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In this work we investigate the late-time stationary states of open quantum systems coupled to a
thermal reservoir in the strong coupling regime. In general such systems do not necessarily relax to
a Boltzmann distribution if the coupling to the thermal reservoir is non-vanishing or equivalently
if the relaxation timescales are finite. Using a variety of non-equilibrium formalisms valid for non-
Markovian processes, we show that starting from a product state of the closed system = system
+ environment, with the environment in its thermal state, the open system which results from
coarse graining the environment will evolve towards an equilibrium state at late-times. This state
can be expressed as the reduced state of the closed system thermal state at the temperature of the
environment. For a linear (harmonic) system and environment, which is exactly solvable, we are
able to show in a rigorous way that all multi-time correlations of the open system evolve towards
those of the closed system thermal state. Multi-time correlations are especially relevant in the non-
Markovian regime, since they cannot be generated by the dynamics of the single-time correlations.
For more general systems, which cannot be exactly solved, we are able to provide a general proof that
all single-time correlations of the open system evolve to those of the closed system thermal state,
to first order in the relaxation rates. For the special case of a zero-temperature reservoir, we are
able to explicitly construct the reduced closed system thermal state in terms of the environmental
correlations.

I. INTRODUCTION

Equilibrium states are typically discussed and derived
in one of three settings or scenarios. In the more-common
equilibrium (Gibbs) perspective, originally based upon
classical ensemble theory, the entire system consisting
of a system of interest plus its environment is taken to
have some well-defined state or set of states, and upon
coarse graining the environment, the system can appear
thermal [1, 2]. In the less-common non-equilibrium per-
spective, the environment is taken to be initially ther-
mal, whereas the open system is allowed to dynamically
relax from an arbitrary initial state into an equilibrium
state [3–6]. This approach is referred to as the Langevin
paradigm [7]. Both scenarios described above apply to
situations where there is a clear distinction and separa-
tion between the system and environment degrees of free-
dom. When there is no clear distinction or the separation
is not physically justifiable, as in a molecular gas where
each particle is identical, a very different set of physical
variables and different kind of coarse graining measure
need be considered. One can examine the behavior of the
n-particle distribution functions and perform the coarse
graining (e.g., ’slaving’ in [7]) on the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy [8]. This ap-
proach is referred to as the Boltzmann paradigm.

The equilibrium and non-equilibrium perspectives can
be made to complement each other rather naturally

∗ ysubasi@umd.edu
† hfleming@physics.umd.edu
‡ jacob.taylor@nist.gov
§ blhu@physics.umd.edu

within the Langevin or open system paradigm. In the
former case, Popescu et al. [1] have shown that for an
overwhelming majority of pure states of the system +
environment (within a narrow energy interval), the re-
duced density matrix is very close to the reduced density
matrix corresponding to the microcanonical state of the
system + environment (defined in the same energy inter-
val). In their approach the comparison is done without
explicitly determining an equilibrium state. The authors
emphasize that for strong coupling, the equilibrium state
is not of Boltzmann type, and yet their results are valid in
this domain. It is important to note that dynamics does
not play any role in their derivation; the entire argument
is based on kinematics. The beauty of this approach is
that one can explain the abundance of thermal-like states
without referring to ensembles or time averages.

Linden et al [9] expands upon the approach of [1, 2]
to demonstrate dynamical relaxation1 under very weak
assumptions. Specifically, they proved that any subsys-
tem of a much larger quantum system will evolve to an
approximately steady state. On the other hand Reimann
[10] showed that the expectation value of any “realistic”
quantum observable will relax to an approximately con-
stant value. ([11] gave a clear analysis and unification of
these two results.) Finally [12] proves relaxation over a
finite amount of time both in the sense of [9] and [10].

Dynamical relaxation of an open quantum system has
been studied in the limit of vanishing coupling to the

1 See Sec. I A for the definition of the terms relaxation, equili-
bration and thermalization as used in this work. There we also
describe the meaning of the term equilibration as used in Refs. [9–
12], which differ from our definition.
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environment in [3–6]. In this limit the equilibrium state
is shown to be of Boltzmann form in which case the result
is called thermalization, rather than just relaxation. In
our work reported here, we derive the equilibrium state of
an open system coupled to a thermal reservoir explicitly,
even in the strong coupling regime. Moreover for the N
oscillator quantum Brownian motion (N-QBM) model we
are able to show the relaxation of multi-time correlations
of the open system as well. To do so we need to restrict
the environment to be in a thermal initial state.

Another difference between our work and [9–12] is in
the methods and emphasis. We take the open quantum
systems approach [6, 13–17] of assuming an environment
(E) which the system (S) interacts with, keeping some
coarse-grained information about the environment and
accounting for its systematic influences on the system in
a self-consistent manner. The time evolution of the open
quantum system is in general governed by non-unitary
dynamics. In contradistinction, [9, 10, 12] consider the
unitary time evolution of the closed system (S + E) and
then trace out the environment to get the system state.
Both approaches are equally valid, each providing a dif-
ferent perspective into the physics with different empha-
sis. We will provide a more detailed comparison of our
results to those in the literature in the discussion section
at the end.

A. Relaxation, Equilibration and Thermalization

Before we present our approach, we want to define
carefully what is meant by equilibration in this paper.
To begin with let us consider a system in contact with
two thermal reservoirs2 at different temperatures. The
system relaxes into a late-time steady state, which can be
described by a reduced density matrix. All expectation
values of system operators will also be time-independent
at late-times. Yet there will be a steady heat flux from
the hot reservoir to the cold reservoir through the system.
This is an example of a non-equilibrium steady state.

In general we define steady states via time independent
density matrices: dρ(t)/dt = 0 and use the term relax-
ation to describe the generic convergence of the reduced
density matrix to a fixed but arbitrary state in the late-
time limit. If the density matrix is diagonal in the energy
eigenbasis of the system we call it a stationary state. An
isolated stationary state is also a steady state, but this
is not true for open systems with non-vanishing coupling
to their environments.

In this work we reserve the term equilibrium for sys-
tems whose multi-time correlations can be derived from
the thermal state of a possibly extended closed system
which is governed by Hamiltonian dynamics. As a result

2 We call an environment a reservoir if the environment has an
infinite number of degrees of freedom, and a reservoir at constant
temperature, a thermal reservoir.

of our definition, equilibration implies relaxation but the
reverse is not true. The thermal reservoir distinguishes it-
self from other possible environments by the universality
of its fluctuation-dissipation relation (FDR)3, detailed-
balance conditions and Kubo-Martin-Schwinger (KMS)
relations. In the vanishing coupling limit thermal reser-
voirs lead to the thermalization of the system as defined
below. However for non-vanishing coupling to a thermal
reservoir the equilibrium state of the system does not
need to be of the Boltzmann form

ρS(β) =
e−βHS

TrS [e−βHS ]
. (I.1)

The asymptotic states we derive in this paper in the
strong coupling limit describe equilibration and not ther-
malization.

The term thermalization is reserved for the relaxation
of the density matrix of a system to the Boltzmann form
(I.1) irrespective of the initial state of the system. Ther-
malization defined in this sense can take place only if the
system-environment coupling is vanishingly weak. To be
specific, one requires (1) decaying environmental correla-
tion functions, defined in Sec. III, (2) an initially thermal
reservoir and (3) vanishing relaxation rates4 or, equiva-
lently, vanishing environmental correlation functions.

3 As long as the environment is modelled after a physical system,
fluctuations will be related to dissipation; hence there will be
a FDR. However for general environments this relation depends
on the specifics of the system-environment coupling. Thermal
environments are unique in that the FDR does not depend on
the details of the system and the coupling to the system [18].
This is why our proof does not extend to non-equilibrium steady
states arising from non-thermal environments such as two ther-
mal reservoirs at different temperatures.

4 To see a simple example of a relaxation rate consider the N-QBM
model of Sec. II B for N=1. In the Markovian limit the damping
kernel can be written as γ(t, s) = γ0Mδ(t− s), where γ0 acts as
the damping rate.
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FIG. 1. Depiction of a system embedded in its environment,
with short-range interactions. The typical argument for ne-
glecting the interaction energy is that in the macroscopic limit
the boundary becomes immeasurable in relation to the bulk.

These conditions are customarily achieved by assum-
ing short-range interactions and a relatively large system
size, see Fig. (1). However this assumption is generally
not justifiable for small systems as Fig. (2) suggests. In
this paper, we address the stationary state of open quan-
tum systems in contact with a thermal reservoir at tem-
perature T = 1/β, without the assumption of a vanish-
ing interaction strength and allow for finite relaxation
timescales. Relation (I.1) is known not to hold under
these conditions [19]. Phenomenologically, one can es-
timate the corrections we describe by the ratio of the
relaxation rates γ to the system’s energy level splittings
Ω, or γ/Ω.5

As thoroughly discussed in Ref. [19], this fact is of-
ten overlooked in many circumstances, due to the effects
of ancillary approximations such as the rotating-wave
approximation, renormalization of environmentally-
induced energy-level shifts and overly-simplistic models.
As we explain in Appendix A, this fact may also be over-
looked due to its absence in the case of classical, Gaussian
noise.

Finally, the term equilibrium is used in Ref. [9] to de-
scribe what in our terminology are steady states and in
Ref. [10] to describe what in our terminology are station-
ary states. Both cases have been covered in Refs. [11, 12]
with the single term equilibrium. These states do nec-
essarily meet our more stringent criteria of equilibrium

5 A well-known example is the density of states for an atom or
molecule, which is necessarily interacting with the electromag-
netic field to a degree which cannot be ignored when considering
the Lamb shift, black-body radiation shifts, etc.. For optical
frequencies, the emission rates of atoms are very small relative
to their transition frequencies, and so these corrections are very
small. However in other systems, such as condensates, these cor-
rections can be of considerable size.

FIG. 2. Depiction of systems of decreasing particle number.
For systems consisting of a small number particles, the argu-
ment in Fig. 1 obviously does not apply. Furthermore, it is
known that neglecting the interaction energy in these finite
systems always results in infinite relaxation and thermaliza-
tion times.

described above. Here we refer to the result of these
works using the terminology we defined above.

B. Model and Assumptions

We consider unitary dynamics of the closed system (C)
described by the Hamiltonian HC consisting of the sys-
tem of interest (S) and its environment (E) with interac-
tion (I)

HC = HS + HE + HI + HR , (I.2)

where HR contains all of the “renormalization” (R) ef-
fects. The interaction generates environmental correla-
tion functions, c.f. Eqs. (III.4), (III.8)), and we assume
these correlations to be decaying functions. This assump-
tion allows for irreversible dynamics in the open system.
Implicit in this assumption is that the environment con-
tains a continuum of modes (e.g. infinite volume). This
latter assumption can be satisfied by coupling the system
directly to field degrees of freedom that are uncountably
infinite, such as the electromagnetic field. Note however
that we do not assume the interaction Hamiltonian to be
negligible compared to the system Hamiltonian.

