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We review two formulations of the fully nonlinear local induction equation approximating the
self-induced motion of the vortex filament (in the local induction approximation), corresponding
to the Cartesian and arclength coordinate systems, respectively. The arclength representation, put
forth by Umeki, results in a type of 1+1 derivative nonlinear Schrödinger (NLS) equation describing
the motion of such a vortex filament. We obtain exact stationary solutions to this derivative NLS
equation; such exact solutions are a rarity. These solutions are periodic in space and we determine
the nonlinear dependence of the period on the amplitude.
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The self-induced velocity of a vortex filament has been
described by the approximation v = γκt×n (Da Rios [1],
Arms and Hama [2]), where t and n are unit tangent and
unit normal vectors to the vortex filament, respectively,
κ is the curvature and γ is the strength of the vortex fila-
ment. The Da Rios equations have an interesting history
stretching back over the last century; for an interesting
account of the history of the Da Rios equations, see Ricca
[3]. A discussion of the mathematical formulation of the
problem governing the self-induced motion of a vortex
filament can be found in Widnall [4], where applications
to vortices trailing aircraft are also discussed.

A number of methods have been employed to study
the Da Rios equations, particularly the local induction
approximation (LIA). Shivamoggi and van Heijst [5] re-
cently reformulated the Da Rios equations in the extrinsic
vortex filament coordinate space and were able to find an
exact solutions to an approximate equation governing a
localized stationary solution in the LIA. Exact stationary
solutions to the LIA in extrinsic coordinate space have
been found by Kida [6] in the case of torus knots, and
these solutions were given in terms of elliptic integrals.
By re-writing the LIA in cylindrical-polar coordinates,
Ricca also obtained torus knot solutions - which were
asymptotically equivalent to Kida’s solutions - in explicit
analytic form and derived a stability criterion (see, e.g.,
[7], [8], [9], [10]). Static solutions to the LIA have also
been found by Lipniacki [11]. See also Ricca [12] for a
discussion of the physical invariants obtained under LIA.

While solutions under various approximations to the
LIA are indeed useful for certain applications, the study
of the fully nonlinear equations governing the self-
induced motion of a vortex filament in the LIA is it-
self with merit. The fully nonlinear equation govern-
ing the self-induced motion of a vortex filament in the
LIA was previously derived in Van Gorder [13, 14] in
the Cartesian coordinate space. To this end, consider
the vortex filament essentially aligned along the x-axis:

r = xix + y(x, t)iy + z(x, t)iz. We then have that

t =
dr

ds
=
dr

dx

dx

ds
= (ix + yxiy + zxiz)

dx

ds

and v = ytiy + ztiz, where
dx
ds = 1/

√

1 + y2x + z2x. From
the governing equation v = γκt × n, we compute the
quantities

yt = −γzxx
(

dx

ds

)3

= −γzxx
(

1 + y2x + z2x
)−3/2

,

zt = γyxx

(

dx

ds

)3

= γyxx
(

1 + y2x + z2x
)−3/2

,

(1)

and, upon defining Φ(x, t) = y(x, t) + iz(x, t), it was
shown in Van Gorder [14] that the coupled system of
real partial differential equations (1) reduces to the sin-
gle complex partial differential equation

iΦt + γ
(

1 + |Φx|2
)

−3/2

Φxx = 0 . (2)

Dmitriyev [15] considered the approximation iΦ+γΦxx =
0, while Shivamoggi and van Heijst [5] considered a
quadratic approximation to the nonlinearity in (2). The
full nonlinear equation was obtained in [13]. In order to
recover y and z once a solution Φ to (2) is known, note
that y = Re Φ and z = Im Φ. Some mathematical prop-
erties of equation (2) were discussed in Van Gorder [14] in
the case where periodic stationary solutions are possible,
though a systematic study of all such stationary solutions
was not considered. In Van Gorder [16] a more system-
atic approach was taken to classify all such stationary
solutions Φ(x, t) = e−iγtψ(x) to (2). Spatially-periodic
solutions (2) were shown to be governed by an implicit
relation involving the sum of elliptic integrals of differ-
ing kinds. The amplitude of such periodic solutions was
shown to obey |ψ| <

√
2.

The formulation (2), corresponding to the Cartesian
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coordinate system, is one possible way to describe the
fully nonlinear self-induced motion of a vortex filament
in the LIA. Umeki [17] obtained an alternate formula-
tion, applying an arclength-based coordinate system as
opposed to a Cartesian coordinate system. Umeki de-
fines r = t × ts, where s is the arclength element. Now,
tt = t × tss. Let us write t = (τx, τy , τz). Then Umeki
defines the complex field v by

τx + iτy =
2v

1 + |v|2 , τz =
1− |v|2
1 + |v|2 . (3)

The relation tt = t× tss then implies

(τx + iτy)t = i((τx + iτy)ssτz − (τx + iτy)τzss) ,

2τzt = i((τ∗x + iτ∗y )ss(τx + iτy)− (τ∗x + iτ∗y )(τx + iτy)ss) .

