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We present a method for approximating the solution of the three–dimensional, time–dependent
Gross–Pitaevskii equation (GPE) for Bose–Einstein condensate systems where the confinement in
one dimension is much tighter than in the other two. This method employs a hybrid Lagrangian
variational technique whose trial wave function is the product of a completely unspecified function
of the coordinates in the plane of weak confinement and a gaussian in the strongly confined direction
having a time–dependent width and quadratic phase. The hybrid Lagrangian variational method
produces equations of motion that consist of (1) a two–dimensional, effective GPE whose nonlinear
coefficient contains the width of the gaussian and (2) an equation of motion for the width that
depends on the integral of the fourth power of the solution of the 2D effective GPE. We apply
this method to the dynamics of Bose–Einstein condensates confined in ring–shaped potentials and
compare the approximate solution to the numerical solution of the full 3D GPE.

PACS numbers: 03.75.Gg,67.85.Hj,03.67.Dg

I. INTRODUCTION

Recent advances in laser–control technology have en-
abled the laboratory realization of Bose–Einstein con-
densate (BEC) systems subjected to all–optical poten-
tials which provide strong confinement in a horizontal
plane and an arbitrary potential within this plane. These
potentials can be produced by a combination of a hori-
zontal light sheet combined with a rapidly moving red–
or blue–detuned vertical laser that “paints” an arbitrary
time–averaged optical dipole potential in the horizontal
plane [1]. Horizontal light sheets can also be combined
with vertically propagating beams in specialized laser
modes, such as Laguerre–Gauss modes, to produce other
types of novel potentials [2]. In addition to providing
strong vertical confinement and counteracting the effect
of gravity, the light sheet provides stabilization against
dynamic excitations of the condensate [3] as well as ther-
mal phase fluctuations [4].
The ability to create and probe quasi–2D BECs in

arbitray 2D potentials is motivated by several areas of
current ultra–cold atom research. For example, conden-
sates in toroidal traps and ring lattices can be stud-
ied. Stable states of multiple vortices and persistent
currents can be created and studied by stirring the con-
densate [2, 5, 6]. There are proposals for creating ring
lattices and for studying non–equilibrium phase transi-
tions within this geometry [7–9]. Toroidal geometries are
well–suited for studying topological defects that may ap-
pear during a rapid cooling process that produces a con-
densate [10, 11]. There is some indication that stirring
within a ring–lattice geometry can produce a coherent
superposition of states with different circulation which
can lead to a reduction in the threshold of the Mott–
Insulator phase transition [12]. These systems also offer
an excellent finite–sized testbed for systems of ultra–cold

atoms that mimic condensed–matter systems [13].

Quasi–2D BECs may also provide a convenient plat-
form for studying systems of ultra–cold neutral atoms
that are analogs of electronic materials, devices, and cir-
cuits [14]. Such systems are called “atomtronic” because
strongly interacting Bose gases in a lattice potential are
analogous to “electronic” systems of electrons moving in
the periodic lattice potential of a crystalline solid. The
ability to produce arbitrary potentials in the plane of the
quasi–2D condensate may enable the controlled study of
novel atomtronic systems. In particular it may be possi-
ble to produce circuit–like potentials within the plane.

The behavior of many of the above–mentioned ultra–
cold bosonic systems can be described using mean–field
theory. In this case, the governing equation is the time–
dependent Gross–Pitaevskii equation (TDGPE) [15, 16].
This is a partial differential equation in three space vari-
ables and one time variable whose solution represents the
wave function of the single–particle orbital that all of
the condensate atoms occupy. Experiments conducted
on these systems typically involve releasing the conden-
sate for imaging. In this case solution of the 3D TDGPE
becomes a challenging numerical problem due to the vol-
ume that must be accounted for in simulating the exper-
iment.

In this paper, we present a variational approximation
to the solution of the TDGPE for these quasi–2D systems
which produces equations of motion whose numerical so-
lution can be obtained 100 to 1000 times faster than solv-
ing the full 3D TDGPE. This approximation is based on
a variant of the standard Lagrangian Variational Method
(LVM) [17] in which some of the variational parameters
are functions of the space coordinates and time while oth-
ers are only functions of time. The work presented here
applies this “hybrid” version of the LVM to a quasi–2D
systems of bosonic atoms. The hybrid LVM was previ-



2

ously applied to a quasi–1D system where only one di-
mension was weakly confined compared to the two other
dimensions [18].

