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We carry out a high-precision Monte Carlo study of the shortest-path fractal dimension dmin for
percolation in two and three dimensions, using the Leath-Alexandrowicz method which grows a
cluster from an active seed site. A variety of quantities are sampled as a function of the chem-
ical distance, including the number of activated sites, a measure of the radius, and the survival
probability. By finite-size scaling, we determine dmin = 1.130 77(2) and 1.375 6(6) in two and three
dimensions, respectively. The result in 2D rules out the recently conjectured value dmin = 217/192
[Phys. Rev. E 82, 020102(R) (2010)].

PACS numbers: 05.50.+q (lattice theory and statistics), 05.70.Jk (critical point phenomena), 64.60.ah (per-
colation), 64.60.F- (equilibrium properties near critical points, critical exponents)

As a standard model of disordered system [1, 2], perco-
lation has been intensively studied over the last 50 years
and applied to many other fields due to its richness in
both mathematic and physics. The nature of phase tran-
sition of percolation has been well established. In par-
ticular, within the two-dimensional (2D) university class,
there are only few critical exponents left to be expressed
exactly, among which is the shortest-path fractal dimen-
sion dmin, defined by [2–4]

〈ℓ〉 ∼ rdmin , (1)

where r is the Euclidean distance between two sites be-
longing to the same cluster, and ℓ is the shortest path.
The shortest path ℓ between two sites in a cluster is

the minimum number of steps on a path of occupied
bonds/sites in the cluster, and was first studied indepen-
dently by several groups in the early 1980’s [5–9]. The
length ℓ is also called the chemical distance [10]. A re-
lated quantity is the spreading dimension dℓ [11], which
describes the scaling of the mass N of a critical cluster
within a chemical distance ℓ as N ∼ ℓdℓ , and is related to
the fractal dimension df of the cluster by dℓ = df/dmin.
In percolation, the shortest-path naturally occurs dur-

ing epidemic growth or burning algorithms. Previous
measurements of dmin in 2D include dmin = 1.18(4) [6],
1.118(15) [7], 1.15(3) [10], 1.102(13) [12], 1.132(4) [13],
1.130(2) [14], 1.130 7(4) [3],1.130 6(3) [15] and 1.1303(8)
[16]. A summary of the early work is given in Ref. [13].
In 1984, Havlin and Nossal [10] conjectured dmin =

df − 1/ν = 91/48− 3/4 = 55/48 = 1.145833, which was
soon shown to be too large [13, 14]. In 1987 Larsson spec-
ulated that dmin could be 17/16 or even 1, but these are
both excluded. In 1988 Herrmann and Stanley conjec-
tured dmin = 2 − dB + dred, where dred = 1/ν = 3/4
is the “red”-bond dimension and dB is the backbone
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dimension. Using Deng, Blöte and Neinhuis’s result
dB = 1.6434(2) [17] (see also [18, 19]), we find this predic-
tion gives dmin = 2− 1.6434(2)+0.75 = 1.1066(2), which
is too small. In 1989, Tzschichholz, Bunde and Havlin
[20] considered dmin = 53/48 = 1.1041666..., which is also
below measured values. In 1992, Grassberger conjectured
dmin = 26/23 = 1.130434783... based upon numerical re-
sults, and consistent with existing measurements.

In 1998, Porto et al. conjectured that dmin is related
to a pair-connectivity scaling exponent g1 by dmin =
g1 + β/ν where β = 5/36 for 2D. However, g1 was later
shown to have the exact value g1 = 25/24 [15, 21], which
implies dmin = 55/48 = 1.145833, identical to Havlin and
Nossal’s earlier conjecture [10].

In 2010, one of us (Deng) and his coauthors con-
jectured an exact expression [16] of dmin for the 2D
critical and tricritical random-cluster model: dmin =
(g + 2)/(g + 18)/32g, where g is the Coulomb-gas cou-
pling constant, related to the random cluster fugacity q
by relation g = (2/π) cos−1(q/2 − 1). This conjecture
is numerically correct up to the third or fourth deci-
mal place for all values of q studied in Ref. [16]. For
the q → 1 limit—i. e., standard bond percolation—the
predicted value dmin=217/192=1.130208 was consistent
with the numerical results in previous works [6, 7, 10, 12–
15]. In addition, the conjectured formula exhibits other
good properties. It reproduces the exact results for the
critical uniform spanning tree (q → 0) as well as for the
tricritical q → 0 Potts model; at the tricritical q → 0
point, the derivative with respect to q is also correct.