Finally, for mathematical simplicity we assume the ini-
tial state of the system and environment to be uncorre-
lated at t = 06

ρC(0) = ρS(0)⊗ e−βHE

ZE(β)
, (I.3)

6 The implication of initial correlations are considered in Ref. [20,
21]: Correlated initial states are more physical, particularly in
the early time evolution, but they have essentially no bearing
on the mathematical results we derive herein, which are focused
upon the asymptotic time evolution.
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where the environment (a thermal reservoir) is in its iso-
lated equilibrium state with partition function ZE(β) =
TrE[e−βHE ], and the system (S) is in an arbitrary state.
The proofs in this paper depend crucially on the proper-
ties of thermal states as discussed before.

The assumption of a thermal state for the environment
can be justified, for instance, by the approach of Popescu
et al. [1] in the weak-coupling limit, by giving the envi-
ronment its own environment, without any restriction on
the system-environment coupling strength. In this sense
the work of Popescu et al., and those prior, serve as a ped-
agogical springboard for our analysis of strongly-coupled
systems.

C. Results

It is well known that in the limit of vanishing interac-
tion strength, an open system coupled to a single thermal
reservoir relaxes to its thermal state [3, 6, 19, 22]

lim
γ→0

lim
t→∞

ρS(t) =
e−βHS

ZS(β)
, (I.4)

where ρS(t) = TrE[ρC(t)] denotes the reduced density
matrix and γ a generic relaxation rate of the open system.
Note that all relaxation rates are, at minimum, second
order in the interaction, being primarily determined by
the two-time correlations of the environment.

In Ref. [23], it was shown to second-order in the inter-
action, and for a single tensor-product coupling of system
and environment operators, that an open system coupled
to a single thermal reservoir can be confirmed to relax to
the reduced closed system thermal state

lim
t→∞

ρS(t) = TrE

[
e−βHC

ZC(β)

]
. (I.5)

We extend this proof to general system-environment cou-
plings. For zero-temperature environments we demon-
strate agreement with the ground state obtained from
the time-independent Schrödinger equation. Moreover,
we give a non-perturbative proof of Eq. (I.5) for the
exactly-solvable model of N -oscillator quantum Brown-
ian motion (N-QBM), wherein the interacting system and
environment are linear. In that model we are also able
to rigorously prove that all multi-time correlations of the
open system relax to those of the closed system thermal
state with non-vanishing interaction. Correspondence of
the multi-time correlations is an important consideration
as, outside of the Markovian regime, the dynamics of the
multi-time correlations cannot be generated by the dy-
namics of the single-time correlations, as per the quan-
tum regression theorem (QRT) [24].

The reduced, closed system thermal state

It is important to emphasize that Eq. (I.5) pertains
strictly to the open system S and not to the closed sys-

tem (S + E), as equilibration requires not only a reservoir
and late-time limit, but also a degree of coarse graining.
As we show in Sec. II F, if one considers any individual
mode of the environment, then its dependence upon the
initial state of the system never decays. In this sense,
information pertaining to the system’s past is encoded in
the environment, but only when considering the state of
the closed system (S + E). However, upon coarse grain-
ing the environment by considering the time-evolution of
a continuum of environment energies, and not one indi-
vidual mode energy, then all dependence upon the initial
state of the system is seen to decay away in time. In this
sense, information pertaining to the system’s past is only
measurable for a finite span of time.

The above statement is based on the fact that, while
the open system experiences irreversible dynamics: dis-
sipation, diffusion and decoherence, the closed system (S
+ E) experiences reversible dynamics. Consider, for in-
stance, the coupling of a mixed state of the system to a
zero-temperature reservoir. Given unitary dynamics, the
joint state of the system and environment cannot relax
from a mixed state into a pure state (the ground state of
the interacting theory). However, the environment is ex-
ceedingly large when compared to the system, and so the
system’s entropy, when spread out over every mode of the
environment, can become immeasurable. This is a gen-
eral phenomena of environmentally-induced irreversible
dynamics: conserved quantities such as energy and en-
tropy can flow into the environment, and owing to the
overwhelmingly large number of degrees of freedom, be-
come difficult to track or retrieve.

The paper is organized as follows: In Sec. II we derive
the equilibrium state for the linear N-QBM model. In
Sec. III we extend our analysis to nonlinear systems via
perturbation theory. In Sec. IV we summarize our results
and compare them to relevant works in the literature
and provide some new insights into the key issues. Some
technical details have been provided and the notation is
defined in the Appendices.

II. LINEAR SYSTEMS

Calculation of the late-time steady-state and multi-
time correlations of an open quantum system requires
the knowledge of and the ability to treat the dynam-
ics with due consideration to initial state. The dynam-
ics of quantum and classical linear systems are identical
and exactly solvable by finding the transformation which
maps the system into a set of uncoupled harmonic os-
cillators (eigenmodes) undergoing undamped oscillations
of a single eigenfrequency. This method, referred to as
the “diagonalization of the Hamiltonian” or a general-
ized Bogoliubov transformation, gives the time evolution
of all oscillators as superpositions of the eigenmodes. In
the limit of an infinite environment (and only then) the
superposition for the system oscillators can result in dis-
sipative and stochastic behaviour at late-times.
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However the initial conditions are different for thermal
states in quantum mechanics versus classical mechanics,
the difference being especially pronounced at low tem-
peratures. This is the main source of non-triviality of
our result Eq. (I.5) as it applies to linear systems. As
has been detailed in App. A, it is relatively simple to ac-
count for the effects of a linear environment in classical
mechanics. This is not so in quantum mechanics because
the Wigner function of the thermal state is quite com-
plicated (especially for systems with multiple degrees of
freedom) and coarse graining the environmental degrees
of freedom remains challenging.

In this section we adopt the open quantum system ap-
proach in following the dissipative dynamics of our sys-
tem in the form of a Langevin equation wherein the noise
terms fully incorporate the influence of the environmen-
tal degrees of freedom. This method produces the same
result as the explicit diagonalization of the Hamiltonian
of the closed system, yet it shifts the focus on the re-
duced system early in the derivation and is mathemati-
cally more straightforward. A trivial observation allows
us to simplify the derivation even further. Since the ther-
mal state of a closed Hamiltonian system is stationary we
can replace the closed system thermal state by its own
late-time steady-state. This way we have a symmetry be-
tween the quantities we want to compare and less terms
to calculate overall.

A. The Lagrangian

Our treatment of the N-QBM model is based on [25].
The model is that of a continuous and linear system
with finite and countable degrees of freedom, with La-
grangian Lsys(X, Ẋ), bilinearly coupled, via a Lagrangian
Lint(X,x), to a linear environment with an infinite (and
possibly continuous) number of degrees of freedom, with
Lagrangian Lenv(x, ẋ).

L = Lsys(X, Ẋ) + Lenv(x, ẋ) + Lint(X,x) + Lren(X) ,

(II.1)

L =
1

2

(
ẊTM Ẋ−XTC X

)
+

1

2

(
ẋTm ẋ− xTc x

)
− xTg X + Lren(X) . (II.2)

We assume that the spring constant matrices C, c as well
as the mass matrices M,m are real and positive definite,
and can be considered in general to be symmetric. If nec-
essary, one can relax the positivity condition and even
consider time-dependent mass matrices, spring constant
matrices and system environment coupling matrix g [26].
Such a model environment can emulate any source of
Gaussian noise with proper choice of coupling. To ensure
that the free and interacting system are similar in behav-
ior, we will also include the “renormalization” Lren(X).
Our choice of “renormalization” will be equivalent to in-
serting the entire system-environment interaction in the

square of the potential:

L =
1

2

(
ẊTM Ẋ−XTC X

)
+

1

2

(
ẋTm ẋ−

[
x− c−1g X

]T
c
[
x− c−1g X

])
,

(II.3)

since this keeps the phenomenological system-system
couplings from changing.

B. The Langevin Equation

For the linear system there are several formalisms
which produce the same Langevin Equation. The most
direct is via integrating out environment degrees of free-
dom in the Heisenberg equations of motion [27] and then
considering the symmetrized moments. Another is to
consider the characteristic curves of the system + en-
vironment’s Fokker-Plank equation [26]. Finally, one
can integrate out both the environment degrees of free-
dom and the relative system coordinate ∆ = X − X′,
while leaving only the average system coordinate Σ =
(X + X′)/2, in the double path integral of the reduced
system propagator in the influence functional formalism
[28]. In general (for nonlinear systems) there is no neces-
sary correspondence between these formalisms and only
the first may be well defined, but here the Langevin equa-
tion is simply

M Ẍ(t) + 2

∫ t

0

dsγ(t, s) Ẋ(s) + C X(t) = ξ(t)− 2γ(t) X0 ,

(II.4)

where γ is the damping kernel and ξ is the noise given
by:

γ(t, s) = +gTm−
1
2

cos(ω[t−s])
2ω2

m−
1
2 g , (II.5)

ξ(t) = gT
(
ḟ(t) m x0 + f(t) p0

)
, (II.6)

f(t) = m−
1
2

sin(ωt)

ω
m−

1
2 , (II.7)

ω2 ≡m−
1
2 c m−

1
2 , (II.8)

where f is the free Green’s function of the reservoir posi-
tions and ω is the free reservoir frequencies upon diago-
nalization. Note that the damping kernel is independent
of the environment’s initial state, whereas the properties
of noise are determined by the environment’s initial state.

We consider the case in which the system and environ-
ment are uncorrelated at t = 0 and the environment is in
its thermal state e−βHE/ZE(β). The noise has zero mean
and the two time correlation is given by the noise kernel

ν(t, t′) =
〈
ξ(t) ξ(t′)T

〉
ξ
, (II.9)

where the Gaussian average over the stochastic process
ξ is equivalent to tracing over the environment degrees
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of freedom. The noise and damping kernels satisfy then
the fluctuation-dissipation relation (here in the Fourier
domain)

ν̃(ω) = κ̃(ω) γ̃(ω) , (II.10)

κ̃(ω) ≡ ~ω coth

(
~ω

2kBT

)
, (II.11)

with the Fourier transform defined

f̃(ω) ≡
∫ +∞

−∞
dt e−ıωt f(t) , (II.12)

and where κ̃ is the (quantum) FDR kernel. Therefore, the
problem is completely specified in terms of the damping
kernel.