This paper is organized as follows. In Section II we
describe the LVM and its hybrid form and derive the
approximate equations of motion. We also derive the
equations that provide the proper variational stationary
solution in which a condensate is trapped in a confining
potential. Section III presents a comparison of the so-
lution of the hybrid LVM equations of motion with the
numerical solution of the 3D TDGPE for a BEC con-
fined in a ring–shaped potential. The parameters for this
example system were taken from an actual experiment.
Section IV presents a summary of the work.

II. TWO–DIMENSIONAL HYBRID LVM

EQUATIONS OF MOTION

The condensate wave function of a BEC that is
strongly confined in one dimension (z direction) rela-
tive to the confinement in the other two dimensions (xy
plane) can often be approximated as the product of a
function of x and y only with a gaussian function of z
only. In the mean–field approximation, the actual behav-
ior of the condensate wave function is governed by the 3D,
time–dependent, Gross–Pitaevskii equation. However, it
is possible to find equations of motion from which the
approximate product wave function can be constructed
at each moment of time using the Lagrangian Variational
Method. We briefly describe this method next.

A. The Lagrangian variational method

The Lagrangian Variational Method provides approx-
imate solutions to the 3D TDGPE in the form of equa-
tions of motion for time–dependent parameters that ap-
pear in an assumed trial wave function. Thus, in the
standard LVM, the exact solution of the 3D TDGPE re-
quiring the solution of a partial differential equation in
three space and one time variable is traded for the so-
lution of ordinary differential equations in time for the
variational parameters of a trial wave function of fixed
functional form.

The 3D TDGPE can be written as

ih̄
∂Ψ

∂t
= − h̄2

2M
∇2Ψ+ Vtrap(r)Ψ + gN |Ψ|2 Ψ, (1)

whereM is the mass of a condensate atom, g = 4πh̄2a/M
is the interaction strength of low–energy binary scatter-
ing events with a being the s–wave scattering length, N
is the number of atoms in the condensate, and Vtrap(r)
is the external potential.

The TDGPE is itself a variational equation–of–motion

and is derived from the following Lagrangian density:

L[Ψ] = 1
2 ih̄ (ΨΨ∗

t −Ψ∗Ψt) +
h̄2

2M

∑

η=x,y,z

Ψ∗
ηΨη

+ Vtrap(r)Ψ
∗Ψ+ 1

2gN (Ψ∗)2 (Ψ)2 (2)

where Ψη ≡ ∂Ψ/∂η and η = x, y, z, t. The associ-
ated Euler–Lagrange equation that produces the TDGPE
with the above Lagrangian density is given by

∑

η=x,y,z,t

∂

∂η

(

∂L
∂Ψ∗

η

)

− ∂L
∂Ψ∗ = 0 (3)

The LVM is an approximation method that produces
an equation of motion for the n time–dependent varia-
tional parameters, q1(t), . . . , qn(t), appearing in a given
trial wave function Ψ = ψtrial(r; q1, . . . , qn). The equa-
tions of motion for these parameters are obtained by in-
serting the trial wave function into the LVM Lagrangian
density, integrating this over the spatial variables:

LLVM(q1(t), . . . , qn(t)) =

∫

d3rL [ψtrial(r, t)] , (4)

and applying the usual Euler–Lagrange equations:

d

dt

(

∂LLVM

∂q̇j

)

− ∂LLVM

∂qj
= 0. j = 1, . . . , n. (5)

This is the standard Lagrangian Variational Method [17].
The LVM can be regarded as having two limits in terms

of the chosen trial wave function. The first limit consists
of choosing a trial wave function where the variational
“parameter” is Ψ(r, t). This choice enables the varia-
tional solution to vary in any possible way. As noted
above, when Eq. (3) is applied to the Lagrangian density
L[Ψ] to derive the equation of motion, it turns out to
be the full TDGPE. In the other limit, the trial wave
function is chosen to have a fixed functional form of
the spatial coordinates where the time dependence re-
sides entirely within a set of variational parameters, so
that the Lagrangian depends only on these parameters,
LLVM[q1, . . . , qn]. The shape of this trial wave function
can only be varied by changing the values of the qj . The
equations of motion for the qj(t) are ordinary differential
equations in time and are obtained from the usual Euler–
Lagrange equations, Eqs. (5). It is also possible to choose
a “hybrid” trial wave function that plots a course mid-
way between these two limits. We describe this approach
now.

