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Thermostats for homogeneous non-equilibrium molecular dynamics simulations are usually de-
signed to control the kinetic temperature, but it is now possible control any combination of many
different types of temperature, including the configurational and kinetic temperatures and their
directional components. It is well known that these temperatures can become unequal in homoge-
neously thermostatted shearing steady states. The microscopic expressions for these temperatures
are all derived from equilibrium distribution functions, and it is pertinent to ask, what are the
consequences of using these equilibrium microscopic expressions for temperature in thermostats for
shearing non-equilibrium steady states? Here we show that the answer to this question depends on
which properties are being investigated. We present numerical results showing that the value of the
zero shear rate viscosity obtained by extrapolating results of non-equilibrium molecular dynamics
simulations of shearing steady states is the same, regardless of the type of temperature that is con-
trolled. It also agrees with the value obtained from the equilibrium stress autocorrelation function
via the Green-Kubo relation. However, the values of the limiting zero shear rate first normal stress
coefficient obtained from non-equilibrium molecular dynamics simulations of shearing steady states
are strongly dependent on the choice of temperature being controlled, They also differ from the
value of the first normal stress coefficient that is calculated from the equilibrium stress autocor-
relation function. We show that even when all of the directional components of the kinetic and
configurational temperatures are simultaneously controlled to the same value, the agreement with
the result obtained from the equilibrium stress autocorrelation function is poor.

PACS numbers:

I. INTRODUCTION

Homogeneous non-equilibrium molecular dynamics simulations have significant advantages for the determination
of transport coefficients. Homogeneity ensures that the whole system is at a single, well-defined state point, that
periodic boundary conditions can be applied, that no spurious boundary effects need to be considered, and that a
driving force of known strength can be directly and uniformly applied to the whole system [1–3]. However, a completely
homogeneous and infinitely periodic system has no temperature gradients and no walls, so heat generated by non-
equilibrium processes cannot be conducted away by normal heat conduction. Instead, we use homogeneous synthetic
thermostats which remove heat from the system and fix the temperature through the action of additional terms in
the equations of motion. These artificial thermostats have been very well studied, and many of their properties are
well understood, particularly for equilibrium systems [1].
For non-equilibrium systems, it is well known that linear transport properties such as the viscosity, thermal con-

ductivity and diffusion coefficient are unaffected by the thermostat as long as the system is maintained at the same
thermodynamic state. This is a consequence of the fact that the thermostatted linear response is independent of the
thermostatting mechanism apart from terms of order 1/N where N is the number of particles in the system. For
example, it has been proven that the difference between the adiabatic linear response (with no thermostat) and the
isokinetic linear response (with a Gaussian constraint isokinetic thermostat) of an arbitrary phase variable differ only
by terms of order 1/N , except when the phase variable is a function of the thermal kinetic energy [1].
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Non-linear rheological properties, such as the normal stress coefficients, are a different matter. In a study of the
thermodynamics of steady shear, Daivis [5] used the Green-Kubo relation to calculate the zero shear rate viscosity η0
and a relationship derived from the retarded motion expansion by Coleman and Markovitz [4] to calculate the zero
shear rate limit of the first normal stress coefficient Ψ1,0 of a simple liquid from its stress relaxation modulus G(t).
These quantities were also computed directly from non-equilibrium molecular dynamics simulations using the sllod
[1] algorithm. Although the viscosities calculated by both methods agreed to high precision, the values of the first
normal stress coefficient did not. It was suggested that this difference may have been caused by the sensitivity of the
normal stress differences to the thermostat. While the shear stress depends on the shear rate linearly at lowest order,
the normal stresses are quadratic - i.e. of the same order as the heating effects due to viscous dissipation.
The most commonly used molecular dynamics thermostats only keep the so-called kinetic temperature constant,

and consequently, in a system that is far from equilibrium, other degrees of freedom may have different temperatures.
Microscopic expressions for the temperatures of these other degrees of freedom are known, and thermostats to control
them have been devised. (The concept of temperature in molecular simulations has been concisely reviewed by
Powles, Rickayzen and Heyes [8].) Furthermore, it is well-established that the directional components of the kinetic
and configurational degrees of freedom can also differ under strongly non-equilibrium conditions. The behaviour of
the x, y, and z components of both the kinetic and configurational temperatures for a strongly non-equilibrium system
has been studied by Baranyai [7], who concluded that the introduction of a synthetic homogeneous thermostat induces
greater temperature anisotropy than is present in a system that is naturally thermostatted by a spatial heat flux. The
divergence of the directional kinetic temperatures for an ideal gas in strong shear flow has also been calculated using
kinetic theory by Criado-Sancho, Jou and Casas-Vázquez [9]. Hoover [10] has investigated this problem by directly
comparing the results of homogeneous shear simulations with those of inhomogeneous, boundary driven shear. In this
case, the boundary driven shearing system is not artificially thermostatted, but it has a temperature profile which
drives a heat flux to thermostatted regions outside the system of interest. The values of the first normal stresses that
were calculated using this method were reported to be substantially higher than the values found by homogeneous
shear using the sllod equations of motion with a standard kinetic temperature thermostat.
In this paper, we investigate this problem further by applying various combinations of directional thermostats,

both kinetic and configurational, to homogeneously sheared systems. We compute the first normal stress coefficients
for these systems and compare the results for various thermostats with the predictions of the Coleman-Markovitz
equation using the equilibrium shear relaxation modulus.