Given that our damping kernel is stationary, the
Langevin equation can be expressed in the Laplace do-
main as[

z2M + 2zγ̂(z) + C
]
X̂(z) = [zM X0 + P0] + ξ̂(z) ,

(II.13)

where P = M Ẋ and (X0,P0) correspond to the initial
values at t = 0, and with the Laplace transform defined

f̂(z) ≡
∫ ∞
0

dt e−zt f(t) . (II.14)

Formally, the solutions can be easily found by inversion:

X̂(z) = Ĝ(z) [zM X0 + P0] + Ĝ(z) ξ̂(z) , (II.15)

Ĝ(z) =
[
z2M + 2zγ̂(z) + C

]−1
. (II.16)

Note that since our damping kernel is symmetric, i.e.
γ(t, s) = γ(t, s)T, the same will be true for the propaga-
tor G(t, s) and its Laplace transform. It is also useful to
consider the following representation:

Ĝ(z) = M− 1
2

[
z2 + 2z λ̂(z) + Ω2

]−1
M− 1

2 , (II.17)

λ̂(z) ≡M− 1
2 γ̂(z) M− 1

2 , (II.18)

Ω2 ≡M− 1
2 C M− 1

2 , (II.19)

where the eigenvalues of Ω2 coincide with the squared
frequencies of the normal modes of the free system. Back
in the time domain we have

X(t) = Ġ(t) M X0 + G(t) P0 + (G ∗ ξ)(t) , (II.20)

with ∗ denoting the Laplace convolution, defined as

(A ∗B)(t) =

∫ t

0

dsA(t−s)B(s). (II.21)

For more general Gaussian states, for which the sys-
tem and environment are correlated, the noise can be
correlated with (X0,P0) and the noise kernel modified.
This is the case for the closed system thermal state given
by the density matrix e−βHC/ZC(β) which we investigate
below.

C. Single-time correlations in the closed system
thermal state

In this section we calculate the single-time correlations
in the closed system thermal state of the N-QBM model.
The partition function for the N-QBM model has been
derived in App. C, Eq. (C.17). In the rest of the paper
including the appendices we suppress the dependence of
the paritition function on β for brevity of notation. As a
first step we take the logarithm of the partition function
and write it as:

logZC = logZE −
1

2
Tr log M−1 − 1

2
Tr log C

−
∞∑
r=1

Tr log
(
M−1Ĝ(νr)

−1
)

+ constant (II.22)

We begin by making a general observation. Consider
the thermal state of a system described by a Hamil-
tonian where the momenta appear only in the kinetic
energy term of the form

∑
a p

2
a/2m. Then all correla-

tions between position and momentum operators van-
ish: 〈xapb〉 = 0. This can be seen by noting that
all correlations are time-translation-invariant in equi-
librium and forming the derivatives d

dt 〈xa(t)xb(t)〉 and
d

d(t−t′) 〈xa(t)xb(t
′)〉
∣∣
t=t′

. This observation applies to N-

QBM model.
Let angular bracket with the subscript C denote ex-

pectation values in the closed system thermal state. Ex-
pectation values corresponding to the uncorrelated ini-
tial state are denoted by attaching the subscript E to
the bracket. For the purpose of partial differentiation,
the partition function is to be regarded as a function
of C, M, c, m, g and not (explicitly) of ω. With a
straight-forward application of Theorem 1, the reduced
system correlations are given by:〈

X XT
〉
C

= − 2

β

∂ logZC

∂C
, (II.23)〈

X PT
〉
C

=
〈
P XT

〉
= 0 , (II.24)〈

P PT
〉
C

= − 2

β

∂ logZC

∂M−1 . (II.25)

The position-position and position-momentum correla-
tions between system and reservoir modes are calculated
similarly:〈

X xT
〉
C

=
〈
x XT

〉T
C

(II.26)

=
1

β

∂ logZC
∂gT

+
〈
X XT

〉
C

gTc−1 ,〈
X pT

〉
C

=
〈
p XT

〉T
C

= 0 , (II.27)〈
P xT

〉
C

=
〈
x PT

〉T
C

= 0 . (II.28)

To calculate the momentum-momentum correlations be-
tween system and environment we take the time deriva-
tive of

〈
X(t)pT(t)

〉
C

and set it to zero. Since in the
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closed system thermal state all expectation values are
time-independent, we know that there is in fact no de-
pendence on time. Using the equations of motion it is
straight-forward to show that:〈

P pT
〉
C

= M
〈
X xT

〉
C

c−M
〈
X XT

〉
C

gT . (II.29)

The environment correlations can be calculated by direct
differentiation of the partition function:

〈
x xT

〉
C

= − 2

β

∂ logZC
∂c

+ c−1g
〈
X XT

〉
C

gTc−1 ,

(II.30)〈
x pT

〉
C

=
〈
p xT

〉
C

= 0 , (II.31)〈
p pT

〉
C

= − 2

β

∂ logZC
∂m−1

. (II.32)

Now we are in a position to determine all the single-
time correlations of the interacting theory in the closed
system thermal state. Since the equilibrium state
is stationary these single-time correlations are time-
independent. The details for some of these formulae are
provided in App D. All the nonzero correlations are given
by:

〈
X XT

〉
C

=
1

β
Ĝ(ν0) +

2

β

∞∑
r=1

Ĝ(νr) , (II.33)

〈
P PT

〉
C

=
1

β

(
M− ν20M Ĝ(ν0) M

)
(II.34)

+
2

β

∞∑
r=1

(
M− ν2r M Ĝ(νr) M

)
,

〈
X xT

〉
C

=
〈
X XT

〉
C

gTc−1 − 2

β

∞∑
r=1

νrĜ(νr) γ̂(νr) g−1 ,

(II.35)〈
P pT

〉
C

= M
〈
X xT

〉
C

c−M
〈
XXT

〉
C

gT , (II.36)〈
p0 pT

0

〉
C

=
〈
p0 pT

0

〉
E

(II.37)

− 2

β

∞∑
r=1

ν2r m f̂(νr) g Ĝ(νr) gTf̂(νr) m ,〈
x0 xT

0

〉
C

=
〈
x0 xT

0

〉
E

+ c−1g 〈X0 X〉C gTc−1 (II.38)

− 2

β

∞∑
r=1

ν2r

(
c−1m f̂(νr) g Ĝ(νr) gTf̂(νr)

)
− 2

β

∞∑
r=1

ν2r

(
f̂(νr) g Ĝ(νr) gTf̂(νr) m c−1

)
− 2

β

∞∑
r=1

ν4r

(
c−1m f̂(νr) g Ĝ(νr) gTf̂(νr) m c−1

)
,

where f̂ is the Laplace transform of the free reservoir
propagator given by Eq. (II.7) and νr = 2πr/~β are the
Matsubara frequencies.

D. Equivalence of single-time correlations for the
open system

In this subsection we show that the single-time correla-
tions of system variables for the uncorrelated initial state
are asymptotically identical to the single-time correla-
tions corresponding to the closed system thermal state.
We start by calculating the variances for the closed sys-
tem thermal state. The requirement that G(t) is a decay-

ing function means that the Laplace transform Ĝ(z) is

analytic in the right half-plane. Hence Ĝ(−ıω) is analytic
in the upper-half plane. On the other hand coth(β~ω/2)
has simple poles on the imaginary axis at the Matzubara
frequencies νr. The summations over r in Eq. (II.33) can
be written as a contour integral using Cauchy’s theorem:

〈
X XT

〉
C

=
β~/2
2πı

× 2

β

∫
C

dz coth(β~z/2) Ĝ(−ız) .

(II.39)

The contour of integration is chosen to encircle the upper-
half plane in a counter-clockwise direction. The poles on
the imaginary axis at Matzubara frequencies νr for r ≥ 1
are encircled, but only half of the pole at the origin is
enclosed. The arc of the contour does not contribute to
the integral when the radius is taken to infinity. Hence
we can write this expression as an integral on the real
line. Furthermore, by the symmetry of the integrand,
the real part vanishes and the integral is given by:

〈
X XT

〉
C

=
~

2π

∫ +∞

−∞
dω coth(β~ω/2) Im

[
Ĝ(−ıω)

]
.

(II.40)

A similar argument can be used to derive:

〈
P PT

〉
C

=
~

2π

∫ +∞

−∞
dω ω2 coth(β~ω/2) Im

[
Ĝ(−ıω)

]
.

(II.41)

Eqs. (II.40,II.41) are identical to the results obtained by
[25] for the asymptotic values of variances corresponding
to an uncorrelated initial state. Therefore we have proven
that the single-time correlations of the open system relax
to those of the closed system thermal state.

E. Equivalence of multi-time correlations

In this section we generalize the results of the pre-
vious section to include multi-time correlations. We
begin by calculating the two-time correlation function〈
X(t) X(t′)T

〉
C

using the trajectories obtained from the
Langevin equation. Note that for the closed system ther-
mal state this quantity is stationary. To simplify the
proof we make use of this observation and take the late-
time limit of the closed system thermal state as well with-
out loss of generality. This trick makes the comparison
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of the two cases easier and reduces the amount of com-
putation.

The dynamics of the system is given by the solution
(II.20) of the Langevin equation which is valid for any

initial state. The dependence on initial state is hidden in
the correlations between X0, P0 and ξ(t). The two-time
position correlation is given by

〈
X(t) X(t′)T

〉
C

= Ġ(t) M
〈
X0 XT

0

〉
C

M Ġ(t′) + G(t)
〈
P0 PT

0

〉
C

GT(t′)

+ Ġ(t) M

∫ t′

0

ds′
〈
X0 ξ(s′)T

〉
C

G(t′−s′) +

∫ t

0

dsG(t−s)
〈
ξ(s) XT

0

〉
C

M Ġ(t′)

+ G(t)

∫ t′

0

ds′
〈
P0 ξ(s′)T

〉
C

G(t′−s′) +

∫ t

0

dsG(t−s)
〈
ξ(s) PT

0

〉
C

Ġ(t′)

+

∫ t

0

ds

∫ t′

0

ds′G(t−s)
〈
ξ(s) ξ(s′)T

〉
C

G(t′−s′) . (II.42)

As mentioned earlier unlike the uncorrelated initial state
the terms in the second and third lines do not vanish in
the closed system thermal state. We consider the case
where

lim
t→∞

G(t) = lim
t→∞

γ(t) = 0 . (II.43)

This is the criteria for dissipative dynamics. Under these
assumptions the first two terms in Eq. (II.42) vanish in
the late-time limit for any initial state. The terms in the
second and third lines have one factor of G(t) or Ġ(t)
that goes to zero in the late-time limit multiplied by a
convolution integral. In App. D we show that these con-
volution integrals are finite. Hence the terms in second
and third lines also vanish asymptotically. Finally we
show the equivalence of the term in the last line for the
uncorrelated and thermal initial states at late times in
App. E.

The comparison of more general multi-time correla-
tions can be done similarly using the trajectories of the
Langevin equation. The above example demonstrates
how in the late-time limit the effects of initial conditions
of the system die out and the noise statistics of both
preparations converge. The equivalence at the level of
trajectories ensures that all the multi-time correlations
will be identical.

Let us reiterate the result we just obtained: a lin-
ear system linearly coupled to a linear thermal reservoir
(with uncountably many degrees of freedom) at inverse
temperature β does relax to the equilibrium state de-
scribed by (I.5). This state is different from the Boltz-
mann state given by (I.4) whenever the interaction be-
tween the system and environment is not negligible.
Moreover the multi-time correlations of system observ-
ables also relax to their corresponding values in the closed
system thermal state.