B. The hybrid LVM

The “Hybrid Lagrangian Varational Method” (HLVM)
is an LVM in which the trial wave function consists of a
completely unspecified function of some of the spatial
coordinates, φ(x, y, t), multiplied by a fixed function of
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the rest of the coordinates that also contains some time–
dependent variational parameters, q1(t), . . . , qn(t). The
HLVM is expected to apply to systems where there is
tight confinement in one or two dimensions. The coor-
dinates appearing in φ are those for which the confine-
ment is weak while the trial wave function is assumed to
be gaussian in the coordinates of tight confinment. The
HLVM for tight confinement in two dimensions has been
studied earlier [18]. Here we study the case where there
is tight confinement in one dimension only.
Coupled equations of motion can be derived from a

“hybrid” Lagrangian which is constructed by integrat-
ing the Lagrangian density L in Eq. (2) over the space
coordinate(s) of the tightly confined direction(s). The re-
sulting hybrid Lagrangian can be used to derive coupled
equations of motion for both φ and the set of variational
parameters {q1, . . . , qn}.
Before proceeding with the derivation of these equa-

tions of motion, we will first introduce scaled variables
and rewrite the LVM equations in terms of these vari-
ables. Scaled units are referenced to a chosen unit of
length, denoted by L0, and scaled spatial coordinates are
given by

x̄ ≡ x

L0
, ȳ ≡ y

L0
, z̄ ≡ x

L0
. (6)

Energy and time units are defined in terms of L0 enabling
the definition of a scaled time:

E0 ≡ h̄2

2ML2
0

, T0 ≡ h̄

E0
, t̄ ≡ t

T0
. (7)

Hereafter barred symbols will denote quantities expressed
in their appropriate scaled units. It will also be conve-
nient to express the solution of the 3D TDGPE in terms
of scaled units:

Ψ (r, t) ≡ L
−3/2
0 Φ (r̄, t̄) . (8)

In terms of these variables the TDGPE becomes

i
∂Φ

∂t̄
= −

(

∂2Φ

∂x̄2
+
∂2Φ

∂ȳ2
+
∂2Φ

∂z̄2

)

+ V̄trapΦ+ ḡN |Φ|2 Φ,
(9)

where ḡ ≡ g/(E0L
3
0). In scaled units, the Lagrangian

density takes the form:

L̄[Φ] = 1
2 i (ΦΦ

∗
t̄ − Φ∗Φt̄) +

(

Φ∗
x̄Φx̄ +Φ∗

ȳΦȳ +Φ∗
z̄Φz̄

)

+ V̄trapΦ
∗Φ+ 1

2 ḡN (Φ∗)2 Φ2, (10)

and the scaled Euler–Lagrange equation becomes:

∑

η=x̄,ȳ,z̄,t̄

∂

∂η

(

∂L̄
∂Φ∗

η

)

− ∂L̄
∂Φ∗ = 0 (11)

Now we turn to the description of the hybrid Lagrangian
Variational Method.
In deriving the HLVM equations of motion we will as-

sume that the trapping potential can be written (at least

approximately) as the sum of a part that depends only
on the loosely confined coordinates (here x and y) and
a part that is harmonic in the tightly bound direction.
Under this assumption we can write the potential as:

V̄trap(x̄, ȳ, z̄) ≡ V̄‖(x̄, ȳ) + λ2z̄2, (12)

where λ is the strength of the vertically confining har-
monic potential. This form of the potential applies in
many realistic experimental cases such as the painted po-
tentials mentioned earlier.
The trial wave function for the HLVM equations of

motion is written as follows:

