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We numerically study the effect of adding quenched disorder in the form of randomly placed
pinning sites on jamming transitions in a disk packing that jams at a well defined point J in
the clean limit. Quenched disorder decreases the jamming density and introduces a depinning
threshold. The onset of a finite threshold coincides with point J at the lowest pinning densities, but
for higher pinning densities there is always a finite depinning threshold even well below jamming.
We find that proximity to point J strongly affects the transport curves and noise fluctuations, and
observe a change from plastic behavior below jamming, where the system is highly heterogeneous, to
elastic depinning above jamming. Many of the general features we find are related to other systems
containing quenched disorder, including the peak effect observed in vortex systems.

PACS numbers: 64.60.Ht,83.60.Bc,83.80.Fg,74.25.Wx

I. INTRODUCTION

When a collection of particles such as grains is at low
densities with little grain-grain contact, the system acts
like a liquid in response to an external drive. At higher
densities, however, significant grain-grain contacts oc-
cur and the system responds like a rigid solid, exhibit-
ing a jamming transition where the grains become stuck
and develop a finite resistance to shear1–3. The jam-
ming density is termed point J in simple systems such as
bidisperse disk assemblies1,3–5. An already jammed sys-
tem can be unjammed by shear6–9 and numerous stud-
ies have focused on understanding jamming for varied
grain shapes10, interactions11, temperatures12, and ex-
ternal drives13,14. Depinning is another example of a
transition from a stuck or pinned state to a flowing state
under an applied drive, and occurs for collectively in-
teracting particles in quenched disorder such as vortices
in type-II superconductors15–17, colloids interacting with
random or periodic substrates18–20, and charge-density
waves21. Above depinning, the particles pass from a sta-
tionary solid state into either a moving solid or a fluctuat-
ing, liquidlike state15,17,18. Understanding how quenched
disorder affects jamming and how jamming-unjamming
transitions are related to depinning would have a great
impact in both fields.
The first proposed jamming phase diagram for loose

particle assemblies had three axes: inverse density, load,
and temperature1. Here we propose that quenched dis-
order can form a fourth axis of the jamming phase di-
agram, and show that if a system has a well defined
jamming transition in the absence of quenched disorder,
proximity to point J is relevant even for strong quenched
disorder. Jammed or pinned states below point J show
profoundly different behaviors in response to an external
drive compared to states above point J. We find that for
varied amounts of disorder, this system exhibits many
features found in vortex matter15,22,23 including a peak
effect near point J, suggesting that jamming may be a
useful way to understand many of the phenomena found
in systems with pinning. We study a two-dimensional

(2D) bidisperse disk system with a radius ratio of 1 : 1.4
that is known to exhibit jamming at a well defined den-
sity φJ ≈ 0.8444,7,13,24 for zero temperature and load.
Since point J in this system is well defined in the absence
of quenched disorder, we can determine how jamming
changes when we add a small amount of quenched dis-
order in the form of randomly placed pinning sites. We
focus on distinguishing the effect of jamming from that
of depinning. This is particularly important since even
non-interacting particles that do not exhibit a jamming
transition in the absence of quenched disorder can have
a finite depinning threshold in the presence of disorder.

II. SIMULATION

We consider a 2D system of size L × L with peri-
odic boundary conditions in the x and y-directions con-
taining N disks interacting via a short range repulsive
spring force. The sample is a 50:50 mixture of disks
with radii rA and rB, where rA = 1.4rB, and contains
NJ = 2612 disks at φJ . To initialize the system, we put
down nonoverlapping disks, shrink all disks, add a few
additional disks, and reexpand all disks under thermal
agitation until reaching the desired density. We employ
overdamped dynamics where the equation of motion for
disk i located at Ri is

η
dRi

dt
=

∑

i6=j

k(Rij
eff − |rij |)Θ(Rij

eff − |rij |)r̂ij + F
i
p + FD.

(1)
Here the damping constant η = 1, k = 200, rij =

Ri −Rj, r̂ij = rij/|rij |, and Rij
eff = ri + rj , where ri(j)

is the radius of disk i(j). The driving force FD = FDx̂

is applied to all disks uniformly. The pinning force F
i
p

is modeled as arising from Np non-overlapping attractive
parabolic traps with maximum force Fp and cutoff radius
rA/2 such that each pin can trap at most one grain. In
the absence of other grains, an isolated grain depins when
FD > Fp. To determine if the system is pinned, we mea-
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FIG. 1: (Color online) (a,b) 〈Vx〉/N vs driving force FD in
samples with pinning strength Fp = 2.0. (a) Samples with pin
density Np/NJ = 0.415. Right (red) curve: at disk density
φ/φJ = 0.014, the critical depinning force Fc = 2.0. Left
(black) curve: at φ/φJ = 0.761, Fc is much lower. (b) Samples
with pin density Np/NJ = 0.09267. Lower (black) curve: at
φ/φJ = 0.947, Fc = 0. Upper (red) curve: at φ/φJ = 0.99,
Fc is finite. (c) Disk positions in the pinned state for the
system with Np/NJ = 0.415 and φ/φJ = 0.761 in panel (a).
(d) Disk trajectories over a period of time for the system in
(c) at FD = 0.25 ≈ 1.09Fc showing plastic flow above the
depinning threshold. (e) Disk positions in the pinned state
for a system with Np/NJ = 0.415 and φ/φJ = 1.03878. (f)
Disk trajectories over a period of time for the system in (e)
at FD = 1.1Fc showing elastic flow.