From here, Umeki [17] then found

ivt + vss − 2v∗v2s/(1 + |v|2) = 0 , (4)

where v denotes directly the tangential vector of the fila-
ment. While the Cartesian and arc-kength formulations
are obtained through different derivations, both formu-
lations are equivalent to the localized induction equation
(LIE). Umeki [18] showed that there exists a transfor-
mation between solutions to (2) and solutions to (4). A
plane wave solutions to (4) exists [18], and Umeki [18]
was also able to show that the famous 1-soliton solution
of Hasimoto [19] is given by

v(s, t) =
ν sech (k(s− ct))

ν sech2 (k(s− ct))− 2

(

tanh (k(s− ct))− ic

2k

)

,

ν = 2k2/(4k2 + c2), 0 < ν < 1/2 in the arclength repre-
sentation.

We now turn our attention to obtaining stationary so-
lutions, which has not been done for the local induction
equation in the arclength representation. Let us consider
the ansatz

v(s, t) = e−iα2tq(αs) , (5)

where q is assumed to be a real-valued function, which
puts (4) into the form

q + qss −
2qq2s
1 + q2

= 0 . (6)

Hence, the solution (5) is invariant under α ∈ R, so with-
out loss of generality we shall consider α = 1 henceforth.
We should remark that a factor of e+iα2t in (5) results
in unstable solutions, so the ‘−’ case in the exponent is
what we limit our attention to. Also note that (6) is
essentially a nonlinear oscillator provided 2q2s < 1 + q2.

Our goal is to obtain an exact solution for (6), and

FIG. 1: (Color online) Phase portrait in (q, qs) for the solution
to the fully nonlinear oscillator equation modelling the local
induction equation under the arclength representation.

defining a conserved quantity will greatly help in con-
structing a second integral. To this end, let us define the
quantity

E = −q
2
s − q2 − 1

(1 + q2)2
, (7)

E ∈ (0, 1). Observe that the quantity is conserved:

dE

ds
= − 2qs

(1 + q2)

(

q + qss −
2qq2s
1 + q2

)

= 0 . (8)

For a fixed value of E, we find that

q2s = (1 + q2)
(

1− (1 + q2)E
)

, (9)

and, upon separating variables,

∫ q

q0

dξ
√

(1 + ξ2) (1− (1 + ξ2)E)
= ±(s− s0) , (10)

where q0 = q(s0) is a second arbitrary constant. Perform-
ing the required integration, we obtain the expression

1√
E
F

( √
E√

1− E
q,

√
1− E√
E

i

)

= ±(s− ŝ) , (11)

where ŝ is a constant involving s0 and q0. Here, F is the
elliptic integral of the first kind.

Inverting (11) to obtain q(s), we find that

q(s) =

√
1− E√
E

sn

(

±
√
E(s− ŝ),

√
1− E√
E

i

)

, (12)

where sn(a, b) denotes the Jacobi elliptic function. While
(12) is a closed form expression, it involves the conserved
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FIG. 2: (Color online) Plots of the solution q(s) given in (14)
for various values of the amplitude A. Note that the period
of the solutions is strongly influenced by the amplitude. The
nonlinear dependence of the period T with the amplitude A
is shown graphically in Fig. 3.

quantity E, which is perhaps not so satisfying. Note that
the amplitude of q may be found from (9); setting qs = 0,
we find that the amplitude A = A(E) is given by

A = max
s

|q(s)| =
√
1− E√
E

. (13)

It follows that E = 1/(1 +A2), hence (12) becomes

q(s) = A sn

(

± 1√
1 +A2

(s− ŝ), Ai

)

. (14)

With this we have obtained an exact stationary solution
q(s) in terms of amplitude A. In Fig. 1 we plot the phase
portrait for q versus qs, which demonstrates the exact
periodic solutions. In Fig. 2, we display solution profiles
for various values of the amplitude A. We should remark
that in the Cartesian case, solutions to models which are
low-order approximations to the fully nonlinear model
agree well for small amplitudes [16], and we expect the
same will hold here (though we omit the details of any
approximating models here).