The main goal of the present work is to carry out a
high-precision Monte Carlo test of the conjecture in Ref.
[16] in the context of 2D percolation. A numerical esti-
mate of dmin for 3D percolation is also provided. Some
preliminary results of this work were reported in a recent
paper on biased directed percolation [22].

We simulate bond percolation on the square and the
simple-cubic lattice by the Leath-Alexandrowicz algo-
rithm [6, 23], which grows a percolation cluster starting
from a seed site. For each neighboring edge of the seed
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site an occupied bond is placed with occupation proba-
bility p, and the neighboring site is activated and added
into the growing cluster. After all the neighboring edges
of the seed site have been visited, the growing procedure
is continued from the newly added sites. This proceeds
until no more new sites can be added into the cluster
(the procedure dies out) or the initially set maximum
time step ℓmax is reached.
The above procedure is also called breadth-first

growth, and ℓ is equal to the shortest-path length be-
tween the seed site and any activated sites at time step
ℓ. We set ℓ = 1 for the beginning of the growth, and
measure the number of activated sites N(ℓ) as a function
of ℓ. In addition, we record the Euclidean distance ri of
each activated site i to the seed site, and define a radius
by

R(ℓ) =

{

0 if N(ℓ) = 0
√

∑N

i=1 r
2
i if N(ℓ) ≥ 1 .

(2)

The statistical averages, N (ℓ) ≡ 〈N(ℓ)〉 and R(ℓ) ≡
〈R(ℓ)〉, and the associated error bars are calculated. We
also sample the survival probability P(ℓ) that at time
step ℓ, the growing procedure still survives.
At criticality, one expects scaling behavior

N (ℓ) ∼ ℓYN , R(ℓ) ∼ ℓYR , P(ℓ) ∼ ℓ−YP , (3)

where critical exponents YP , YN , and YR are related to
β, ν and dmin by

YN =
γ

νdmin
− 1 , YP =

β

νdmin
,

YR =
γ + 2ν

νdmin
− 1 , (4)

with γ = dν − 2β and d equal to the spatial dimension-
ality. In terms of exponents of epidemic processes [24],
these quantities correspond to δ = YP , η = YN , and
1/z − δ = YR.
To eliminate the unknown non-universal constants in

front of the scaling behaviors (3), we define ratioQO(ℓ) =
O(2ℓ)/O(ℓ) for O = N ,R and P . In the ℓ → ∞ limit,
one has

YN = log2(QN ), YR = log2(QR), YP = − log2(QP).
(5)

In 2D, one has the exactly known exponents β = 5/36,
ν = 4/3, and γ = 43/18 [1, 25–28]. In 3D, the exact
values are unknown, and are numerically found to be
β/ν = 0.4774(1) and ν = 0.8764(7) [29–33].
Initial estimate of dmin for 2D. We first carried out

simulations at the critical point p = 1/2 for bond per-
colation on the square lattice with time step up to
ℓmax = 1024 and the number of samples about 2× 109.
The asymptotic behavior of the observables N , R and

P is expected to follow the form

O(ℓ) = ℓY (a0 + b1ℓ
y1 + b2ℓ

−2) , (6)
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FIG. 1: (Color online) Plot of PℓYP − 0.045ℓ−1 versus ℓ−1 in
2D. The YP value is obtained via Eq. (4) by setting dmin at
1.1302, 1.1304, 1.1306, 1.1308, 1.1310 and 1.1312, following
the arrow.

where higher-order corrections are neglected and the crit-
ical exponent Y is given by Eq. (3). The leading finite-
size correction exponent is known to be y1 = −0.96(6) ≈
−1 [22]. A least-squares criterion was used to fit the data
assuming the above form. With y1 being fixed at −1, the
fit of P gives dmin = 1.1308± 0.0002 and b1 = 0.045(5),
and the fit of N yields dmin = 1.1308± 0.0002.