sure the total average grain velocity 〈Vx〉 =
∑N

i=1 vi · x̂
versus FD, where vi is the velocity of grain i. We slowly
increase FD in increments of δFD = 5 × 10−6 and wait
5× 104 simulation time steps after each increment to en-
sure that the system reaches a steady state response.

III. RESULTS

In Fig. 1(a) we plot 〈Vx〉/N versus FD for different
pin and disk densities, measured in terms of NJ and φJ ,
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FIG. 2: (Color online) Fc vs φ/φJ for Np/NJ = 0.828 (black
©), 0.415 (red �), 0.277 (green ♦), 0.138 (blue N), 0.09267
(black H), 0.0346 (red ⊲), 0.00692 (green +), and 0.00138
(blue ×). (a) Log-linear plot. Curves with Np/NJ ≥ 0.277
have Fc > 0 for all φ/φJ while curves with Np/NJ ≤ 0.138
have a pinned regime at low φ/φJ and another regime of finite
Fc at high φ/φJ where jamming occurs. (b) Blowup of the
region near φ/φJ = 1.0. At jamming, Fc drops for higher
pinning densities and peaks for lower pinning densities.

respectively. At Np/NJ = 0.415 and φ/φJ = 0.014 in
Fig. 1(a), the system is pinned up to FD = 2.0. At this
low disk density, the disks do not interact and the de-
pinning threshold Fc is solely determined by the pinning
force. For the same pinning density at φ/φJ = 0.761,
Fig. 1(a) shows that there is still a finite depinning
threshold of Fc = 0.23 even though N > Np and there
are more disks than pins. Since there are not enough pins
to capture all of the disks, Fc can only be finite if the
disks trapped by pins are blocking the flow of the disks
that are not in pins. Thus, in pinned states such as that
in Fig. 1(c), some jamming must be occurring. These
heterogeneous states depin plastically, as illustrated in
Fig. 1(d). Here, certain disks are always pinned while
rivers of disks flow around them.

When the pinning density is reduced, Fc can vanish, as
shown in Fig. 1(b) for a sample with Np/NJ = 0.09267
and φ/φJ = 0.947. Here Fc = 0 and the velocity response
is nonlinear. As φ/φJ decreases, Fc remains zero until N
drops below Np, when all the disks can be trapped and
Fc = Fp. Fc is also finite at high disk densities such
as φ/φJ = 0.99 in Fig. 1(b). Below jamming in sam-
ples with small Np/NJ , only some of the disks are im-
mobilized, so the depinning is plastic. In the solidlike
jammed state, a small number of pins can trap all the
disks. Depinning is elastic above jamming, where all the
disks begin to move simultaneously at the same velocity
with only small localized disk rearrangements, as illus-
trated for φ/φJ = 1.03878 in Fig. 1(e,f). Figure 1(b) also
shows an interesting crossing of the velocity-force curves,
caused by the sudden jump in 〈Vx〉/N at depinning for
the φ/φJ = 0.99 sample.

Figure 2(a) shows the critical depinning force Fc ver-
sus φ/φJ for different values of Np/NJ , and Fig. 2(b)
shows a blowup of the same data near φ/φJ = 1.0.
The curves with Np/NJ ≥ 0.277 have a finite depinning
force over the full range of φ/φJ . For the curves with
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FIG. 3: (Color online) Black circles: the value of Np/NJ at
which a finite Fc first appears vs φ. For small φ, all disks are
directly pinned in pinning sites, while for φ near φJ = 0.844,
the disks are pinned due to jamming. Dotted line: N = Np.
Dashed line: the highest measured value of Np/NJ at which
an Fc = 0 region still appears. Red squares: the value of
Np/NJ at which Fc reaches its peak value vs φ, marking the
onset of elastic depinning. Inset: the data in the main panel
plotted against φJ −φ on a log-log scale in the region near φJ .
Upper dashed line: a fit with a scaling exponent of 2ν = 1.0;
lower dashed line: a fit with 2ν = 1.2.

