external boundary conditions) while the next term is
the “one-loop” correction. The latter should be regu-
larized by replacing the middle Green’s function (com-
puted at identical points) with the difference between
the Green’s functions in the presence and absence of ex-
ternal boundaries, i.e. Gr

0 = G0 − Ḡ0. In a renormal-
ization group treatment, the parameter u changes with

scale of observation, ultimately arriving at a fixed point
value of u∗ = 2π2ǫ [31, 55, 58]. This universal value is
a characteristic of the polymer and independent of ob-
stacles or boundary conditions. To find the scaling be-
havior for r ≫ a, it is sufficient to include only the term
n = 1, l = m = 0 from the sum in Eq. (29) in the
non–loop propagators, arriving at

G0|n=1
l,m=0(x, x

′) =
rρ1−1
<

4π2rρ1+1
>

sin ρ1 (π − θ)

sin θ

sin ρ1 (π − θ′)

sin θ′
.

(32)

(Corrections from higher-order terms are in higher pow-
ers of a/r, similar to the analysis by Cardy [31, 55].)
However, the loop (Green’s function at identical points)
can be of small size; in fact, we have regularized this
Green’s function to cancel out the divergent contribu-
tion in the limit of a shrinking loop. Therefore, for the
loop propagator one should consider the entire sum.
The integral corresponding to the loop variable is over

the whole space: The azimuthal and spherical angles φ′′

and ψ′′ are trivial due to rotational symmetry. Once
summed over spherical harmonics indexed by the same l,
we get a factor of l(l + 1). The integral over the radial
coordinate, r′′, should produce a logarithm—later to be
exponentiated to a power-law. Along the line of Cardy’s
analysis, this logarithm is due to the contribution from
the region r < r′′ < r′. Finally, an integration over
θ′′, the polar angle, completes the integral; however, the
latter is complicated by the fact that the roots of the
non-algebraic Eq. (30) should be computed.
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Considering the above complications, we focus instead
on a cone with small opening angle, i.e. Θ → 0. In
this limit, one can see that the leading singularity is due
to the l = 0 term in the Green’s function corresponding
to the loop. Note that a sharp cone is invisible to higher
spherical partial waves. The loop Green’s function is then
obtained from the sum

Gr
0|l=m=0(x

′′, x′′) =
1

4π2r′′2

∞
∑

n=1

1

n

sin2 nπ π−θ′′

π−θ0
− sin2 nθ′′

sin2 θ′′
.

(33)

Equations (32) and (33) are used to perform the integral
over θ′′ and summation over all n. The Green’s function
dependence on the radius is then obtained as

G1 ∝ rηc0

<

r>ηc0+2

[

1 + ǫ ln
r<
r>

(

1

4π
Θ lnΘ + .16Θ

)]

, (34)

where the second term in the bracket is the correction
due to the loop integral, and thus it is proportional to
ǫ. Another dependence on ǫ is introduced through the
exponent ηc0 whose value in d = 4−ǫ dimensions is given
by Eq. (25). The radial logarithm can be exponentiated
yielding the renormalized exponent,

ηc = ηc0 +

(

Θ lnΘ

4π
+ .16Θ

)

ǫ . (35)

As the first correction to η in empty space appears at
the order of ǫ2, the above (first-order) result for the cone
vanishes logarithmically as Θ → 0. The logarithm in the
angular variable is suggestive of another exponentiation
to obtain a power-law in the limit of Θ → 0. First note,
however, that expanding ηc0 to the first order in ǫ yields

ηc0 ≈ Θ

π
+

(

−Θ lnΘ

π
− .22Θ

)

ǫ , (36)

producing another contribution to lnΘ, originating from
the expansion in 4−ǫ dimensions of the phantom polymer

(as opposed to the perturbative terms from the one-loop
computation). Putting all these pieces together, we ob-
tain

ηc =
Θ

π

(

1− 3

4
ǫ lnΘ− .06 ǫ

)

, (37)

which can be recast as a power law

ηc ≈
(

1

π
− .06 ǫ

)

Θ1− 3
4
ǫ . (38)