Φtrial(x̄, ȳ, z̄, t̄) = φ(x̄, ȳ, t̄)A(t̄)e−z̄2/2w̄2(t̄)+iβ̄(t̄)z̄2

. (13)

Here the trial wave function is a product of a completely
unspecified function φ(x̄, ȳ, t̄) with a gaussian function
having a time–dependent width w̄(t̄) and quadratic phase
coefficient β̄(t̄). These are the variational parameters
that will appear in the HLVM equations of motion. The
parameter A(t̄) is an overall factor that will later be elim-
inated via normalization.
The presence of the quadratic phase parameter, β̄(t̄),

enables the modeling of the expansion of the condensate
when released from the trap, a probe that is often used
in experiment. Since the velocity distribution of the con-
densate is given by the gradient of the phase, there can
be no transverse motion without this parameter being
present. The presence of this term also distinguishes this
work from another similar variational formulation, de-
scribed in Refs. [19] and [20], where the transverse gaus-
sian width varies in space but is fixed in time.
The first step in the hybrid LVM consists of construct-

ing a “hybrid” Lagrangian by integrating only over the
spatial coordinate along which the system is strongly con-
fined:

L̄hybrid[φ,A, w̄, β̄] ≡
∫ ∞

−∞
dz̄L̄

[

φAe−z̄2/2w̄2+iβ̄z̄2
]

. (14)

The resulting hybrid Lagrangian is given by

L̄hybrid[φ, w̄, β̄] = i
2 (φφ

∗
t̄ − φ∗φt̄) + φ∗x̄φx̄ + φ∗ȳφȳ

+ φ∗φ

(

1
2
˙̄βw̄2 + 1

2w̄2 + 2β̄2w̄2 + V̄‖

+ 1
2λ

2w̄2

)

+ 1
2 ḡN (φ∗)2 (φ)2

(

1√
2πw̄

)

.

(15)

In the above we have eliminated the variational parame-
ter A using the normalization constraint:
∫

d3r̄ |Φ|2 =

(
∫ ∞

−∞
dx̄

∫ ∞

−∞
dȳ |φ|2

)

(

|A|2 π1/2w̄
)

= 1

and by requiring that the separate parts of the product
wave function to be separately normalized to unity:

∫ ∞

−∞
dx̄

∫ ∞

−∞
dȳ |φ|2 = 1, |A|2 π1/2w̄ = 1. (16)



4

The second step in the HLVM is to apply the Euler–
Lagrange equations of motion to L̄hybrid to obtain the
equations of motion. The equation for φ is a modified
version of Eq. (11):

∂

∂x̄

(

∂L̄hybrid

∂φ∗x̄

)

+
∂

∂ȳ

(

∂L̄hybrid

∂φ∗ȳ

)

− ∂L̄hybrid

∂φ∗
= 0 (17)

and the Euler–Lagrange equations for w̄ and β̄ are the
usual ones:

d

dt̄

(

∂L̄hybrid

∂q̇

)

− ∂L̄hybrid

∂q
= 0, q = w̄, β̄. (18)

Applying Eq. (17) yields the following equation for φ:

i
∂φ

∂t̄
= −

(

∂2φ

∂x̄2
+
∂2φ

∂ȳ2

)

+ V̄ (x̄, ȳ)φ +

(

ḡN√
2πw̄

)

|φ|2 φ

+ F (t̄)φ (19)

where

F (t̄) ≡ 1
2
˙̄βw̄2 + 1

2w̄2 + 2β̄2w̄2 + 1
2λ

2w̄2. (20)

This seemingly complicated function of t̄ can be trans-
formed away by defining

φ(x̄, ȳ, t̄) ≡ φ̃(x̄, ȳ, t̄)e−i
∫

t̄

0
F (t̄′)dt̄′ (21)

Inserting this into the equation of motion for φ yields an
effective 2D Gross–Pitaevskii–like equation for φ̃:

i
∂φ̃

∂t̄
= −

(

∂2φ̃

∂x̄2
+
∂2φ̃

∂ȳ2

)