F. The effect of coarse graining

Up until this point we only focused on the system de-
grees of freedom. Now we turn our attention to the envi-
ronment. Following Ref. [25, 26], the trajectories of the
environment oscillators, as driven by the system oscilla-
tors, are given by

x(t) =
[
ḟ(t) m x(0) + f(t) p(0)

]
+ f(t) ∗ g X(t) , (II.44)

in terms of their free propagator f(t) and frequency ma-
trix ω given by Eqs. (II.7,II.8). Into Eq. (II.44) we sub-
stitute the system trajectories, which are damped oscil-
lations driven by noise for the continuum environment:

X(t) =
[
Ġ(t) M X(0) + G(t) P(0)

]
+ G(t) ∗ ξ(t) .

(II.45)

We then find the environmental dependence upon the
initial state of the system to be

x(t) = f(t) g ∗
[
Ġ(t) M X(0) + G(t) P(0)

]
+ · · · ,

(II.46)

with all additional terms only dependent upon the initial
state of the environment. The system-dependent terms
correspond to a convolution of harmonic oscillations of
the environment with non-locally damped oscillations of
the system. Resolving these integrals leads to some terms
which oscillate with environment frequencies ω and do
not decay.

As a simple example, consider the local damping of a
single system oscillator. The open-system propagator or
Green’s function is given by

G(t) =
sin(Ω̃t)

M Ω̃
e−γ0t , (II.47)

Ω̃ =
√

Ω2 − γ20 . (II.48)
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The environment’s dependence upon the initial state of
the system is given by

xk(t) =

{
X(0)

d

dt
+
P (0)

M

}{
d2

dt2
− 2γ0

d

dt
+ Ω2

}
hk(t)

+ · · · , (II.49)

hk(t) ≡ gkfk(t)

(ω2
k − Ω2)

2
+ 4γ20ω

2
k

, (II.50)

plus terms that decay exponentially and the terms which
depend upon the initial state of the environment. The
function hk(t) oscillates forever, the same as fk(t), and
therefore the environment retains information pertaining
to the initial state of the system forever. However, this
information is not measurable forever. The system only
interacts with the integrated trajectories, which resolve
to a convolution of the damping kernel and open-system
propagators.

gTx(t) = −2 γ̇(t) ∗
[
Ġ(t) M X(0) + G(t) P(0)

]
+ · · · ,
(II.51)

and upon integrating over a continuum of environment
frequencies (here performed by multiplication with the
infinite matrix gT) the oscillatory terms decay in time.
Thus the late-time limit and coarse graining together are
responsible for the erasure of all information pertaining
to the initial state of the system.

III. GENERAL SYSTEMS

Here we consider the single-time correlations of a dis-
crete or nonlinear quantum system with arbitrary (lin-
ear or nonlinear) coupling to a quantum thermal envi-
ronment, but under the assumption that the influence
of the environment on the open system may be treated
perturbatively. First we derive the second-order steady
state, as much as is possible, from the second-order mas-
ter equation. Second we derive the reduced thermal state
directly from the closed-system thermal state. Finally we
derive the reduced thermal state via canonical perturba-
tion theory, for the case of zero temperature. All of these
formalisms will be shown to produce equivalent results
where valid.

A. Steady state

The time-evolution of the reduced density matrix of the
open system can be generated by a perturbative master
equation

ρ̇S(t) = L(t){ρS(t)} , (III.1)

where the Liouville operator can be expanded in terms
of the interaction Hamiltonian by a variety of methods

[22, 29–31].

L(t) = L0 + L1(t) + L2(t) + · · · , (III.2)

L0{ρ} = −ı[HS,ρ] , (III.3)

In general, L1(t) can be absorbed into the system Hamil-
tonian and so we will primarily concern ourselves with
the second-order term. For simplicity we will assume
there is no degeneracy or near-degeneracy in the system
energy spectrum; generalization to degenerate or nearly-
degenerate systems is straightforward.

Expanding the interaction Hamiltonian in terms of sys-
tem Ln and environment ln operators

HI =
∑
n

Ln ⊗ ln , (III.4)

the multivariate master equation can be represented [22]

L2 ρ =
∑
nm

[
Ln,ρ (Anm� Lm)† − (Anm� Lm)ρ

]
,

(III.5)
where the A operators and � product define the second-
order operators

(Anm� Lm)(t) ≡
∫ t

0

ds αnm(t, s) {G0(t, s) Lm(s)} ,

(III.6)
in terms of the zeroth-order (state) propagator of the
system

G0(t, s){ρ} = e−ı(t−s)HS ρ e+ı(t−s)HS , (III.7)

and the (multivariate) environmental correlation func-
tion

αnm(t, s) ≡ 〈ln(t) lm(s)〉E . (III.8)

The second-order operator can be expressed as the
Hadamard product

〈ωi|Anm� Lm |ωi′〉 = A(ωi−ωi′) 〈ωi|Lm |ωi′〉 , (III.9)

and, in the late-time limit, the second-order coefficients
resolve

Anm(ω) =
1

2
α̃nm(ω)− ıP

[
1

ω

]
∗ α̃nm(ω) , (III.10)

where α̃(ω) denotes the Fourier transform of the station-
ary environment correlation functionα(t−s) = α(t, s), P
the Cauchy principal value and ∗ the appropriate Fourier
convolution.

With the multivariate master equation detailed, we can
prove relation (I.5) to second order in the interaction.
This generalizes the univariate proof in Ref. [23], which
considered a single tensor-product interaction between
the system and environment. As the proof is straightfor-
ward in either case, we will give an outline and focus upon
differences which arise in the multivariate treatment.
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We are looking for the stationary state ρβ , such that

L{ρβ} = 0, (III.11)

we know from detailed balance that the zeroth-order
stationary state is the thermal state (I.4), e.g. see
[22]. Second-order corrections can be generated from the
second-order master equation via canonical perturbation
theory. More explicitly, we have

〈ωi|ρβ |ωj〉i 6=j ∝ e
−β ωi δij − ı

〈ωi|L2{e−βH} |ωj〉
ωi − ωj

,

(III.12)
but only for the denoted off-diagonal perturbative cor-
rections (in the energy basis |ω〉). As explained in
Ref. [32], due to unavoidable degeneracy, specifically that
the diagonal elements are all stationary to zeroth-order,
the second-order master equation cannot determine the
second-order corrections to the diagonal elements of the
density matrix. Calculating these second-order diagonal
terms would require knowledge of the fourth-order mas-
ter equation, and, unfortunately the general fourth-order
master equation has never been rendered to the degree of
tractability that the second-order master equation has.

By a simple application of the multivariate master
equation to Eq. (III.12), we easily obtain these second-
order corrections to the thermal state of the system. Cor-
rections to the steady state can be represented

〈ωi| δρβ |ωj〉 =
∑
nmk

Cnmijk
Z0(β)

〈ωi|Lm |ωk〉 〈ωk|Ln |ωj〉 ,

(III.13)
where Z0(β) is the partition function of the free system
and with the off-diagonal (and non-resonant) coefficients
given by

Cnmijk
∣∣
ωi 6=ωj

= +An

[
e−βωk

Anm(ωik)−Anm(ωjk)

ωi − ωj

]
+ An

[
e−βωiAmn(ωki)− e−βωjAmn(ωkj)

ωi − ωj

]
, (III.14)

where ωij = ωi − ωj and Anm(ω) are the second-order
master equation coefficients in (III.10). ‘An’ denotes the
anti-Hermitian part; the Hermitian and anti-Hermitian
parts are defined

He[Qnm] ≡ 1

2
(Qnm +Q∗mn) , (III.15)

An[Qnm] ≡ 1

2
(Qnm −Q∗mn) , (III.16)

and for univariate noise (one collective coupling to the
reservoir) the Hermitian and anti-Hermitian parts are
simply the real and imaginary parts. In either case the
anti-Hermitian part of (III.10) is the second term.

B. Equilibrium state

We wish to compare the straightforward expansion of
(III.12) to the reduced closed system thermal state at

second order, and so we require a perturbative expansion
of (I.5). There exists such a perturbative expansion of
exponential matrices utilizing the identity

d

dε
eA+εB = eA+εB

∫ 1

0

du e−u(A+εB) B e+u(A+εB) ,

(III.17)
to obtain an operator-Taylor series in the perturbation
εB. After a fair amount of simplification, one can deter-
mine the second-order stationary state to be

ρβ ∝ e−βHS (III.18)

+ e−βHS

∫ β

0

dβ′
∫ β′

0

dβ′′ 〈HI(−ıβ′) HI(−ıβ′′)〉E ,

in terms of the complex-time operators

HI(−ıβ) ≡ e+β(H+HE) HI e
−β(H+HE) , (III.19)

where the noise average is taken with respect to the free
thermal state of the environment and factors inside the
environmental trace have been written to suggest their
correspondence with the environmental correlation func-
tion evaluated at imaginary times. Finally, note that the
weak-coupling expansion of the thermal state has the po-
tential for secular behavior in β, due to the fact that a
factor of β necessarily accompanies every factor of the
interaction. Therefore, some terms in the expansion will
only be accurate in the high-temperature regime if they
retain polynomial dependence in β after integration.

The double integrals in Eq. (III.18) reduce to

∑
nm

∫ β

0

dβ′
∫ β′

0

dβ′′ αnm(−ıβ′,−ıβ′′) Ln(−ıβ′) Lm(−ıβ′′) ,

(III.20)
in terms of the complex-time operators

L(−ıβ) ≡ e+βHS L e−βHS . (III.21)

After a Fourier expansion of the complex-time correla-
tion functions, expressions (III.12) and (III.20) can be
compared term-by-term in the energy basis wherein the
imaginary-time integrals of Eq. (III.20) can be resolved as
the master equation operators were. Though the two ex-
pressions will then be composed of the same objects, they
will not immediately appear to be equivalent. The final
step is to apply the relevant multivariate Kubo-Martin-
Schwinger (KMS) relations (also found in [22])

α̃(+ω) = α̃T(−ω) e−βω = α̃∗(−ω) e−βω , (III.22)

and then one can see that the two expressions are equiv-
alent in their off-diagonal elements. Moreover, as can
be seen in (III.14), the off-diagonal expressions are free
of behavior secular in β and are, therefore, valid in the
low-temperature regime.

Whereas the second-order diagonal corrections to the
steady state could not be obtained from the second-order
dynamics due to unavoidable degeneracy, there is no such
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obstruction for the equilibrium state here. As studied in
[33], these terms can be obtained by analytic continuation

Cnmiik = lim
ωi→ωj

Cnmijk , (III.23)

Cnmiik =
d

dωi
An
[
e−βωkAnm(ωik) + e−βωiAmn(ωki)

]
.

(III.24)

However, notice that the second term will contain a
d/dω e−βω = −β e−βω and therefore this term is sec-
ular in β. So whereas the diagonal corrections of the
second-order steady state could not be determined from
the second-order master equation, here they can be de-
termined, but they are only generally valid at high tem-
perature. Despite this, [33] reported good agreement for
an harmonic oscillator at low temperature.

C. Zero-Temperature Analysis

Though correspondence was established where valid,
the previous analysis was seen to be insufficient for
the complete calculation of low-temperature equilibrium
states of the open system. However, as we shall now
show, at least for zero-temperature noise, it is still pos-
sible to easily construct the reduced closed system ther-
mal states in terms of the same environmental correlation
functions which occurred in the previous analysis. The
following relations were applied towards the inspection of
two-level atoms interacting via a zero-temperature quan-
tum field in [34].