As an illustration, we plot P ℓYP − 0.045ℓ−1 in Fig. 1
andN ℓ−YN in Fig. 2, both vs. ℓ−1, where the dmin value is
set at a series of values in range [1.1302, 1.1312] in steps of
0.0002, including the above estimate dmin = 1.1308. The
term−0.045ℓ−1 is included in Fig. 1 to remove the overall
slope seen in the data of P ; we did not do this to the N
data (Fig. 2), and there the slope is evident. The values
of YP and YN are obtained from Eq. (4), using the exactly
known values of β and ν. Because the leading corrections
have been subtracted in Fig. 1, it is expected that the
curve for the correct dmin value should asymptotically
become flat and reach a constant. Figure 1 shows that as
ℓ increases, the curve for the conjectured value 217/192 ≈
1.1302 is bending up while the curve for 1.1312 is bending
down. This implies that the correct dmin value should fall
somewhere in between. A similar behavior is seen in Fig.
2, where the curve for 1.1308 is approximately straight
while those for 1.1302 and 1.1312 are bending down and
up, respectively.

Further simulations for 2D. Although the conjectured
number 217/192 seems to be ruled out by the data shown
in Figs. 1 and 2, a more careful analysis is still desirable.
The above analysis makes an assumption that the lead-
ing correction is governed by ℓ−1, but the physical origin
of this term is unclear as the leading irrelevant thermal
scaling field has exponent yi = −2. It is conceivable that
more slowly convergent corrections exist but are not de-
tected by the simulations up to ℓmax=1024. In particular,
percolation can be regarded as a special case of biased-
directed percolation with the symmetry between spatial
and temporal directions restored [22]. In this case, multi-
plicative and/or additive logarithmic corrections can oc-
cur in principle such that the scaling behavior of N ,R
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FIG. 2: (Color online) Plot of N ℓ−YN versus ℓ−1 in 2D. The
YN value is obtained via Eq. (4) by setting dmin at 1.1302,
1.1304, 1.1306, 1.1308, 1.1310 and 1.1312, following the arrow.

and P is modified as

O(ℓ) ∼ [log(ℓ/ℓ0)]
ym ℓY (1 + 1/[log(ℓ/ℓ1)]

yc) , (7)

where ℓ0 and ℓ1 are constants, and ym and yc are the asso-
ciated correction exponents. Corrections of the log log ℓ
form are also possible. We note that due to cancellation
between nominator and denominator, the multiplicative
logarithmic correction will not explicitly appear in ra-
tio QO (O=N , R, P), for which the scaling behavior is
modified as

QO(ℓ) = 2Y
(

1 + 1/[log(ℓ/ℓ1)]
y′

c

)

, (8)

where y′c can be equal to yc or |ym|, depending on the
relative amplitudes of the terms associated with them.
To investigate this, we carried out more extensive sim-

ulations up to ℓmax = 16384. The number of samples was
4.5× 1010 for ℓ ≤ 1024, 5× 109 for 1024 < ℓ ≤ 4096, 109

for 4096 < ℓ ≤ 8192, and 3× 108 for ℓ > 8192.
From the QO data, we calculate the dmin(ℓ) value by

Eqs. (4) and (5). Table I displays the resulting values
of dmin(ℓ) from the ratios QN , QR and QP . It can be
clearly seen that for ℓ ≤ 3072, the dmin values that de-
rive from N and R increase monotonically as ℓ increases.

Further, by looking at the d
(N )
min(L) or the d

(R)
min(L) data for

L = 1024, 2048, 4096 and 8192, one can safely conclude
that the asymptotic value dmin is larger than 1.1307.
For clarity, these data are plotted in Fig. 3. The conjec-
ture dmin = 217/192 would mean that the monotonically

increasing curves for d
(N )
min and d

(R)
min must bend downward

as ℓ become larger, and thus a very rapid drop would oc-
cur near origin (1/ℓ → 0) in the inset of Fig. 3, which

seems very unlikely. The d
(P)
min data are less accurate and

not shown in Fig. 3.
We fit the dmin(ℓ) data by

dmin(ℓ) = dmin + b1 ℓ
y1 + b2 ℓ

−2 , (9)