Np/NJ ≤ 0.138, the depinning force takes its maximum
possible value of Fc = Fp = 2.0 at low φ/φJ when all the
disks can be trapped by pins, but for intermediate φ/φJ ,
Fc = 0. At higher φ/φJ , Fc becomes finite again and
the system undergoes plastic depinning. In this regime,
Fc increases with increasing φ/φJ before peaking near
φ/φJ = 1.0 when the system jams. At jamming, it is
possible for a single pinning site to pin the entire gran-
ular packing; nevertheless, we find that Fc at jamming
decreases as Np/NJ decreases. The depinning is elas-
tic at and above jamming, and Fc drops with increasing
φ/φJ in this regime due to the increasing stiffness of the
jammed solid.

To construct the quenched disorder-disk density plane
of the jamming phase diagram, we use velocity force
curves to identify the onset of a finite Fc as a function
of disk density φ for different values of Np/NJ . We also
determine the value of φ at which Fc reaches its peak
value near φJ . In Fig. 3, the area above the data points
is the region of finite Fc where pinning and/or jamming
occurs. For low φ, when Fc > 0 the disks are directly
pinned at pinning sites, while at high φ, Fc > 0 when
the grains become jammed. The dashed line in Fig. 3
indicates the highest measured value of Np/NJ where an
Fc = 0 region still appears. Near this line, stochastic
clogging behavior occurs that is quite distinct from the
pinning and jamming transitions; this clogging will be
described in25. The onset of a finite Fc at low φ falls
slightly to the left of the dotted N = Np line due to
the effective screening of a few unoccupied pinning sites

by “upstream” occupied pinning sites that prevent disks
from reaching the empty pins. Near φJ we find that the
quenched disorder density Np/NJ can be considered as
a new axis of the jamming phase diagram, and that the
jamming density decreases with increasing Np/NJ . The
onset of jamming can be defined to occur either when
Fc becomes finite or when Fc reaches its peak value at
the transition from plastic to elastic depinning. Figure
3 shows that these two definitions are not identical but
track each other closely near φJ . The onset of elastic
depinning continues to produce a peak in Fc up to the
highest pinning densities we have considered.

We can make a simple argument for how quenched dis-
order reduces the jamming density. The average distance

between pins is lp ∝ ρ
−1/2
p , where ρp = Np/L

2. To es-
timate a correlation length ξ, we assume that ξ grows
near jamming according to ξ ∝ (φJ − φ)−ν . Jamming
should occur when lp = ξ, or when ρp ∝ (φJ − φ)2ν . As
shown in the inset of Fig. 3, a fit of the onset of finite
Fc for φ > 0.8 or a fit to the peak value of Fc give lin-
ear or nearly linear dependencies on φ (with exponents
of 1.0 and 1.2, respectively), implying that ν ≈ 0.5. This
value is close to some theoretical predictions26, suggest-
ing that quenched disorder shifts but does not destroy
the jamming transition, and supporting the inclusion of
quenched disorder as a fourth axis on the jamming phase
diagram. Caution must be taken in comparing our ex-
ponent to systems without quenched disorder, since the
presence of quenched disorder or the fact that we are
driving our system could fundamentally change the na-
ture of the jamming, and additional corrections to scaling
could be relevant27. We note that the actual value of Fc

in regions where a finite depinning threshold is present is
not expected to exhibit critical scaling since it is an in-
herently nonequilibrium quantity. Near but below φ/φJ ,
Fig. 4(e) shows that the shapes of the Fc vs φ curves vary
strongly with pinning density so that no scaling is possi-
ble. Above φ/φJ , we find Fc ∝ (Np/NJ)

−γ with γ ≈ 0.5.
This behavior persists well above φ/φJ and represents
ordinary, rather than critical, scaling of Fc with Np sim-
ilar to that found for the depinning of superconducting
vortices, where γ = 1.

The onset of jamming can also be detected by an-
alyzing the velocity noise fluctuations using the power
spectrum S(f) obtained from the time series of the av-
erage disk velocities, S(f) = |

∫
exp(−i2πft)〈Vx〉(t)dt|

2,
at FD = 1.1Fc, and the integrated noise power S0 in the
lowest spectrum octave. Figure 4(a) shows S0 versus φ
forNp/NJ = 0.277 and Fig. 4(b) shows the same quantity
for Np/NJ = 0.0346. For Np/NJ = 0.277 in Fig. 4(a), S0

is low for φ/φJ < 0.3 since there are very few collective
interactions that can produce low frequency noise. For
φ/φJ > 0.95, S0 decreases rapidly with increasing φ/φJ