In the zero-temperature regime we can apply mundane
perturbation theory to derive the stationary-state per-
turbations. One merely considers the perturbed ground
state of the system + environment

ψ = ψ0 +ψ1 +ψ2 + · · · , (III.25)

ψ0 ≡ |0〉 ⊗ |0〉E , (III.26)

and then traces out the environment

ρβ = |0〉〈0|+
〈
ψ2ψ

†
0 +ψ1ψ

†
1 +ψ0ψ

†
2

〉
E

+ · · · , (III.27)

where we neglect the first moment of the reservoir as
previously discussed. Without loss of generality let us
set the ground-state energy of the system to zero. The
calculation of the reduced state is then a straightforward
application of canonical perturbation theory with some
coarse graining. In doing this we obtain the same off-
diagonal corrections (III.14), however for the diagonal
(and similarly, resonant) corrections we obtain

Cnmiik = An

[
e−βωk

d

dωi
Anm(ωik) + e−βωi

d

dωi
Amn(ωki)

]
,

(III.28)

where the Boltzmann weights are guessed, as these re-
lations have only been derived here at zero tempera-
ture. Note that the second term here is different from

its analytically-continued value in (III.24). Whereas the
analytically-continued values may diverge in the zero-
temperature limit, obviously these values cannot. There-
fore Eq. (III.28) is exact for zero-temperature and our
best guess for the positive-temperature coefficients: it
has the correct functional dependence upon the Boltz-
mann weight and fourth-order master equation coeffi-
cients. At worst this is an interpolation of the zero and
high-temperature states.

IV. DISCUSSION

In this work we investigate the equilibrium states of
open quantum systems from dynamics / non-equilibrium
point of view. We show that starting from a product state
(I.3) the open system which results from coarse graining
the environment will evolve to a late-time steady state.
This state can be expressed as the reduced state of the
closed system thermal state at the temperature of the en-
vironment, i.e. Eq. (I.5). This result is important when
the system-environment coupling is not negligible7, or al-
ternatively, when relaxation rates are not insignificant in
relation to the system frequencies. In this case the sta-
tionary state of the system (I.5) differs from the canonical
Boltzmann state (I.4).8 One might argue that this state
is the closest one can get to thermalization in the strong
coupling regime.9 However in this paper we use the term
equilibrium state for Eq. (I.5) and reserve the term ther-
mal state to the standard Boltzmann form (I.4).

Our proof is exact for the linear model and to sec-
ond order in interaction strength for nonlinear models.
Moreover, for the exactly solvable linear case we prove
the equivalence of multi-time correlations. The issue
of multi-time correlations in the context of equilibra-
tion/thermalization seems to be mostly ignored in the
literature. We argue that multi-time correlations are im-
portant outside the Markovian regime, as was pointed
out in [28]. For instance, the relaxation of multi-time
correlations cannot be deduced from the relaxation of the
reduced density matrix of the system, neither can the ex-
plicit value of the multi-time correlations be derived from
the equilibrium state, if the dynamics is non-Markovian.
In this respect our analysis of the linear N-QBM model
provides insight into equilibration phenomena beyond the
density matrix formalism.

7 Based on the discussion of Fig. 2, we expect our results to be
most relevant to small systems.

8 In this paper we have not focused on the nature of this difference.
A quantification in terms of the Hamiltonian of mean force for
the special case of an Ohmic environment is given by Hilt et al.
[35]. We intend to address this issue in our future work.

9 Alternatively one could define this state to be the thermal state
in the strong coupling regime. However this state depends on the
specifics of the reservoir and the coupling to the reservoir. Hence
it is not specified by the system parameters alone and referring
to it as the thermal state is, in our opinion, misleading.
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A complete proof, which would be non-perturbative
for non-linear systems, would have to be very different
than the second-order proof presented here. Our nonlin-
ear proof, though very general in its application to dif-
ferent systems and environments, is not robust enough
for non-perturbative multi-time correlations. It is not
immediately clear how such a proof could be attempted,
whereas the elegance of the final result makes the possi-
bility of its existence seem reasonable.

An analogous proof for classical systems should be
attempted by coarse graining the symplectomorphic
(Hamiltonian) time evolution of the system and envi-
ronment in much the same way that quantum master
equations result from coarse graining the unitary time
evolution of the system and environment. Unfortunately
the literature on such an analog is not well developed
(e.g., it would involve higher-order Fokker-Plank equa-
tions which might only perturbatively preserve probabil-
ity) and this would be more mathematically challenging
than the quantum proof. Note that the ~→ 0 limit of the
quantum results obtained in this paper yield the corre-
sponding classical results, as has been argued in App. A.

An essential ingredient of our proofs is the continuum
limit for the environment. For a finite environment the
t → ∞ limit of the reduced state does not exist within
the formalism presented here and another ingredient is
necessary to ensure relaxation to equilibrium. Having
classical molecular dynamics in mind, we entertain the
possibility that quantum chaos might be one avenue to
explore.

On the other hand we can consider a large but finite
environment. It can be argued that for any relevant times
t > 0 the effect of an infinite reservoir can be approxi-
mated arbitrarily closely by a large but finite reservoir.
Then equilibration is observed for the time-interval be-
tween the relaxation time and the recurrence time. Note
that this interval is huge for a large environment, since
the recurrence time grows very rapidly with the number
of degrees of freedom. As a result the system stays close
to its equilibrium most of the time. This interpretation
helps us touch base with the results of [9, 10, 12] where
relaxation in finite systems is proven for time averaged
quantities.

A. Comparison with recent literature

To put this work in developmental context, here we
compare more specifically our results to that of Linden
et al. [9], Reimann [10], and Short and Ferrelly [12]10. All
these works have in common with us the set-up of a small
system coupled to a large environment and relaxation is
achieved dynamically via time-evolution. A major dif-
ference is the choice of initial conditions: they allow for

10 See Sec. I A for the clarification of the different use of the term
equilibration in the literature and here.

any initial state, which is spread over sufficiently many
energies, whereas we restrict our environment to be in
a thermal state. In turn we can derive the form of the
equilibrium state explicitly.

Unlike what is done here these authors all make the as-
sumption of non-degenerate energy gaps (this assumption
is relaxed to a certain degree in [12]) and assume finite
dimensional Hilbert spaces. The linear model we solved
exactly here has infinitely degenerate energy gaps and we
considered a reservoir consisting of an infinite number of
degrees of freedom. Ref. [9] considers only pure states
for the closed system (in the sprit of [1, 2]). Finally they
all define relaxation in terms of time averaged quantities,
i.e. systems behave as if they are in their steady state
most of the time. Ref. [12] also provides upper limit for
the relaxation time.

The proofs of [9–12] rely on the much greater dimen-
sionality of the Hilbert space of the environment com-
pared to that of the system. The system + environment
state is propagated as a whole using unitary dynamics.
The fact that the environment is large is utilized in the
tracing out of the environment at the end of time evolu-
tion. In this derivation the effect of the environment on
the system dynamics is not so easily accessible.

In our proof, the fact that the environment consists of
a large number of degrees of freedom manifests itself in
the form of its decaying correlations. These correlations
in turn determine the non-unitary aspects of the open
system dynamics. We use this non-unitary open system
dynamics to evolve the reduced state of the system to its
equilibrium state. In particular we do not refer to the
state of the closed system explicitly11. Our derivation is
more in the idioms of open quantum systems paradigm,
where the influence of the environment on the system
dynamics can be continuously monitored and explicitly
expressed (e.g., consistent backreaction from the environ-
ment is fully embodied in the influence functional [13]).

Relaxation is demonstrated in [9, 10, 12] for very gen-
eral Hamiltonians, including strong coupling between the
system and the environment. In their derivation the
strong coupling regime does not present any extra dif-
ficulty. In the open system approach we adopted in this
paper strong coupling is difficult to handle. On the other
hand, as a benefit of our method we can describe the
nature of the equilibrium state, i.e. Eq. (I.5), besides
proving its existence and uniqueness.

Appendix A: The triviality of classical, Gaussian
noise

While Ref. [19] gives many cases in quantum mechan-
ics in which the effect of system-environment coupling on

11 Except for Sec. II F, where we do look at the individual environ-
mental modes just to make the point that the closed system (S
+ E) does not equilibrate.
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the equilibrium state may be overlooked, here we would
like to motivate the fact that this point is often over-
looked in the classical regime as well, perhaps due to the
ubiquitous employment of Gaussian noise. Let us con-
sider the Hamiltonian of a system coupled linearly, via
the system operator L, to an environment of harmonic
oscillators, indexed by k, which mock our Gaussian noise
[13, 36].

HC = HS +
∑
k

[
p2
k

2mk
+
mkω

2
k

2
x2
k

]
+ L

∑
k

gkxk + HR ,

= HS +
∑
k

[
p2
k

2mk
+
mkω

2
k

2

(
xk −

gkL

mkω2
k

)2
]
,

(A.1)

where the linear interaction is included in the square of
the environment potential as a means of “renormaliza-
tion”. Otherwise, the influence of the environment effec-
tively introduces a negative L2 term proportional to the
cutoff into the system Hamiltonian when considering the
open-system dynamics.

Tracing over the environmental degrees of freedom is
equivalent to integrating over the environmental dimen-
sions in phase space,

TrE[· · · ] =
∏
k

∫
dxk

∫
dpk · · · , (A.2)

where classically-speaking, xk and pk are independent,
commuting variables. Therefore, in the classical and
Gaussian model, relations (I.4) and (I.5) are equivalent
as tracing over the environmental degrees of freedom con-
stitutes a trivial Gaussian integral in phase space. The
classical result can also be reached as the ~→ 0 limit of
the quantum result. This limit is most straight-forward
when applied to the Wigner function [37] defined as:

W (x, p) =
1

2π~

∫
du e

ι
~puρ(x−u/2, x+u/2) . (A.3)

The description in terms of the Wigner function is equiv-
alent to the density matrix approach. Hence the Wigner
function contains complete information about the quan-
tum system. As a result the Wigner function should not
be treated as a phase space distribution, since it can as-
sume negative values. However the ~ → 0 limit of the
thermal state Wigner function is well-defined and gives
the classical Boltzmann distribution function:

lim
~→0

Wβ(x, p) =
e−βH(x,p)

Z(β)
. (A.4)

For classical open systems it is well known that if
the system + environment is in a thermal state of the
full Hamiltonian, which includes the system-environment
coupling, then the reduced distribution of the system is in
general not the thermal distribution of the system Hamil-
tonian alone. The term potential of mean force is used in

chemical-physics literature for the quantity that replaces
the Hamiltonian in the familiar Boltzmann distribution
[38]. The linear reservoir is a special case where the po-
tential of mean force coincides with the system Hamilto-
nian. The potential of mean force is defined by12:

H∗(X,P) ≡ − 1

β
log

∏
k

∫
dxk

∫
dpk e

−βHC(X,P;x,p)∏
k′

∫
dxk′

∫
dpk′ e−βHE(x,p)

.