ℓ d
(N )
min d

(R)
min d

(P)
min

12 1.112 909(3) 1.102 251(2) 1.099 42(3)
16 1.117 007(4) 1.109 204(2) 1.106 44(3)
24 1.121 303(4) 1.116 112(2) 1.114 18(3)
32 1.123 540(4) 1.119 588(2) 1.118 10(3)
48 1.125 835(4) 1.123 109(2) 1.122 14(3)
64 1.127 007(4) 1.124 902(2) 1.124 20(3)
96 1.128 215(4) 1.126 743(2) 1.126 32(3)
128 1.128 826(4) 1.127 685(2) 1.127 38(3)
192 1.129 445(4) 1.128 647(2) 1.128 44(3)
256 1.129 755(4) 1.129 140(2) 1.128 99(3)
384 1.130 083(4) 1.129 653(2) 1.129 57(3)
512 1.130 251(4) 1.129 914(2) 1.129 83(3)
768 1.130 42(2) 1.130 180(6) 1.130 15(9)
1024 1.130 49(2) 1.130 317(6) 1.130 36(9)
1536 1.130 58(2) 1.130 455(7) 1.130 33(9)
2048 1.130 63(2) 1.130 532(7) 1.130 27(9)
3072 1.130 70(3) 1.130 61(2) 1.130 5(2)
4096 1.130 68(3) 1.130 62(2) 1.130 6(2)
6144 1.130 72(7) 1.130 65(4) 1.130 9(5)
8192 1.130 80(7) 1.130 72(4) 1.130 8(5)

TABLE I: Results for dmin from QN , QR and QP in 2D.
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FIG. 3: (Color online) Plot of dmin versus ℓ in 2D, deduced
from QN and QR. The inset shows dmin versus ℓ−1. The solid
and dashed horizontal lines correspond to dmin = 1.13077
and 217/192, respectively. The red (upper) and blue (lower)
curves are obtained from the fits.

using a least-squares criterion. The data for small ℓ <
ℓmin were gradually excluded to see how the residual
χ2 changes with respect to ℓmin. Table II lists the fit-

ting results for d
(N )
min , d

(R)
min and d

(P)
min. From these fits,

we obtain d
(N )
min = 1.130 77(3), d

(R)
min = 1.130 77(2) and

d
(P)
min = 1.130 66(15). Note that to account for potential

systematic errors, the error bars in these final estimates
are taken to be significantly larger than those statistical
ones in Tab. II. Considering the stability of the fit results
in Tab. II, we believe that the estimated error margins
are reliable. We note that the coefficient b2 cannot be
determined well in the fits for ℓmin > 32. Thus, fits with
b2 = 0 were also carried out, and the results agree with
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ℓmin χ2 d.o.f dmin b1 b2 y1

d
(N )
min 16 13 15 1.130 759(5) −0.206(2) 0.15(2) −0.961(3)

24 12 14 1.130 764(6) −0.202(4) 0.12(3) −0.957(5)
32 12 13 1.130 763(8) −0.204(6) 0.13(6) −0.958(7)
48 11 12 1.130 766(10) −0.20(1) 0.1(2) −0.95(1)
64 7 11 1.130 780(12) −0.18(2) 0.4(3) −0.93(2)

d
(R)
min 24 20 14 1.130 776(4) −0.265(2) −0.19(2) −0.918(2)

32 13 13 1.130 771(4) −0.270(3) −0.14(3) −0.922(2)
48 12 12 1.130 768(5) −0.273(5) −0.08(7) −0.925(4)
64 10 11 1.130 772(7) −0.266(7) −0.2(2) −0.920(5)

d
(P)
min 16 8 15 1.130 67(4) −0.39(2) 0.41(9) −0.99(1)

24 8 14 1.130 66(5) −0.40(4) 0.5(3) −0.99(2)
32 8 13 1.130 66(6) −0.41(5) 0.6(5) −0.99(3)
48 8 11 1.130 65(7) −0.4(1) 0.8(11) −1.00(5)
64 8 11 1.130 64(8) −0.4(2) 1(2) −1.01(8)

TABLE II: Fitting results of dmin in 2D, for various cutoffs
ℓmin. “d.o.f.” stands for “degrees of freedom.”