+ V̄ (x̄, ȳ)φ̃ +

(

ḡN√
2πw̄

)

∣

∣

∣
φ̃
∣

∣

∣

2

φ̃

(22)

Applying the Euler–Lagrange equation for β̄ gives the
following result:

(

∂

∂t̄
|φ|2

)

(

1
2 w̄

2
)

+ |φ|2
(

w̄ ˙̄w − 4β̄w̄2
)

= 0. (23)

We can obtain a simplified equation of motion by inte-
grating both sides of the above over all x̄ and ȳ:

(

1
2 w̄

2
)

∫ ∞

−∞
dȳ

∫ ∞

−∞
dx̄

∂

∂t̄
|φ|2 =

(

w̄ ˙̄w − 4β̄w̄2
)

×
∫ ∞

−∞
dȳ

∫ ∞

−∞
dx̄ |φ|2

(24)

It is easy to show that the integral on the left is zero
by using the equation of motion for φ. The integral on
the right is unity by normalization and so we obtain the
following relationship between β̄ and ˙̄w, w̄:

β̄ =
˙̄w

4w̄
. (25)

Thus, if w̄ and ˙̄w are known, β̄ is determined.
Applying the Euler–Lagrange equation for w̄ gives

|φ|2
(

˙̄βw̄ − 1
w̄3 + 4β̄2w̄ + λ2w̄

)

= 1
2 ḡN |φ|4

(

1√
2πw̄2

)

(26)
Integrating this equation over all (x̄, ȳ) on both sides as
before we obtain

˙̄βw̄ + 4β̄2w̄ − 1
w̄3 + λ2w̄ =

ḡNU‖

2
√
2πw̄2

(27)

where

U‖(t̄) ≡
∫ ∞

−∞
dȳ

∫ ∞

−∞
dx̄|φ̃(x̄, ȳ, t̄)|4. (28)

Note that we have used Eq. (21) to replace φ with φ̃.
It is possible to eliminate β̄ from the above equation

by differentiating both sides of Eq. (25) with respect to
time. We obtain

1
4
¨̄w = ˙̄βw̄ + β̄ ˙̄w = ˙̄βw̄ + 4β̄2w̄, (29)

where the second equality results from using Eq. (25) to
replace ˙̄w with 4β̄w̄. Now we see that the right–hand–
side of the above equation is identical to the first two
terms on the left–hand–side of Eq. (27). Thus we can
rewrite this equation as follows:

¨̄w + 4λ2w̄ =
4

w̄3
+

√

2/πḡNU‖
w̄2

(30)

This is the final equation of motion for w̄.

C. The HLVM equations of motion and the

variational initial state

The full set of HLVM equations of motion consist of a
2D effective GP–like equation for φ̃:

i
∂φ̃

∂t̄
= −

(

∂2φ̃

∂x̄2
+
∂2φ̃

∂ȳ2

)

+ V̄ (x̄, ȳ)φ̃+

(

ḡN√
2πw̄

)

∣

∣

∣
φ̃
∣

∣

∣

2

φ̃

(31)

and an equation for w̄:

¨̄w + 4λ2w̄ =
4

w̄3
+

√

2/πḡNU‖
w̄2

. (32)

These two equations form a closed system from which
w̄(t̄), ˙̄w(t̄), and φ̃(x̄, ȳ, t̄) can be obtained. From these,
the value of β̄(t̄) and F (t̄) can be calculated:

β̄ =
˙̄w

4w̄
F (t̄) = 1

2
˙̄βw̄2 + 1

2w̄2 + 2β̄2w̄2 + 1
2λ

2w̄2. (33)

Using these quantities, the full value of the variational
trial wave function can be constructed:

Φtrial(x̄, ȳ, z̄, t̄) =

(

1

π1/2w̄

)1/2

φ̃(x̄, ȳ, t̄)e−i
∫

t̄

0
F (t̄′)dt̄′

× e−z̄2/2w̄2(t̄)+iβ̄(t̄)z̄2

, (34)
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FIG. 1: (color online) A comparison of the vertical column density of a Bose–Einstein condensate, as determined by the 3D
TDGPE and the HLVM equations of motion, after direct release from a ring–shaped trap is plotted along a line through the
trap center (x axis) for various times of flight (TOF) during expansion, (a) TOF = 0.0 ms, (b) TOF = 2.0 ms, (c) TOF = 4.0
ms, (d) TOF = 6.0 ms, (e) TOF = 8.0 ms, and (f) TOF = 10.0 ms. The condensate is given one unit of angular momentum
before release by phase imprint.