(A.5)

To the best of our knowledge, the asymptotic time evo-
lution of a general classical open system, with a nonlinear
environment initially in its thermal state, is not known.
We conjecture that the reduced system is asymptotically
described by e−βH

∗
as described in the previous para-

graph, and as would follow from (I.5). In this paper we
provide a proof of the analogous statement for quantum
systems to second order in interaction strength. Obvi-
ously, our second-order proof extends to classical systems
which can arise in the limit ~→ 0. For linear systems we
have an exact proof, and unlike its classical counterpart,
the quantum linear case is highly nontrivial.

Appendix B: Theorems on matrix derivatives

Notation and Remarks: A letter in bold like A indi-
cates a matrix. Referring to an element of the matrix we
use subscripts: Aab. The inverse of the matrix is indi-
cated by A−1. An element of the inverse matrix is writ-
ten as (A−1)ab to avoid confusion with 1/Aab. Transpose
of the matrix is denoted by AT. Tr without a subscript
indicates ordinary matrix trace. TrC indicates quantum
mechanical trace over the closed system Hilbert space. A
systematic study of matrix derivatives including some of
the theorems below is given by [39].

Before proceeding to the derivations we clarify a math-
ematical subtlety. The theorems derived in this appendix
will mostly be applied to symmetric matrices for which
Aab = Aba. When taking the derivative of such a matrix
with respect to one of its elements one can adopt two dif-
ferent conventions. If the derivative is taken under the
constraint that only symmetric variations of the matrix
is allowed the result is:

∂Aab

∂Acd
= δacδbd + δadδbc(1− δab) . (B.1)

On the other hand if independent variations of all ma-
trix elements are allowed the second term in the above
equation is absent. In the following theorems we adopt
the second convention.

Theorem 1. Consider a system in a thermal state at
inverse temperature β described by a Hamiltonian with

12 In most treatments HR is absent. In that case even for linear
reservoir H∗ differs from HS by a frequency “renormalization”.
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parametric dependence on a set of variables {λn}. Then
the expectation value of the derivative of the Hamiltonian
with respect to these parameters can be calculated from
the partition function by:〈

∂H

∂λn

〉
C

≡ TrC

[
∂H

∂λn

e−βH

Z

]
= − 1

β

∂

∂λn
ln(Z) . (B.2)

Proof. In this proof we will make use of the following
operator identity valid for an arbitrary operator O:

∂

∂λn
eO =

∫ 1

0

du euO
∂O
∂λn

e(1−u)O . (B.3)

Using this formula we can write the RHS of Eq. (B.2) as:

− 1

β

∂

∂λn
ln(Z) = − 1

βZ
TrC

[
∂

∂λn
e−βH

]
, (B.4)

=
1

βZ
TrC

[
−
∫ 1

0

du e−uβH
∂βH

∂λn
e−(1−u)βH

]
.

(B.5)

We use the cyclic property of trace to get:

− 1

β

∂

∂λn
ln(Z) =

1

Z
TrC

[∫ 1

0

du
∂H

∂λn
e−βH

]
, (B.6)

=
1

Z
TrC

[
∂H

∂λn
e−βH

]
, (B.7)

=

〈
∂H

∂λn

〉
C

. (B.8)

Theorem 2. For a matrix A

Tr log A = log det A . (B.9)

Proof. Trace operation is basis-independent. In the basis
in which A is diagonal log A is also a diagonal matrix
with entries log an where an are the eigenvalues of A.
Taking the trace gives:

Tr log A =
∑
n

log an = log

(∏
n

an

)
. (B.10)

The last expression is recognized to be log det A since the
product of eigenvalues equals the determinant.

Theorem 3. For an arbitrary number of matrices Ak

indexed by k, the following is true:

Tr log

(∏
k

Ak

)
=
∑
k

Tr log(Ak) . (B.11)

Proof. To show this equality we make use of Theorem 2,
the well known fact that the determinant of the product
of matrices equals the product of the determinants and
properties of ordinary logarithms:

Tr log

(∏
k

Ak

)
= log det

(∏
k

Ak

)
, (B.12)

= log

(∏
k

det Ak

)
, (B.13)

=
∑
k

log det Ak , (B.14)

=
∑
k

Tr log(Ak) . (B.15)

A corollary of this theorem is the fact that Tr log is
invariant under any permutation of its arguments.

Theorem 4. Consider a matrix A and a parameter λ.
Then:

∂

∂λ
Tr log A = Tr

[
A−1

∂A

∂λ

]
. (B.16)

In particular:

∂

∂A
Tr log A = (A−1)T . (B.17)

where ∂
∂A is defined as the matrix obtained by differenti-

ating with respect to the entries of matrix A.

Proof. Let A ≡ 1 + B and use

log(1 + B) = B−B2/2 + B3/3 + · · · , (B.18)

to write the LHS of Eq. (B.16) as:

∂

∂λ
Tr

[
B− B2

2
+

B3

3
+ · · ·

]
= Tr

[
∂B

∂λ
− 1

2
(
∂B

∂λ
B + B

∂B

∂λ
) +

1

3
(
∂B

∂λ
B2 + B

∂B

∂λ
B + B2 ∂B

∂λ
) + · · ·

]
. (B.19)

Using the cyclic property of trace we obtain:

Tr

[
∂B

∂λ

(
1−B + B2 −B3 · · ·

)]
. (B.20)

Note that ∂B/∂λ = ∂A/∂λ and

1−B + B2 −B3 + · · · = (1 + B)−1 = A−1 , (B.21)
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which proves Eq. (B.16). To prove Eq. (B.17) let λ ≡
Aab.

∂

∂Aab
Tr log A = Tr

[
A−1

∂A

∂Aab

]
, (B.22)

=
∑
cd

(
A−1

)
cd

∂Adc

∂Aab
, (B.23)

=
(
A−1

)
ba
. (B.24)

Theorem 5. Let A be an invertible matrix and λ a pa-
rameter. Then:

∂A−1

∂λ
= −A−1

∂A

∂λ
A−1 . (B.25)

In particular:

∂(A−1)ab
∂Amn

= −(A−1)am(A−1)nb . (B.26)

Proof. We write A−1 = A−1A A−1, and differentiate
both sides with respect to λ. Looking at an element of
this matrix equation we have:

∂(A−1)ab
∂λ

=
∑
cd

(
∂(A−1)ac

∂λ
Acd(A−1)db + (A−1)ac

∂Acd

∂λ
(A−1)db + (A−1)acAcd

∂(A−1)db
∂λ

)
, (B.27)

=
∂(A−1)ab

∂λ
+

(
A−1

∂A

∂λ
A−1

)
ab

+
∂(A−1)ab

∂λ
. (B.28)

This proves Eq. (B.25). For the proof of Eq. (B.26) we
set λ = Amn.

A corollary of this theorem is the following identity
valid for independent matrices Ak:

∂

∂A1
Tr
[
A2 A−11 A3

]
= −

(
A−11 A3 A2 A−11

)T
. (B.29)

Appendix C: N-QBM Partition Function

In this section we calculate the partition function of
the N-QBM model. Our treatment mimics and general-
izes that of Weiss [16], which treats one system oscillator
only and does not allow for interactions among reservoir
oscillators and non-diagonal mass matrix.13 The parti-
tion function has an imaginary-time path integral repre-
sentation given by:

ZC =

∮
DxDX exp

(
−S(E)[x,X]/~

)
, (C.1)

S(E) =

∫ ~β

0

dτ L(E)(τ) , (C.2)

L(E)(τ) =
1

2

(
ẊTM Ẋ + XTC X

)
(C.3)

+
1

2

(
ẋTm ẋ +

[
x− c−1g X

]T
c
[
x− c−1g X

])
,

where S(E) is the Euclidean action, τ the imaginary time
and the path integral is over all periodic trajectories in
the interval [0, ~β]. This path integral is Gaussian and
can be evaluated exactly. It is convenient to represent
the integration paths via their Fourier series, which takes
care of the condition on periodicity.

x(τ) =

∞∑
r=−∞

xr e
ıνrτ , (C.4)

X(τ) =

∞∑
r=−∞

Xr e
ıνrτ , (C.5)

where x−r = x†r , X−r = X†r (dagger stands for Her-
mitian conjugation) since x(τ) and X(τ) are real and
νr ≡ 2πr/~β are the bosonic Matsubara frequencies.
Written in terms of the Fourier coefficients the Euclidean
action becomes:

13 Since a set of non-interacting oscillators can represent the most
general Gaussian thermal reservoir, considering a non-diagonal
mass matrix may appear superfluous. However we need the non-

diagonal elements to generate the correlation function of two
different reservoir momenta by partial differentiation of the par-
tition function.
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S(E) =
~β
2

∞∑
r=−∞

(
X†r (ν2r M + C) Xr

)
+

~β
2

∞∑
r=−∞

(
x†r ν

2
r m xr +

[
xr − c−1g Xr

]†
c
[
xr − c−1g Xr

])
. (C.6)

Next we decompose xr = x̄r + yr where

x̄r = (ν2r m + c)−1g Xr , (C.7)

is chosen such that S(E) does not have a term linear in
yr. The action can be written as:

S(E) = S
(E)
reservoir[y] + S

(E)
system[X] , (C.8)

=
~β
2

∞∑
r=−∞

(
y†r (ν2r m + c) yr

)
(C.9)

+
~β
2

∞∑
r=−∞

(
X†r (ν2r M + C + 2 νrγ̂(νr)) Xr

)
,

where the damping kernel is given by

γ̂(z) =
1

2
gTm−

1
2ω−1

z

ω2 + z2
ω−1m−

1
2 g , (C.10)

which is the Laplace transform of Eq. (II.5). The parti-
tion function of the closed system is given by:

ZC = N
∫ ∞∏

r=−∞
dXr exp

(
−S(E)

system[X]/~
)

×
∫ ∞∏

r=−∞
dyr exp

(
−S(E)

reservoir[y]/~
)
. (C.11)

The normalization factor N is yet unspecified because it
is not easy to determine the measure of the path integral.
N will be determined indirectly at the final stage of this
calculation by considering the limiting case of no system-
environment coupling.

The integrals in Eq. (C.11) are all Gaussian. Ignoring
the normalization for now the integration gives:

ZC ∝
∞∏

r=−∞

1√
det [ν2r m + c]

1√
det [ν2r M + C + 2 νrγ̂(νr)]

, (C.12)

∝ 1√
det[c]

1√
det[C]

∞∏
r=1

1

det [ν2r m + c]

1

det [ν2r M + C + 2 νrγ̂(νr)]
. (C.13)

In the second line we used the fact that the elements of
the product corresponding to positive and negative val-
ues of r are identical to restrict the product to positive
r and pulled out the r = 0 entry. To determine the nor-
malization let us recall the partition function for a simple
harmonic oscillator:

Z1HO =
1

2 sinh(β~ω/2)
=

1

β~ω

∞∏
r=1

ν2r
ω2 + ν2r

. (C.14)

This naturally generalizes to N harmonic oscillators by:

ZNHO =
1

det[2 sinh(β~ω/2)]
=

1

β~det[ω]

∞∏
r=1

ν2r
det[ω2 + ν2r ]

.