As expressed in Eq. (25), the exponent ηc0 vanishes with
cone angle as Θp0 with p0 = d−3 = 1−ǫ for the phantom
polymer (Fig. 3). The above equation indicates that the
vanishing of ηc for a self-avoiding polymer is governed by
the modified exponent p = 1 − 3ǫ/4. This dependence
is shown for ǫ = 1 as the lower solid line in Fig. 4. We
may interpret this result as follows: The self-avoiding
condition swells the polymer at all scales compared to a
random walk. As a result, the fractal dimension of the
polymer is reduced from 2 to ν−1 = 2 − ǫ/4 at the lin-
ear order in ǫ. Whether or not a fractal coil and the
one-dimensional needle intersect depends on the dimen-
sionality d of space; the domain of their intersection is
given by the co-dimension of the polymer+needle, i.e.
d−1−ν−1 = 1−3ǫ/4 = p. It would be interesting to see
if this connection holds in higher orders in perturbation
theory. The current numerical results are not accurate
enough to test this conjecture.
Finally, we note that for two touching cones of small

angles Θ1 and Θ2, we find the analog of Eq. (27) to first
order in the ǫ-expansion, namely

ηcc(Θ1,Θ2) ≈ ηc(Θ1) + ηc(Θ2). (39)

B. Cone-Plate

When constrained by a cone touching a plate, the
Green’s function is given by

G0(x, x
′) =

∑

nlm

(−1)lπ

2

rρn−1
<

rρn+1
>

Γ(ρn + l + 1)

sin(ρnπ)Γ(ρn − l)

P
−l−1/2
ρn−1/2 (cosΘ)

∂ρn

(

P
−l−1/2
ρn−1/2 (− cosΘ)− P

−l−1/2
ρn−1/2 (cosΘ)

)×

(P
−l−1/2
ρn−1/2 (− cos θ)− P

−l−1/2
ρn−1/2 (cos θ))Ylm(ψ, φ)

√
sin θ

(P
−l−1/2
ρn−1/2 (− cos θ′)− P

−l−1/2
ρn−1/2 (cos θ

′))Y ⋆
lm(ψ′, φ′)

√
sin θ′

, (40)

where the sum is again over the triplet of integers n > 0, l ≥ 0, and −l ≤ m ≤ +l. The exponent ρn is now the n-th
root of the transcendental equation

P
−l−1/2
ρn−1/2 (− cosΘ)− P

−l−1/2
ρn−1/2 (cosΘ) = 0. (41)

Again for the non-loop propagators, it suffices to keep only the first term in the sum

G0|n=1
l,m=0(x, x

′) =
rρ1−1
<

4π2rρ1+1
>

sin ρ1 (π/2− θ)

sin θ

sin ρ1 (π/2− θ′)

sin θ′
. (42)
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However, the intermediate loop should be summed entirely. Here again, we focus on a sharp cone. It is more convenient
to express the regularized Green’s function for the intermediate loop as

Gr
0 ≡ G0 − Ḡ0 = (G0 −Gp

0) + (Gp
0 − Ḡ0) , (43)

where Gp
0 is the Green’s function in the presence of the plate alone and is independent of the cone angle Θ. Also note

that Ḡ0 is the Green’s function in empty space. Each bracket on the RHS of Eq. (43) can be treated separately. The
first bracket, to the leading order for a sharp cone, is given by

(G0 −Gp
0) |l=m=0(x

′′, x′′) =
1

4π2r′′2

∞
∑

n=1

1

n

sin2 nπ π/2−θ′′

π/2−θ0
− sin2 2nθ′′

sin2 θ′′
. (44)

Also the second bracket in Eq. (43) is merely the Green’s function in the presence of a plate. The latter can be cast
as a series expansion by using the method of images:

(

Gp
0 − Ḡ0

)

(x, x′) = −
∑

nlm

rn−1
<

rn+1
>

Γ(n+ l + 1)

2Γ(n− l)
P

−l−1/2
n−1/2 (− cos θ)P

−l−1/2
n−1/2 (cos θ′)Ylm(ψ, φ)Y ⋆

lm(ψ′, φ′). (45)

The Green’s functions appropriate to the external legs
and the loop should be inserted in Eq. (31) to obtain, in
the limit of Θ → 0,

G1 ∝ r
ηcp0

<

r>ηcp0+2

[

1 + ǫ ln
r<
r>

(

−1

8
+

Θ lnΘ

π
+ .66Θ

)]