where

U‖(t̄) ≡
∫ ∞

−∞
dȳ

∫ ∞

−∞
dx̄|φ̃(x̄, ȳ, t̄)|4. (35)

Note that Eqs. (31) and (32) are coupled. The nonlinear

term in the 2D GPE for φ̃ contains the gaussian width,
w̄, while the equation for w̄ contains the factor U‖ which

is the integral of the fourth power of φ̃.

The final element required for this method to be used
as a means to find an approximation to the solution of
the 3D TDGPE is a set of initial conditions. We present
one possibility here based on the physics of Bose–Einstein
condensate systems.

In a typical BEC experiment a condensate is formed in
an atom trap. If no further changes in the condensate’s
environment occur, the condensate wave function should
then, in principle, only acquire an overall time–dependent
phase as it evolves in time. In the HLVM this situation
should therefore be represented by the stationary solu-
tion of the above equations. We denote this stationary
solution as

φ̃(x̄, ȳ, 0) ≡ φ̃0(x̄, ȳ) and w̄(0) ≡ w0. (36)

This solution satifies the following time–independent

equations.

µφ̃0 = −
(

∂2φ̃0
∂x̄2

+
∂2φ̃0
∂ȳ2

)

+ V̄ (x̄, ȳ)φ̃0

+

(

ḡN√
2πw̄0

)

∣

∣

∣
φ̃0

∣

∣

∣

2

φ̃0 (37)

and

R(w̄0) ≡ 4λ2w̄0 −
4

w̄3
0

−
√

2/πḡNU‖,0
w̄2

0

= 0. (38)

where

U‖,0 ≡
∫ ∞

−∞
dȳ

∫ ∞

−∞
dx̄|φ̃0(x̄, ȳ)|4. (39)

The factor µ in the equation for φ̃0 is the chemical po-
tential of the initial condensate. These equations for
the stationary variational solution must be solved self–
consistently.

III. COMPARISON WITH 3D GPE

In this section we illustrate the ability of the HLVM
equations of motion to approximate the exact solution of
the 3D TDGPE by comparing the two solutions for a case
of current interest. The system we will consider is that
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FIG. 2: (color online) GPE/LVM vertical column density comparison for different angular momenta applied to the initial state.
The condensates are formed, stirred to add m units of angular momentum (simulated by phase imprint), and then released and
allowed to expand for 10 ms. (a) m = 0, (b) m = 1, (c) m = 2, (d) m = 3, (e) m = 4, and (f) m = 5.

of a Bose–Einstein condensate of 23Na atoms confined in
a ring–shaped potential under the same conditions as in
a recent experiment [2] conducted at NIST. To simplify
the analysis we will only compute the profile of the con-
densate density integrated along the vertical direction for
each point in the plane of weak confinement. This quan-
tity predicted by the TDGPE will be compared with that
predicted by the HLVM equations of motion. This is the
quantity that can be compared with experiment.

In the NIST experiment a vertical Laguerre–Gauss
(LG) laser beam (LG1

0) was intersected with a horizon-
tal light sheet. The shape of the vertical LG beam was
approximately a hollow cylinder with thick walls so that
its intersection with the horizontal light sheet created
a ring–shaped region of maximum light intensity. Tun-
ing the frequency of the beams to the red of the lowest
electronic transition created a potential that caused the
atoms to seek the maximum intensity.

In this comparison, we simulate an experiment in
which a condensate is created in this ring potential, op-
tionally stirred, and then probed. We simulate two types
of probes: (1) direct release of the condensate by turning
off all trapping potentials after stirring, and (2) release
of the condensate after the ramp down of the Laguerre–
Gauss potential. The stirring, which adds m units of
angular momentum to the condensate, is simulated by
phase imprint. That is, the initial condensate wave func-
tion is multiplied by eimφ where φ is the azimuthal angle
around the vertical z̄ axis and m is an integer.