(C.15)

In the limit of no coupling we demand that the partition
function be a product of two partition functions of this

form. This condition fixes the normalization and the final
answer is:

ZC = ZE × det

(
1

β~Ω

)
(C.16)

×
∞∏
r=1

det

(
ν2r

Ω2 + ν2r + 2M− 1
2 νrγ̂(νr)M− 1

2

)
,

where ZE = Tr [exp(−βHE)] is the partition function
of reservoir oscillators without coupling to the system.
Using the definition (II.16) the partition function can also
be written as:

ZC = ZE × det

(
1

~βΩ

) ∞∏
r=1

det
(
Mν2r Ĝ(νr)

)
. (C.17)
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Appendix D: Derivation of Eqs. (II.33-II.38)

In this appendix we derive some of the results pre-
sented in Sec. II C. Angular bracket with the subscript
C denotes expectation values in the closed system ther-

mal state. Expectation values in the uncorrelated state
are denoted by attaching the subscript E to the bracket.
Note that the damping kernel depends on the environ-
mental variables and the coupling constants alone. There
is no dependence on system variables. Using Eq. (II.23)
we calculate the single-time system position-position cor-
relation as:

〈(
X XT

)
AB

〉
C

=
1

β

∂

∂CAB
Tr log C +

2

β

∂

∂CAB

∞∑
r=1

Tr log
[
M−1Ĝ(νr)

−1
]
, (D.1)

=
1

β

(
C−1

)
AB

+
2

β

∞∑
r=1

Tr

[(
M−1Ĝ(νr)

−1
)−1

M−1 ∂Ĝ(νr)
−1

∂CAB

]
, (D.2)

=
1

β
Ĝ(ν0)AB +

2

β

∞∑
r=1

Ĝ(νr)AB , (D.3)

〈
X XT

〉
C

=
1

β
Ĝ(ν0) +

2

β

∞∑
r=1

Ĝ(νr) , (D.4)

where we used the fact that C and Ĝ(νr) are symmet-

ric matrices and Ĝ(ν0) = Ĝ(0) = C−1. The system

momentum-momentum correlations can be calculated in
a similar way using Eq. (II.25).

〈(
P PT

)
AB

〉
C

=
1

β

∂

∂(M−1)AB
Tr log(M−1) +

2

β

∂

∂(M−1)AB

∞∑
r=1

(
Tr log

[
M−1]+ Tr log

[
Ĝ(νr)

−1
])

, (D.5)

=
MAB

β
+

2

β

∞∑
r=1

(
MAB + Tr

[
Ĝ(νr)

∂Ĝ(νr)
−1

∂(M−1)AB

])
, (D.6)

〈
P PT

〉
C

=
M

β
+

2

β

∞∑
r=1

(
M−M ν2r Ĝ(νr) M

)
. (D.7)

We used Theorem 3 in the first line. In the second line
we used Theorem 4 for all terms and Theorem 5 for the
last term with A1,A2,A3 →M−1, ν2r Ĝ(νr),1.

For the system-environment position correlations note
that only the damping kernel depends on the interaction
matrix:

1

β

∂ logZC
∂(gT)Aa

= − 1

β

∞∑
r=1

∂

∂(gT)Aa
Tr log[Ĝ(νr)

−1] ,

= − 2

β

∞∑
r=1

∑
BC

Ĝ(νr)BCνr
∂γ̂(νr)CB

∂(gT)Aa
. (D.8)

The partial derivative of the damping kernel can be cal-
culated explicitly. For this differentiation it is useful to
rewrite γ̂(νr) as:

2νrγ̂(νr) = ν2r gTc−1
(
m−1 + ν2r c−1

)−1
c−1g (D.9)

For brevity of notation we define a(νr) such that γ̂(νr) =
1
2gTνra(νr) g.



18

2νr
∂γ̂(νr)CB

∂(gT)Aa
=

∂

∂gaA

∑
ef

(
gT
)
Ce

(
ν2r a(νr)

)
ef

gfB , (D.10)

=
∑
ef

{
δeaδCA

(
ν2r a(νr)

)
ef

gfB +
(
gT
)
Ce

(
ν2r a(νr)

)
ef
δfaδBA

}
, (D.11)

=
(
ν2r a(νr) g

)
aB
δCA +

(
gTν2r a(νr)

)
Ca
δBA . (D.12)

Plugging this result in Eq. (D.8) we get:

1

β

∂ logZC
∂gT

= − 2

β

∞∑
r=1

νrĜ(νr) γ̂(νr) g−1 . (D.13)

Using this result in Eq. (II.26) we get Eq. (II.35).
To derive Eq. (II.37) we start from Eq. (II.32):

− 2

β

∂ logZC
∂m−1

=
〈
p pT

〉
E

(D.14)

+
2

β

∞∑
r=1

∂

∂m−1
Tr log

[
M−1Ĝ−1(νr)

]
.

Using Theorem 4 we get:

∂

∂(m−1)ab
Tr log

[
M−1Ĝ−1(νr)

]
= Tr

[
Ĝ(νr)

∂Ĝ−1(νr)

∂(m−1)ab

]
,

(D.15)

where

∂Ĝ−1(νr)

∂(m−1)ab
= 2νr

∂γ̂(νr)

∂(m−1)ab
. (D.16)

Next use Theorem 5 and plug the result back into
Eq. (D.15):

2νr
∂γ̂(νr)

∂(m−1)ab
= −ν2r gTa(νr)

−1 ∂a(νr)

∂(m−1)ab
a(νr)

−1g , (D.17)

= −ν2r gTc−1(m−1 + ν2r c−1)−1
∂(m−1 + ν2r c−1)

∂(m−1)ab
(m−1 + ν2r c−1)−1c−1g , (D.18)

Tr

[
Ĝ(νr)

∂Ĝ−1(νr)

∂(m−1)ab

]
=
∑
ABcd

Ĝ(νr)AB

(
−ν2r

(
gTa(νr) c

)
Bc

∂(m−1 + ν2r c−1)cd
∂(m−1)ab

(c a(νr) g)dA

)
. (D.19)

Observe that:

∂(m−1 + ν2r c−1)cd
∂(m−1)ab

= δcaδdb . (D.20)

It follows that

Tr

[
Ĝ(νr)

∂Ĝ−1(νr)

∂(m−1)ab

]
= −

∑
AB

ν2r Ĝ(νr)AB

(
gTa(νr)c

)
Ba

(c a(νr) g)bA ,

= −
(
c a(νr) g ν2r Ĝ(νr) gTa(νr) c

)
ba
. (D.21)

In the last step we used the fact that both Ĝ(νr) and
a(νr) are symmetric matrices. Eq. (D.15) becomes:

∂

∂(m−1)
Tr log

[
M−1Ĝ−1(νr)

]
= −c a(νr) g ν2r Ĝ(νr)g

Ta(νr) c . (D.22)

We plug this into Eq. (D.14) and note that c a(νr) =

m f̂(νr) to get Eq. (II.37).

The derivation of Eq. (II.38) is almost identical to that
of Eq. (II.37) but with more terms. We do not show the
details of that derivation here.
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Appendix E: Proof of conclusions of Sec. II E

Using the fact that all position-momentum correlations
vanish we get:

〈
ξ(s) XT

0

〉
C

= gTḟ(s) m
〈
x0 XT

0

〉
C
, (E.1)〈

ξ(s) PT
0

〉
C

= gTf(s)
〈
p0 PT

0

〉
C
, (E.2)

where the expectation values on the RHS are given by
Eqs. (II.35,II.36).

〈
ξ(s) XT

0

〉
C

= gTm−
1
2

cos(ωs)

ω2
m−

1
2 g
〈
X0X

T
0

〉
C

(E.3)

+
2

β

∞∑
r=1

gTm−
1
2

cos(ωs) ν2r
ω2(ω2 + ν2r )

m−
1
2 g Ĝ(νr) .

The first term on the right-hand side can be seen to decay
by the fact that

gTm−
1
2

cos(ωs)

ω2
m−

1
2 g = 2γ(s) . (E.4)

The second term can be seen to decay by noting the
inequality

gTm−
1
2

cos(ωs) ν2r
ω2(ω2 + ν2r )

m−
1
2 g ≤ gTm−

1
2

cos(ωs)

ω2
m−

1
2 g ,

≤ 2γ(s) , (E.5)

in the sense of positive-definite matrix kernels, since both
ω2 and (ω2 + ν2r ) are positive matrices and cosine is
a positive-definite kernel. The summation over r in
Eq. (E.3) is finite as can be seen from Eq. (II.33). As
a result

〈
ξ(s) XT

0

〉
C

is a function that decays over time

like γ(s). When we take the convolution of this with

another decaying function Ĝ(t − s) and let t → ∞ the
overlap goes to zero. This way we argue that second line
of Eq. (II.42) vanishes. A similar calculation establishes

the same goes for the third line.〈
ξ(s) PT

0

〉
C

= gTf(s) c
〈
x0X

T
0

〉
C

M + gTf(s) g
〈
X0X

T
0

〉
C

M ,

(E.6)

=
1

β

∞∑
r=1

gTf(s) c m−
1
2

ν2r
ω2(ω2 + ν2r )

m−
1
2 g Ĝ(νr) M ,

(E.7)

=
1

β

∞∑
r=1

gTm−
1
2

sin(ωs) ν2r
ω(ω2 + ν2r )

m−
1
2 g Ĝ(νr) M , (E.8)

= − 1

β

∞∑
r=1

d

ds

[
gTm−

1
2

cos(ωs) ν2r
ω2(ω2 + ν2r )

m−
1
2 g

]
Ĝ(νr) M .

(E.9)

The term inside square brackets decays as γ(s) as can be
seen from Eq. (E.5) and the argument following it. The
summation over r is finite as before. Hence

〈
ξ(s) PT

0

〉
C

decays over time like γ̇(s). The convolution of this with
another decaying function G(t−τ) gives zero in the limit
t→∞.

The second and third lines of Eq. (II.42) are zero for the
uncorrelated initial state as well. This follows trivially
from:

〈
ξ(s) XT

0

〉
E

=
〈
ξ(s) PT

0

〉
E

= 0.
Finally we need to show that the fourth line of

Eq. (II.42) is the same for both cases. This requires
showing that the late-time limit of the noise kernel is
the same. We know that the noise kernel is stationary
for the uncorrelated initial state. Let us focus on the
noise kernel of the closed system thermal state.〈
ξ(s) ξ(s′)T

〉
C

= (E.10)

gT
(
ḟ(s) m

〈
x0x

T
0

〉
C

m ḟ(s′) + f(s)
〈
p0p

T
0

〉
C

f(s′)
)

g .

We use Eqs. (II.37,II.38) on the RHS. The derivation is
straightforward but tedious. The theorems in App. B are
utilized repeatedly.