,

(46)
where the exponent ηcp0 is given by Eq. (25). Upon ex-
ponentiation in r, we find

ηcp = ηcp0 +

(

−1

8
+

Θ lnΘ

π
+ .66Θ

)

ǫ . (47)

Note that the loop-correction does not vanish for Θ → 0,
instead going to the limiting value of −ǫ/8 due to the
presence of the plate. Expanding ηcp0 to the first order
in ǫ,

ηcp0(Θ, ǫ) ≈ 1 +
4Θ

π
+

(

−4Θ logΘ

π
− 1.52Θ

)

ǫ , (48)

we find a logarithmic dependence in Θ. Summing both
contributions, the exponent η to the lowest order in ǫ and
Θ becomes

ηcp = 1− ǫ

8
+

4Θ

π

(

1− 3

4
ǫ lnΘ − .86 ǫ

)

. (49)

As in the previous section, we exponentiate the logarithm
in Θ to obtain the power-law dependence

ηcp ≈ 1− ǫ

8
+

(

4

π
− .86 ǫ

)

Θ1− 3
4
ǫ. (50)

Revealingly, the exponent p = 1 − 3ǫ/4 is the same as
in the case of a single cone, whereas the amplitude has
changed. Furthermore, it approaches a constant value
in the limit of vanishing angle. This result is shown for
ǫ = 1 as the upper solid line in Fig. 4.

Finally we can compute the amplitude of the force ac-
cording to Eq. (5), using Eqs. (38) and (50), as

A = 1− ǫ

8
+

(

3

π
− .80 ǫ

)

Θ1− 3
4
ǫ. (51)

C. Star Polymers

In a typical setup, the amplitude A = ηcp−ηc with the
exponents being computed in the previous (sub)sections
is of order unity. Therefore, according to Eq. (1), the
force is roughly 0.1 pN at room temperature in a sepa-
ration of 0.1 µm. Such a force is at the margin of mea-
surement by current precision apparatus. We can further
increase the force by attaching more polymers to the cone
tip. The total force is additive for ideal (phantom) poly-
mers, i.e. it is proportional to f , the number of arms.
For self-avoiding polymers, however, interactions come
into play and the result is no longer additive.
In general, there are two types of interactions: a single

arm can self-intersect (intra-arm interaction), or two dif-
ferent arms intersect (inter-arm interaction). The former
effect leads to corrections similar to those computed in
previous (sub)sections, and would by itself simply lead
to multiplication of the force on a single polymer by f .
The latter interaction, originating from intersections be-
tween two different arms, is proportional to f(f − 1)/2,
the number of interacting pairs. We can then write the

overall exponent as η = fη0 + fηi + f(f−1)
2 ηe, where η0

characterizes a single phantom polymer, and ηi and ηe

correspond to intra- and inter-arm interactions respec-
tively. A general situation of many-arm polymers in the
absence of external boundaries is considered in detail in
Ref. [66].
To zeroth order (i.e. in the absence of interactions) the

correlation function describing a pair of polymers start-
ing at the same point x, but with different endpoints at
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x′1 and x
′
2, is simply the product of two free Green’s func-

tions, G0 ⊗G0. Subtracting configurations in which the
two polymers avoid each other yields to first order the
interacting Green’s function

G
(2)
1

′

= G0G0 − u

∫

d4x′′G2
0(x, x

′′)G0(x
′′, x′1)G0(x

′′, x′2) ,

(52)

where we have integrated over the intersection point x′′.
The prime on the Green’s function indicates that we
have only considered the inter-arm interactions. Also
note that no regularization is needed since the integral
in Eq. (52) is finite. For a long polymer, it is sufficient
to include only the first term in the Green’s function, i.e.
Eq. (32) for a single cone and Eq. (42) for a cone-plate
configuration. The leading logarithmic contribution for
a cone is then

G
(2)
1

′

= G0G0

(

1 + ǫ ln
r

rmax

(

1

4
− Θ

2π

))

, (53)

where rmax depends only on r′1 and r′2. Hence, by expo-
nentiating the radial function, ηe for a cone is obtained
as

ηec = ǫ

(

1

4
− Θ

2π

)

. (54)

The corresponding ǫ-expansion for cone+plate gives

ηecp = ǫ

(

1

4
− 7Θ

3π

)

. (55)

These equations then lead to the force amplitude

A(f)

f
= 1− ǫ

8
+

[

3

π
−
(

.80 +
11

12π
(f − 1)

)

ǫ

]

Θ1−3ǫ/4 .