A similar exact solution was obtained by Hasimoto
[20], through a different derivation, for a two-dimensional
model (recall that our model is three-dimensions). Hasi-
moto’s derivation started with v = Y iy, as opposed
to v = ytiy + ztiz. Assuming a stationary solu-
tion, Hasimoto’s assumption leads to an equation Yxx +
Ω

γ

(

1 + Y 2
x

)3/2
Y = 0. Hasimoto finds a solution Y =

Acn(ξ, k) (where x = x(ξ), ξ is a parametrization link-
ing Y and x implicitly), which has initial conditions
Y (0, k) = A and Y ′(0) = 0. Hence, Hasimoto’s solu-
tion for the two-dimensional problem is a direct analogy

to the solution for the three-dimensional problem we’ve
found here under the arclength representation.

Observe the nonlinear dependence of the period on the
amplitude. From this exact relation, we see that the
period T = T (A) obeys the relation

T (A) = 4
√

1 +A2

∫ π

2

0

dθ
√

1 +A2 sin2 θ

= 4K

(

A√
1 +A2

)

,

(15)

where K is the elliptic quarter period. Recalling the
asymptotic expansion

K(m) ≈ π

2
+
π

8

m2

1−m2
− π

16

m4

1−m2
(16)

which is a good approximation for m < 1/2, we have

T (A) ≈ 2π +
π

2
A2 − π

4

A4

1 +A2
, (17)

which in turn is a good approximation for the small-
amplitude regime A < 1/

√
3. The large amplitude

asymptotics are slightly less standard. For m > 2, there
exists an accurate asymptotic expansion

4K

(

1− 1

m

)

≈ J(m) , (18)

where

J(m) =4

(

1 +
1

m
+

5

16m2
+

7

32m3

)

ln
(

2
√
2m
)

−
(

1

m
+

7

8m2
+

17

24m3

)

.

(19)

When m > 2, the argument of K is less than or equal to
1/2. Thus,

T (A) ≈ J

( √
1 +A2

√
1 +A2 −A

)

(20)

is a good approximation for A > 1/
√
3.

In Fig. 3, we plot the the period T (A) of the solution
(14) versus the amplitude A. The approximate asymp-
totic solutions are also included in their valid regions.
Then, in Fig. 4, we plot the relative error in these approx-
imations, showing the agreement between the exact and
asymptotic solutions. For the A > 1/

√
3 asymptotics,

only retaining the logarithmic term (as a lowest order
approximation) is not completely sufficient, as demon-
strated in Fig. 4.

We have found an exact stationary solution for the
self-induced motion of a vortex filament in the arclength
representation of the LIA. Such a formula is interesting in
both it’s simplicity and it’s potential applications. Note
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FIG. 3: (Color online) Plot of the period T (A) of the solution
(14) versus the amplitude A. The exact relation is found by
numerically plotting (15). Note that both the A < 1/

√
3

and A > 1/
√
3 asymptotic expansions are excellent fits to the

exact relation.

FIG. 4: (Color online) Relative error |T (A)− Tapprox|/|T (A)|
of the approximations to T (A). We also include the lowest
order approximation T (A) ≈ 4 ln(2

√
2m) for the A > 1/

√
3

case. We see the good agreement with the A < 1/
√
3 asymp-

totics and A > 1/
√
3 asymptotics where needed.

that this representation is simpler than that found in
the Cartesian representation; in particular, the integral
representation permits a clean inversion so that we may
obtain solutions in the form (14). In the Cartesian case,
however, the solutions were defined implicitly by a lin-
ear combination of elliptic integrals, which was then in-
verted numerically. Umeki [18] gives a relation between
the arclength and Cartesian representations which can
be used to map the arclength formula into a formula for
the Cartesian representation. This involves complicated
mathematical expressions and we omit the details of this
inversion here.

We should remark that, while interesting, the physical
scenario considered here is certainly not the only case of
interest. The behavior of a vortex filament in a super-
fluid is another area of current research [21]-[29], since it
grants us a model of superfluid turbulence. The nonlin-
ear motion of a vortex filament in a superfluid has been
previously studied in the case of a Cartesian coordinate
system, in the form of a partially linearized model [30]
and, more recently, a fully nonlinear model [31]. In devel-
oping these models, one begins with the local induction
equation and adds terms due to the ambient superfluid;
see [30]. It is possible that, in an arclength coordinate
system, the solution representation for the fully nonlinear
model can be simplified. The application of the present
results to the study of the motion of a vortex filament in
a superfluid, under the arclength formulation, is certainly
possible. In particular, it becomes clear that the solution
presented here would serve as the order-zero perturbation
theory for the superfluid case, with higher-order correc-
tions resulting from the superfluid friction parameters
[31, 32]. Along these lines, see also [33]. Since we were
able to obtain an explicit exact stationary solution in the
present geometry, perhaps the arclength formulation will
prove most useful int eh study of such superfluid models.
This is one potential area of future work.
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