In each case we will compare what would be the mea-
sured density profile, as predicted by the 3D GPE and

by the HLVM, for different times during the ramp down
or expansion where the value of m is fixed, and also for a
fixed final time–of–flight for a range of differentm values.
For maximum clarity, we present the two density profiles
as a plot of the density along a line that cuts through
the center of the ring. Since all of the density profiles are
cylindrically symmetric, these plots will convey all of the
available density information.
In these simulations the trap potential is modeled as

the sum of a Laguerre–Gauss optical potential [21] plus
a vertical gaussian due to the light sheet. This potential
can be written (in scaled units) as:

V̄trap(x̄, ȳ, z̄, t̄) = −eV̄LGf(t̄)

(

x̄2 + ȳ2

r̄2M

)

e−(x̄2+ȳ2)/r̄2
M

− V̄sheet + λ2z̄2 ≡ V̄‖(x̄, ȳ) + λ2z̄2,

(40)

where the factor e = 2.718 . . . is included so that V̄LG

becomes the depth of the potential due to the Laguerre–
Gaussian beam and r̄M is the radial position of its min-
imum. A time–dependent, dimensionless turn–on func-
tion, 0 ≤ f(t̄) ≤ 1, is inserted to simulate the ramp
down of the Laguerre–Gauss potential. The factor V̄sheet
is the depth of the potential due to the light sheet and
the z̄–dependent gaussian light–sheet potential has been
approximated by an harmonic oscillator.
Both the 3D TDGPE and the 2D GPE part of the

HLVM equations of motion were solved using the split–
step, Crank-Nicolson method. The 3D TDGPE was
solved on a grid in which there were 400 points along
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FIG. 3: (color online) GPE/LVM vertical column density comparison for the case where the LG potential is ramped down to
20% of its initial depth over a span of 50 ms. A phase imprint is applied that simulates one unit of angular momentum added
by stirring. The plots show the comparison for ramp times of (a) 0 ms, (b) 10 ms, (c) 20 ms, (d) 30 ms, (e) 40 ms, and (f) 50
ms.

x and y and 200 points along z. The 2D GPE part of the
HLVM equations of motion was solved on a grid of 800
points along both x and y. The codes that were used to
solve these equations were extensively modified versions
of codes publicly available in the literature [22]. The ini-
tial condensate wave function for the 3D TDGPE was
obtained by solving it in imaginary time. Initial condi-
tions for the HLVM equation of motion were obtained by
solving equations (37) and (38) self consistently as fol-

lows. First, a value for w̄0 was chosen, the associated φ̃
was then found by integrating Eq. (31) in imaginary time,
next the value of Ū‖ was calculated which was then used
to compute the value of R(w̄0) in Eq. (38). The value
of w̄0 was incremented and the process was repeated to
compute a new value of R. This process was continued
until a root of R(w̄0) was found. The value of w̄0 for this
case is the self–consistent gaussian width of the station-
ary solution of the HLVM equations of motion.

In the direct–release process simulated, the number of
condensate atoms was N =750,000 atoms and the scat-
tering length of 23Na was taken to be 53 bohr. The min-
imum of the LG potential was set at rM = 24µm. The
depth of the LG potential was taken to be VLG = 227
nK which is equivalent (via VLG = 1

4Mω2
rr

2
M ) to a ra-

dial harmonic frequency of ωr/(2π) = 120 Hz. The fre-
quency of the harmonic light sheet potential was taken
as ωz/(2π) = 320 Hz and the light–sheet depth was
Vsheet = 473 nK although this last quantity makes no
difference in the shape of the initial–state density.

Figure 1 displays a comparison of the integrated col-

umn density of a released ring BEC predicted by the 3D
TDGPE with that predicted by the HLVM equations of
motion at six different times–of–flight (TOF) after release
beginning with Fig. (1a) showing the moment of release.
The condensate has been stirred so that it is released hav-
ing one unit of angular momentum. We note that there
is good agreement with quantitative differences occuring
in the heights of individual peaks and in the position of
the peaks at later times. The comparisons are typical of
a variational solution in that they are the “best fit” to
the exact solution for the given trial wave function.