(56)
Interestingly, inter-arm interactions reduce the force am-
plitude per polymer. This equation is similar to Eq. (51)
with the addition of inter-arm interactions. Note that
the same exponent p = 1 − 3ǫ/4 dictates the limiting
behavior in Eq. (56) as Θ → 0.
Yet another possible experimental set-up is a system

consisting of a polymer attached to a cone which is ap-
proaching another cone. The entropic force is relatively
smaller in this case. We have verified that the exponent
in the latter case also vanishes with the opening angle
as Θp, providing further support for the conjecture that
this exponent reflects the intersection of a fractal polymer
and a needle.

VII. DISCUSSION

In summary, we have demonstrated that polymers ex-
ert an entropic force AkBT/h on a cone tip, with a ‘uni-
versal’ amplitude A dependent on geometry, interactions,
and internal topology of the polymer. We conjecture that

the singular behavior of the amplitude on vanishing cone
angle is described by a new exponent, simply related to
the fractal dimension of the polymer. There are many
other self-similar shapes where a similar force law is ex-
pected on the basis of scaling at length scales shorter
than an appropriate correlation length.
In this work we concentrated on situations where the

polymer is attached to a single surface such as described
by Fig. 1b or 1d. However, our results can be easily ap-
plied to a variety of other situations. First, we note that
our approach is easily generalized to a slightly more com-
plicated situation with one polymer attached to a cone
while another is attached to a surface: The resulting force
coefficient A is given by Eq. (5) with ηinitial consisting of
the sum of ηc for the two cones, while ηfinal corresponds
to two polymers (or a star polymer with f = 2) attached
to the contact point between a cone and a plate (“s=cp”).
An even more relevant situation is the force constant of
a single polymer attached at both ends to a cone and a
plate as in Fig. 1e. One may view this situation as an
elaboration of the previous case of two polymers, when
their free ends are joined to each other. Such a modi-
fication significantly changes the behavior of the system
when h is of order or larger than R0. In fact the force
changes sign at h ∼ R0, when the polymer state changes
from stretched to compressed. For h ≪ R0 connecting
the polymer ends modifies the free energy of the system.
However, it is plausible that in such limit the force trans-
mitted by the polymer(s) is not influenced by end-point
connection, and therefore the force amplitude may be the
same as the case of two disconnected polymers. Verifi-
cation of this point requires a further study of the forces
between the polymer and the boundaries.
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Appendix A: Green’s functions

We first derive the Green’s function for the Helmholtz
equation in four dimensions; the corresponding function
for the Laplace equation is then obtained as a limit. The
former satisfies the Helmholtz equation with a delta func-
tion source:

−
(

∇2
(4) + k2

)

G0(x, x
′) = δ4(x− x′) ; (A1)

the latter is obtained by setting the wavevector k to zero.
Consider spherical coordinates x = (r, θ, ψ, φ), where r is
the radius, θ is the polar angle and φ and ψ the remaining
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angular coordinates—a constant θ specifies the surface of
a cone in four dimensions. The cone is spherically sym-

metric with respect to ψ and φ (similar to the azimuthal
symmetry of the three-dimensional cone). We expand
the Green’s function as

G0(x, x
′) =

∑

lm

1√
rr′

1√
sin θ sin θ′

glm(r, θ, r′, θ′)Ylm(ψ, φ)Y ⋆
lm(ψ′, φ′). (A2)

The prefactors are introduced for later convenience. With this ansatz, Eq. (A1) takes the form

−
(

∇2
(2) −

(l + 1/2)2

r2 sin θ2
+ k2

)

glm =
δ(r − r′)

r2
δ(cos θ − cos θ′). (A3)

Note that the Laplacian in the above equation acts in two dimensions, i.e. ∇2
(2) =

1
r2 ∂rr

2∂r +
1

sin θ∂θ sin θ∂θ.