The uncorrelated noise kernel is obtained if only the
first terms in Eqs. (II.37,II.38) are kept and the rest ig-
nored. Hence we need to show that all the other terms
vanish in the late-time limit. The strategy is the same as
before: we show that these terms are bounded by a func-
tion proportional to the damping kernel or its derivatives.
We work out the details for two terms explicitly.

First consider the term in the noise kernel Eq. (E.10)
due to the second term in Eq. (II.38).
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gTḟ(s) m c−1g
〈
X0X

T
0

〉
C

gTc−1m ḟ(s′) g

= gTm−
1
2 cos(ωs) m−

1
2 m m−

1
2ω−2m−

1
2 g
〈
X0X

T
0

〉
C

gTm−
1
2ω−2m−

1
2 m m−

1
2 cos(ωs′) m−

1
2 g , (E.11)

= gTm−
1
2

cos(ωs)

ω2
m−

1
2 g
〈
X0X

T
0

〉
C

gTm−
1
2

cos(ωs′)

ω2
m−

1
2 g , (E.12)

= 4γ(s)
〈
X0X

T
0

〉
C
γ(s′) . (E.13)

Unlike previous cases we were able to express this term
exactly in terms of the damping kernel. It is a decaying
function in both s and s′ variables. The convolution of
γ(s) with Ĝ(t − s) in Eq. (II.42) goes to zero if we let

t → ∞. Similarly the overlap of γ(s′) with Ĝ(t′ − s′)
vanishes in the limit t′ →∞.

Secondly consider the term in the noise kernel
Eq. (E.10) due to the third term in Eq. (II.38).

− 2

β

∞∑
r=1

gTḟ(s) m m−
1
2

1

ω2(ω2 + ν2r )
m−

1
2 g ν2r Ĝ(νr) gTm−

1
2

1

ω2(ω2 + ν2r )
ω2m−

1
2 m ḟ(s′) g

= − 2

β

∞∑
r=1

gTm−
1
2

cos(ωs)

ω2(ω2 + ν2r )
m−

1
2 g ν2r Ĝ(νr) gTm−

1
2

cos(ωs′)

ω2 + ν2r
m−

1
2 g , (E.14)

=
2

β

∞∑
r=1

[
gTm−

1
2

cos(ωs) ν2r
ω2(ω2 + ν2r )

m−
1
2 g

]
Ĝ(νr)

ν2r

d2

ds′2

[
gTm−

1
2

cos(ωs′) ν2r
ω2(ω2 + ν2r )

m−
1
2 g

]
. (E.15)

As before we conclude that the terms in square brackets
decay like the damping kernel. The summation over r
is finite as can be seen from Eq. (II.33) and noting that
νr > 1 for all positive r.

Close inspection of all the other terms in Eq. (E.10)
reveals that they have roughly the same form as those we
worked out the details explicitly. All these terms vanish
in the late-time limit.

This proves the equivalence of the late-time limit of the
uncorrelated initial state to that of the late-time limit of
the closed system thermal state. Since the closed system

thermal state is stationary our proof is complete.

ACKNOWLEDGEMENT

One of the authors (YS) would like to thank M. E.
Fisher and C. Jarzynski for useful discussions. YS, CHF
and BLH were supported in part by NSF grants PHY-
0801368 to the University of Maryland. JMT and CHF
were supported in part by the NSF Physics Frontier Cen-
ter at the JQI. This work was finished while BLH was
visiting the Institute for Advanced Study of the Hong
Kong University of Science and Technology.

[1] S. Popescu, A. J. Short, and A. Winter, Nat. Phys. 2,
754 (2006).

[2] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zangh̀ı,
Phys. Rev. Lett. 96, 050403 (2006).

[3] L. van Hove, Physica 21, 517 (1954).
[4] E. B. Davies, Comm. Math. Phys. 39, 91 (1974).
[5] E. B. Davies, Math. Ann. 219, 147 (1976).
[6] E. B. Davies, Quantum theory of open systems (Academic

Press, London, 1976).
[7] E. A. Calzetta and B. L. Hu, Nonequilibrium Quantum

Field Theory (Cambridge University Press, Cambridge,
2008).

[8] R. Balescu, Statistical Dynamics: Matter out of Equilib-
rium (Imperial College Press, London, 1997).

[9] N. Linden, S. Popescu, A. J. Short, and A. Winter, Phys.
Rev. E 79, 061103 (2009).

[10] P. Reimann, New Journal of Physics 12, 055027 (2010).
[11] A. J. Short, New J. Phys. 13 (2011).
[12] A. J. Short and T. C. Farrelly, New Journal of Physics

14, 013063 (2012).
[13] R. P. Feynman and F. L. Vernon, Ann. Phys. 24, 118

(1963).
[14] A. O. Caldeira and A. J. Leggett, Physica A 121, 587

(1983).

http://dx.doi.org/10.1038/nphys444
http://dx.doi.org/10.1038/nphys444
http://dx.doi.org/10.1103/PhysRevLett.96.050403
http://dx.doi.org/10.1016/S0031-8914(54)92646-4
http://dx.doi.org/10.1007/BF01608389
http://dx.doi.org/10.1007/BF01351898
http://dx.doi.org/10.1017/CBO9780511535123
http://dx.doi.org/10.1017/CBO9780511535123
http://dx.doi.org/10.1103/PhysRevE.79.061103
http://dx.doi.org/10.1103/PhysRevE.79.061103
http://stacks.iop.org/1367-2630/12/i=5/a=055027
http://stacks.iop.org/1367-2630/13/i=5/a=053009
http://stacks.iop.org/1367-2630/14/i=1/a=013063
http://stacks.iop.org/1367-2630/14/i=1/a=013063
http://dx.doi.org/DOI:10.1016/0003-4916(63)90068-X
http://dx.doi.org/DOI:10.1016/0003-4916(63)90068-X
http://dx.doi.org/DOI:10.1016/0378-4371(83)90013-4
http://dx.doi.org/DOI:10.1016/0378-4371(83)90013-4


21

[15] B. L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev. D 45,
2843 (1992).

[16] U. Weiss, Quantum Dissipative Systems (World Scien-
tific, Singapore, 1993).

[17] H. P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, New York,
2002).

[18] C. H. Fleming, B. L. Hu, and A. Roura, “Non-
equilibrium fluctuation-dissipation inequality, and
non-equilibrium uncertainty principle,” (2010),
arXiv:1012.0681 [quant-ph].

[19] E. Geva, E. Rosenman, and D. Tannor, J. Chem. Phys.
113, 1380 (2000).

[20] S. Tasaki, K. Yuasa, P. Facchi, G. Kimura, H. Nakazato,
I. Ohba, and S. Pascazio, Ann. Phys. 322, 631 (2007).

[21] C. H. Fleming, A. Roura, and B. L. Hu, Phys. Rev. E
84, 021106 (2011).

[22] C. Fleming and B. Hu, Annals of Physics 327, 1238
(2012).

[23] T. Mori and S. Miyashita, J. Phys. Soc. Jap. 77, 124005
(2008).

[24] S. Swain, J. Phys. A 14, 2577 (1981).
[25] C. H. Fleming, A. Roura, and B. L. Hu, “Quantum brow-

nian motion of multipartite systems with entanglement
dynamics,” (2011), arXiv:1106.5752 [quant-ph].

[26] C. H. Fleming, “Non-Markovian dynamics of open quan-
tum systems,” Ph.D. thesis, University of Maryland Col-
lege Park (2011).

[27] G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys.
Rev. A 37, 4419 (1988).

[28] E. Calzetta, A. Roura, and E. Verdaguer, Physica A
319, 188 (2003).

[29] N. Kampen and I. Oppenheim, J. Stat. Phys. 87, 1325
(1997).

[30] H. P. Breuer, A. Ma, and F. Petruccione, in Quantum
Computing and Quantum Bits in Mesoscopic Systems,
edited by A. J. Leggett, B. Ruggiero, and P. Silvestrini
(Kluwer, Dordrecht, 2003) quant-ph/0209153.

[31] W. T. Strunz and T. Yu, Phys. Rev. A 69, 052115 (2004).
[32] C. H. Fleming and N. I. Cummings, Phys. Rev. E 83,

031117 (2011).
[33] J. Thingna, J.-S. Wang, and P. Hänggi, The Journal of

Chemical Physics 136, 194110 (2012).
[34] C. H. Fleming, N. I. Cummings, C. Anastopoulos, and

B. L. Hu, Journal of Physics A: Mathematical and The-
oretical 45, 065301 (2012).

[35] S. Hilt, B. Thomas, and E. Lutz, Phys. Rev. E 84,
031110 (2011).

[36] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46,
211 (1981).

[37] M. Hillery, R. F. O’Connell, M. O. Scully, and E. P.
Wigner, Phys. Rep. 106, 121 (1984).

[38] J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
[39] P. S. Dwyer, Journal of the American Statistical Assosi-

ation 62, 607 (1967).

http://dx.doi.org/10.1103/PhysRevD.45.2843
http://dx.doi.org/10.1103/PhysRevD.45.2843
http://dx.doi.org/10.1093/acprof:oso/9780199213900.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199213900.001.0001
http://arxiv.org/abs/1012.0681
http://dx.doi.org/10.1063/1.481928
http://dx.doi.org/10.1063/1.481928
http://dx.doi.org/ 10.1016/j.aop.2006.06.004
http://dx.doi.org/10.1103/PhysRevE.84.021106
http://dx.doi.org/10.1103/PhysRevE.84.021106
http://dx.doi.org/10.1016/j.aop.2011.12.006
http://dx.doi.org/10.1016/j.aop.2011.12.006
http://dx.doi.org/10.1143/JPSJ.77.124005
http://dx.doi.org/10.1143/JPSJ.77.124005
http://stacks.iop.org/0305-4470/14/i=10/a=013
http://arxiv.org/abs/1106.5752
http://hdl.handle.net/1903/11708
http://hdl.handle.net/1903/11708
http://dx.doi.org/10.1103/PhysRevA.37.4419
http://dx.doi.org/10.1103/PhysRevA.37.4419
http://dx.doi.org/DOI:10.1016/S0378-4371(02)01521-2
http://dx.doi.org/DOI:10.1016/S0378-4371(02)01521-2
http://dx.doi.org/10.1007/BF02181287
http://dx.doi.org/10.1007/BF02181287
http://arxiv.org/abs/quant-ph/0209153
http://dx.doi.org/10.1103/PhysRevA.69.052115
http://dx.doi.org/10.1103/PhysRevE.83.031117
http://dx.doi.org/10.1103/PhysRevE.83.031117
http://dx.doi.org/10.1063/1.4718706
http://dx.doi.org/10.1063/1.4718706
http://stacks.iop.org/1751-8121/45/i=6/a=065301
http://stacks.iop.org/1751-8121/45/i=6/a=065301
http://dx.doi.org/ 10.1103/PhysRevE.84.031110
http://dx.doi.org/ 10.1103/PhysRevE.84.031110
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/10.1103/PhysRevLett.46.211
http://dx.doi.org/DOI:10.1016/0370-1573(84)90160-1