after the system jams and transitions to elastic depin-
ning. At intermediate φ/φJ when the depinning is plas-
tic, large velocity fluctuations occur and produce a broad
band noise signal, as shown in Fig. 4(c) for φ/φJ = 0.968.
The solid line in Fig. 4(c) is a fit to 1/f0.9. The ap-
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FIG. 4: (Color online) (a,b) S0 vs φ/φJ for FD = 1.1Fc. (a)
Np/NJ = 0.277. S0 drops at the onset of jamming and at low
φ/φJ . (b) Np/NJ = 0.0346. S0 peaks just below jamming.
(c) S(f) vs f from the system in (a) for (upper red curve)
φ/φJ = 0.968 where the depinning is plastic and (lower blue
curve) φ/φJ = 1.141 where the depinning is elastic and a nar-
row band noise signal appears. Solid black line: a fit to 1/f0.9.
(d) S(f) vs f for the system in (b) for (upper red curve)
φ/φJ = 0.989 and (lower blue curve) φ/φJ = 1.141 showing
narrow band noise in the jammed phase. Solid black line: a
fit to 1/f2. (e) The data from Fig. 2 plotted as Fc(Np/NJ )

−γ

vs φ/φJ with γ = 0.43 for Np/NJ = 0.828 (black ©), 0.415
(red �), 0.277 (green ♦), 0.138 (blue N), 0.09267 (black H),
0.0346 (red ⊲), 0.00692 (green +), and 0.00138 (blue×), show-
ing noncritical scaling of Fc in the jammed region. (f) The
data from Fig. 4(b) plotted as S0 vs 1− φ/φJ showing scal-
ing below the jamming transition. The dotted line is a fit to
S0 ∝ (1− φ/φJ )

−β with β = 2.09.

pearance of 1/f noise is known to be associated with
plastic depinning17,22. For φ/φJ = 1.141 in the elastic
depinning regime, Fig. 4(c) shows that the noise power
is considerably reduced and S(f) has a peak at finite
frequencies with several higher harmonics, indicative of
a narrow band noise signal. The appearance of narrow
band noise in driven systems with quenched disorder is
associated with the formation of a moving solid21,28 and
is termed a washboard frequency. This is consistent with
the moving jammed packing acting like a rigid solid. For
the smaller pinning density of Np/NJ = 0.0346, Fig. 4(b)
shows a pronounced peak in S0 at φ/φJ = 0.989, just be-
low the peak in Fc. On the low density side of this peak,
Fig. 4(f) indicates that S0 ∝ (1−φ/φJ)

β with β ≈ 2. As
the system enters the jammed phase and depins elasti-
cally, S0 rapidly drops with increasing φ/φJ . In Fig. 4(d)
we plot S(f) for φ/φJ = 0.989 and φ/φJ = 1.141 for
Np/NJ = 0.0346. There is broad band noise in the plas-
tic flow regime at φ/φJ = 0.989 and narrow band noise
in the elastic flow regime at φ/φJ = 1.141.

IV. DISCUSSION

The depinning-jamming transition we observe has
many similarities to the peak effect phenomenon that
can occur as a function of vortex density in type-II su-
perconductors with vortices moving through random dis-
order. At low densities, the depinning threshold Fc is
high since vortices can be pinned individually. For inter-
mediate densities, Fc remains low until, at higher den-
sity, Fc increases rapidly to a peak value and the noise
power simultaneously increases dramatically15,22,23. The
peak effect and the noise features are more prominent in
cleaner samples with less pinning23. All these features
are captured in our results. The standard interpretation
of the peak effect is that it marks a transition from a
weakly pinned solid to a more strongly pinned disordered
state. Our results suggest that the peak effect may be
a general phenomenon in other systems with quenched
disorder close to some type of phase transition.

V. SUMMARY

In summary, we show how jamming behavior changes
with the addition of quenched disorder using a simple
model of bidisperse disks that exhibit a well defined jam-
ming density φJ in the absence of quenched disorder. We
propose that quenched disorder represents a new axis of
the jamming phase diagram and show that increasing the
quenched disorder density decreases the disk density at
which the system jams. At low disorder densities, the
disk density at which a finite depinning threshold ap-
pears coincides with point J. There is also a reentrant
finite depinning threshold at low disk densities when all
the disks are directly pinned. We find a maximum in the
depinning threshold at the onset of jamming for low dis-
order densities. When the disorder density is sufficiently
large, the depinning threshold is finite for all disk density
values; however, proximity to φJ produces clear effects in
the form of features in the velocity force curves as well as
noise fluctuation signatures. Below jamming, the depin-
ning is characterized by heterogeneous plastic flow and
1/f noise characteristics, while above jamming, the de-
pinning is elastic with all the disks moving together and
is characterized by a washboard noise. For high disorder
density, jamming is associated with a drop in the depin-
ning threshold instead of the peak in depinning found at
low disorder density. Our results show many similarities
to the peak effect observed in high-temperature super-
conductors where a depinning threshold peak occurs at
both low and high vortex densities. Our results should
be relevant for systems exhibiting depinning transitions
and jamming.
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