Given that the boundary is of conical shape, it is convenient to break up the Green’s function in the coordinate
θ. We should then find a completeness relation in the function space of the other variable r. This is obtained by the
Kontrovich-Lebedev transform [65]

1

π

∫ ∞

0

dλλ sinh λkiλ−1/2(r)kiλ−1/2(r
′) = δ(r − r′),

where kν is the spherical Bessel function of order ν. Using this relation, one can show that

glm =
κ

2
(−1)l

∫ ∞

0

dλλ kiλ−1/2(κr)kiλ−1/2(κr
′)
Γ(iλ+ l + 1)

iΓ(iλ− l)
P

−l−1/2
iλ−1/2 (cos θ<)P

−l−1/2
iλ−1/2 (− cos θ>) , (A4)

solves Eq. (A3). Here, κ is the imaginary frequency (k = iκ), θ< = min(θ, θ′) and θ> = max(θ, θ′). Note that
this equation satisfies the Helmholtz equation in empty space. We discuss the boundary condition below. The
completeness relation, together with an identity regarding the Wronskian of Legendre functions, can be exploited to
see that Eq. (A4) indeed solves Eq. (A3). By a construction similar to Ref. [64], we can analytically continue the
complex order of the Bessel and Legendre functions to the real axis to obtain

glm = κ

∞
∑

n=l+1

in−1/2(κr<)kn−1/2(κr>)
nΓ(n+ l + 1)

Γ(n− l)
P

−l−1/2
n−1/2 (− cos θ)P

−l−1/2
−n−1/2(− cos θ′). (A5)

Note that the asymmetry has shifted to the radial variable while the angular coordinates are treated symmetrically.

We have used the symmetry P
−l−1/2
n−1/2 (−x) = (−1)l+n+1P

−l−1/2
n−1/2 (x) for integers l < n to restore the latter symmetry.

Next we take the limit κ→ 0 to find

G0(x, x
′) =

∞
∑

n=1

n−1
∑

l=0

l
∑

m=−l

Γ(n+ l + 1)

2Γ(n− l)

rn−1
<

rn+1
>

P
−l−1/2
n−1/2 (− cos θ)

√
sin θ

P
−l−1/2
n−1/2 (− cos θ′)

√
sin θ′

Ylm(ψ, φ)Y ⋆
lm(ψ′, φ′). (A6)

This equation provides the Green’s function for the Laplace equation in empty space. For the Green’s function in the
presence of the conical obstacle, we modify Eq. (A4) to

glm =
κ

2
(−1)l

∫ ∞

0

dλλ kiλ−1/2(κr)kiλ−1/2(κr
′)
Γ(iλ+ l+ 1)

iΓ(iλ− l)

(

P
−l−1/2
iλ−1/2 (cos θ<)P

−l−1/2
iλ−1/2 (− cos θ>)−

P
−l−1/2
iλ−1/2 (cosΘ)

P
−l−1/2
iλ−1/2 (− cosΘ)

P
−l−1/2
iλ−1/2 (− cos θ)P

−l−1/2
iλ−1/2 (− cos θ′)

)

, (A7)

which vanishes when either angle is equal to Θ. It can be easily checked that this is indeed the Green’s function:
Upon acting with the Helmholtz operator, Eq. (A3), the second line of the last equation gives a delta function while
the third line vanishes since it has no discontinuity along θ = θ′. Also the boundary condition is clearly satisfied
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as θ → Θ, the opening angle of the cone. Next we rotate to the real axis and take the limit κ → 0 to obtain the
corresponding Green’s function for the Laplace equation

G0(x, x
′) =

∞
∑

n=1

∞
∑

l=0

l
∑

m=−l

π

2
(−1)l

Γ(ρn + l + 1)

sin(ρnπ)Γ(ρn − l)

P
−l−1/2
ρn−1/2 (cosΘ)

∂ρnP
−l−1/2
ρn−1/2 (− cosΘ)

rρn−1
<

rρn+1
>

P
−l−1/2
ρn−1/2 (− cos θ)

√
sin θ

×

P
−l−1/2
ρn−1/2 (− cos θ′)

√
sin θ′

Ylm(ψ, φ)Y ⋆
lm(ψ′, φ′). (A8)

The integer n represents the n-th root of the transcendental equation

P
−l−1/2
ρn−1/2 (− cosΘ) = 0 . (A9)

The solution for ρn also depends on Θ and l. In the limit of Θ → 0, i.e. for a sharp cone, it can be shown that [67]