ℓ d
(N )
min d

(R)
min d

(P)
min

12 1.364 7(2) 1.358 44(8) 1.357 6(4)
16 1.365 4(2) 1.363 14(8) 1.359 7(4)
24 1.366 8(2) 1.367 22(8) 1.363 1(4)
32 1.367 9(2) 1.369 01(9) 1.365 6(4)
48 1.369 4(2) 1.370 69(9) 1.368 4(4)
64 1.370 4(2) 1.371 52(9) 1.369 9(4)
96 1.371 6(2) 1.372 42(9) 1.371 8(4)
128 1.372 3(2) 1.372 94(9) 1.372 8(4)
192 1.373 1(2) 1.373 50(9) 1.373 8(4)
256 1.373 5(2) 1.373 78(9) 1.374 4(4)
384 1.374 1(2) 1.374 19(9) 1.375 0(4)
512 1.374 4(2) 1.374 49(9) 1.375 3(4)
768 1.374 6(2) 1.374 7(2) 1.375 4(5)
1024 1.374 6(3) 1.374 7(2) 1.376 0(5)

TABLE III: Results for dmin from QN , QR and QP in 3D.

our above estimates of dmin.
We also simulated critical site percolation on an L×L

triangular lattice with periodic boundary conditions; this
system is known to have zero amplitude of the leading
irrelevant scaling field with exponent yi = −2. A row of
lattice sites was chosen, and all the occupied sites on this
row were assumed to belong to the same cluster. The
Leath-Alexandrowicz method was then used to grow the
cluster. The chemical radius ℓ of the completed cluster
was measured. From scaling ℓ ∼ Ldmin, we determine
dmin = 1.130 7(1), also ruling out the conjectured value.
Results for 3D. We simulated bond percolation on the

simple-cubic lattice at the central value of the recently
estimated critical point p = 0.248 811 8(1) [33], which is
slightly below the previous value of p = 0.248 812 6(5)
[34]. The simulation was carried up to ℓmax = 2048, with
the number of samples 7× 109 for ℓ ≤ 1024 and 2 × 109

for ℓ > 1024. Analogous to the procedure on the square
lattice, we sampled N , R, P and studied the ratios QN ,

QR, QP . The values of d
(O)
min deduced from these ratios
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ℓmin χ2 d.o.f dmin b1 b2 y1

d
(N )
min 8 6 11 1.376 1(3) −0.062(7) 0.50(5) −0.57(4)

12 3 10 1.375 7(3) −0.08(2) 0.7(2) −0.64(6)
16 2 9 1.375 6(4) −0.09(3) 0.9(3) −0.68(8)
24 2 8 1.375 4(4) −0.12(6) 1.4(9) −0.7(2)
32 2 7 1.375 3(4) −0.2(1) 2(2) −0.8(2)

d
(R)
min 8 7 11 1.375 4(2) −0.045(4) −1.99(3) −0.60(3)

12 2 10 1.375 7(3) −0.035(5) −1.13(7) −0.53(5)
16 2 9 1.375 8(3) −0.033(6) −1.2(2) −0.51(6)
24 2 8 1.375 7(4) −0.03(1) −1.1(3) −0.52(9)
32 2 7 1.375 7(4) −0.04(2) −0.9(6) −0.6(2)

d
(P)
min 8 7 11 1.376 6(4) −0.19(4) 1.0(2) −0.80(6)

12 4 10 1.376 5(5) −0.23(8) 1.3(5) −0.8(1)
16 3 9 1.376 5(5) −0.2(1) 1.3(9) −0.8(2)
24 3 8 1.376 5(7) −0.2(2) 1(2) −0.8(3)

TABLE IV: Fitting results of dmin in 3D.

with β/ν = 0.4774(1) are listed in Table III. The fitting

results are shown in Table IV and yield d
(N )
min = 1.375 6(6),

d
(R)
min = 1.375 7(6), d

(P)
min = 1.376 5(10), and y1 = −0.7(2).

The data of d
(N )
min(ℓ) and d

(R)
min(ℓ) versus ℓ

−0.7 are further
shown in Fig. 4, where the exponent 0.7 reflects the value
of y1.

In conclusion, we determined the shortest-path frac-
tal dimension dmin for percolation in 2D and 3D to be
1.130 77(2) and 1.375 6(6) respectively. For the 2D value,
we use the result which follows from R(ℓ) and has the
smallest error bars. To our knowledge, these are the
most accurate values currently available. The conjec-
tured value in 2D, dmin = 217/192 [16], is ruled out
with a high probability. Grassberger’s earlier conjecture
dmin = 26/23 [3] is also ruled out. The 3D result repre-
sents a substantial increase in precision over the previous
values of 1.34(1) [14] and 1.374(4) [4].
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