A comparison of the GPE and LVM results for a ring
BEC directly released from the trap and allowed to ex-
pand for a fixed TOF for different initial angular mo-
menta is exhibited in Fig. 2. The figure displays com-
parisons for m values ranging from 0 to 5. Again the
agreement is good although there are some quantitative
differences as to positions of the individual peaks. It
is clear that there is qualitative and almost–quantitative
agreement between the 3D TDGPE and the HLVM equa-
tions of motion for these cases.

We next compare the results of the TDGPE and HLVM
for ring–BEC evolution while the LG potential is ramped
down from its initial value. This differs from the pre-
vious comparison in that the confining light–sheet po-
tential remains unchanged during the ramp down. In
the simulated ramp–down process the number of con-
densate atoms was N =500,000 atoms. The LG potential
depth was ramped linearly down from its initial value of
VLG = 227 nK (the same as previously) to 20% of this
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value over a timespan of 50 ms. The light sheet poten-
tial was the same as in the direct–release simulations. A
phase imprint was applied to the condensate to simulate
one unit of angular momentum added by stirring.
Figure 3 shows the comparison starting at t = 0 ms

and for every 10 ms thereafter until the rampdown is
complete. The two solutions again exhibit the type of
agreement that is usual for variational approximations
in that the variational solution is a “best fit” to the nu-
merical solultion. With that caveat, the agreement here
is quite good during the entire ramp down.

IV. SUMMARY

In this paper we derived equations of motion whose
solution approximates the solution of the 3D TDGPE
applied to a quasi–2D Bose–Einstein condensate. The
equations were derived using a hybrid Lagrangian Vari-
ational Method. Similar equations of motion were de-
rived earlier [18] for quasi–1D BEC systems. The main
advantage of solving these equations is that numerical
solution of the HLVM equation can be performed 100 to
1000 times faster than solving the 3D TDGPE. In the
comparison simulation presented in Section III, solving
the realtime 3D TDGPE required more than 24 hours of
CPU time while solving the HLVM equation took about
10 minutes on a commodity desktop PC. The resulting
speedup here is roughly a factor of 150.
This advantage enables rapid simulation of many dif-

ferent possible quasi–2D systems. It should be noted
that when the HLVM was applied to a quasi–1D sys-
tem describing soliton splitting in optical fibers [23], it
was found that occasionally the HLVM equations of mo-
tion did not provide any advantage over the regular LVM
technique. In the work cited, the authors recommended
that any important results that come out of HLVM sim-
ulations be confirmed by simulations using the full equa-
tions. We did not find any case where the HLVM equa-
tions predicted behavior that was qualitatively different
from the 3D TDGPE. However, we agree with the rec-
ommendation of the authors of Ref. [23].
Given the comment above, it is important to include

a short discussion of the region of validity of the method
here. The main advantage of the use of this method is
that a region of parameter space can be explored either
much more quickly than the 3D TDGPE or even for cases
where using the full equation isn’t feasible. The most
important assumption is that the trial wave function is a
product of a function of horizontal (radial) coordinates,
x and y, and a function of the vertical coordinate,z. The
usual criterion for this to be valid occurs when the fre-
quency of the vertical harmonic potential is large com-
pared to the frequency of the radial potential. However,
in the comparisons shown in Section III, the vertical po-
tential frequency (ωz = 320 Hz) was less than three times
larger than the radial frequency (ωr = 120 Hz) and yet
the method still gave good results. While we have not

studied the validity of the method in detail (hence our
aggrement with the comment in Ref. [23]) there are per-
turbation methods described in the literature [24] that
enable the region of validity to be more precisely deter-
mined.
This caveat notwithstanding, the HLVM equations de-

rived in this paper enable rapid study of different sys-
tems of current experimental interest. In particular, they
should be useful in simulating time–dependent behavior
of quasi–2D atomtronic systems where mean–field the-
ory applies. We expect this approximation to become
a useful tool in studying future quasi–2D Bose–Einstein
condensate systems.
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