ρn ≈ l+ n+
Γ(2l + n+ 1)

Γ(l + 3/2)Γ(l+ 1/2)Γ(n)
(tanΘ)2l+1, (A10)

and the asymptotic behavior in this limit is dominated by the root for l = 0. To proceed further, we take advantage
of the identities,

P
−1/2
ρ−1/2(cos θ) =

1

ρ

√

2

πsin θ
sin(ρθ),

P
−1/2
ρ−1/2(− cos θ) =

1

ρ

√

2

πsin θ
sin(ρ(π − θ)), (A11)

the second of which dictates

ρn =
nπ

π −Θ
. (A12)

Hence, using Eqs. (A8-A12), we find, for a single cone,

G0|l=m=0(x, x
′) =

1

4π2

∑

n

rρn−1
<

n rρn+1
>

sin ρn(π − θ)

sin θ

sin ρn(π − θ′)

sin θ′
. (A13)

We can similarly find the Green’s function in the space between two cones aligned along a common axis which touch
at their tips. Designating the opening angles by Θ1 and π − Θ2, the available space is characterized by the polar
angle Θ1 < θ < Θ2. The Green’s function (for the Helmholtz equation) is similar to Eq. (A4) with the substitution

of P
−l−1/2
iλ−1/2 (cos θ<)P

−l−1/2
iλ−1/2 (− cos θ>) by

(

P
−l−1/2
iλ−1/2 (cos θ<)−

P
−l−1/2

iλ−1/2
(cosΘ1)

P
−l−1/2

iλ−1/2
(− cosΘ1)

P
−l−1/2
iλ−1/2 (− cos θ<)

)(

P
−l−1/2
iλ−1/2 (− cos θ>)−

P
−l−1/2

iλ−1/2
(− cosΘ2)

P
−l−1/2

iλ−1/2
(cosΘ2)

P
−l−1/2
iλ−1/2 (cos θ>)

)

1− P
−l−1/2

iλ−1/2
(cosΘ1)

P
−l−1/2

iλ−1/2
(− cosΘ1)

P
−l−1/2

iλ−1/2
(− cosΘ2)

P
−l−1/2

iλ−1/2
(cosΘ2)

.

(A14)

We then rotate to the real axis where we should find the roots of the transcendental equation

P
−l−1/2
ρ−1/2 (− cosΘ1)P

−l−1/2
ρ−1/2 (cosΘ2)− P

−l−1/2
ρ−1/2 (cosΘ1)P

−l−1/2
ρ−1/2 (− cosΘ2) = 0. (A15)

As we are mainly interested in a cone attached to a plate, we choose Θ1 ≡ Θ and Θ2 = π/2. By rotating to the real
axis and taking the limit κ→ 0, the full Green’s function is then obtained as

G0(x, x
′) =

∑

n

∞
∑

l=0

l
∑

m=−l

π

2
(−1)l

rρn−1
<

rρn+1
>

Γ(ρn + l + 1)

sin(ρnπ)Γ(ρn − l)

P
−l−1/2
ρn−1/2 (cosΘ)

∂ρn

(

P
−l−1/2
ρn−1/2 (− cosΘ)− P

−l−1/2
ρn−1/2 (cosΘ)

)×

P
−l−1/2
ρn−1/2 (− cos θ)− P

−l−1/2
ρn−1/2 (cos θ)√

sin θ

P
−l−1/2
ρn−1/2 (− cos θ′)− P

−l−1/2
ρn−1/2 (cos θ

′)
√
sin θ′

Ylm(ψ, φ)Y ⋆
lm(ψ′, φ′), (A16)
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where ρn is the n-th root of the transcendental equation

P
−l−1/2
ρn−1/2 (− cosΘ)− P

−l−1/2
ρn−1/2 (cosΘ) = 0. (A17)

For a sharp cone, we can focus on l = 0, in which case, using Eq. (A11), we find

ρn =
nπ

π/2−Θ
. (A18)

The Green’s function for the cone+plate configuration then reads

G0|l=m=0(x, x
′) =

1

4π2

∑

n

rρn−1
<

n rρn+1
>

sin ρn(π/2− θ)

sin θ

sin ρn(π/2− θ′)

sin θ′
. (A19)
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