II. KINETIC AND CONFIGURATIONAL TEMPERATURES

The definition of temperature for a system with a fixed number of particles in classical equilibrium thermodynamics
is

1

T
=

(

∂S

∂U

)

V

(1)

where V , S and U are the volume, entropy and internal energy. For a system that is out of equilibrium, but obeying
local thermodynamic equilibrium, this also defines the temperature at any point in the fluid, provided that we use
the values of local thermodynamic variables to define the state.
This definition can be used to obtain a general microscopic expression for the temperature, by following a procedure

similar to that outlined by Jepps, Ayton and Evans [12] or Rickayzen and Powles [13], for example. We begin by
recalling the microcanonical expression for the entropy, S = kB ln Ω with Ω =

∫

δ (H(Γ) − U) dΓ where H(Γ) is the
phase variable for the internal energy. Note that the definition of Ω should strictly include a constant that reduces
the right hand side to a dimensionless number, but this constant does not affect the final results, so it is omitted.
The entropy can be substituted into the thermodynamic definition of temperature,

1

T
=

kB
Ω

(

∂Ω

∂U

)

V

(2)

The derivative can be taken when we use the microscopic expression for the entropy

∂Ω

∂U
=

∂

∂U

∫

δ (H(Γ)− U) dΓ

= −

∫

∂

∂H
δ (H(Γ) − U) dΓ (3)
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This can be simplified by writing

∂

∂Γ
δ (H(Γ)− U) =

∂H

∂Γ

∂

∂H
δ (H(Γ)− U) (4)

If we now form the scalar product of both sides of this equation with a vector field B(Γ) this expression can be further
simplified, giving

B(Γ) ·
∂

∂Γ
δ (H(Γ)− U) = B(Γ) ·

∂H

∂Γ

∂

∂H
δ (H(Γ)− U) (5)

and the desired derivative is

∂

∂H
δ (H(Γ)− U) =

B(Γ)

B(Γ) · ∂H
∂Γ

∂

∂Γ
δ (H(Γ)− U) (6)

Finally, if we use this result in the expression for the derivative of the entropy with respect to internal energy and
then integrate by parts, noting that the boundary term is zero, we find

1

kBT
=

1

Ω

∫

∂

∂Γ
·

[

B(Γ)

B(Γ) · ∂H
∂Γ

]

δ (H(Γ)− U) dΓ

=

〈

∂

∂Γ
·

[

B(Γ)

B(Γ) · ∂H
∂Γ

]〉

=

〈

∂
∂Γ ·B(Γ)

B(Γ) · ∂H
∂Γ

〉

−

〈

B(Γ) · ∂B(Γ)
∂Γ · ∂H

∂Γ +B(Γ) · ∂2H
∂Γ∂Γ ·B(Γ)

(

B(Γ) · ∂H
∂Γ

)2

〉

(7)

where the second term of the last line usually turns out to be of lower order in N than the first, and is therefore
negligible. The vector field B essentially determines the direction in phase space in which we choose to vary the
energy, i.e. the direction in which we move to change the energy when taking the derivative, Eq. (1). The restrictions
on B have been discussed in detail by Jepps, Ayton and Evans [12] and Rickayzen and Powles [13].
Rugh [14] showed that a natural choice for B is B(Γ) = ∂H

∂Γ . With this choice, the direction of B is normal to the
energy surface, leading to the name “normal temperature” [12]. The specific cases that are of greatest relevance here
are those that lead to the kinetic and configurational temperatures and their directional components. In the first case,

we may choose B(Γ) = ∂K
∂Γ =

(

0, · · · , 0, p1

mi
· · · , pN

mN

)

, where K is the kinetic energy. Neglecting the second term on

the right hand side of Eq. 7, we find

1

kBTK
=

〈

∑ 3
mi

∑ p2

i

m2

i

〉

(8)

Specializing to the case where the masses of all particles are equal, we obtain the expression for the kinetic temperature
in the microcanonical ensemble

1

kBTK
= 3N

〈

1
∑ p2

i

m

〉

(9)

which, for sufficiently large N reduces to the usual expression for the kinetic temperature,

kBTK =
1

3N

〈

∑ p2
i

m

〉

(10)

which we will show later, would be obtained directly in the canonical ensemble. The directional components of the

kinetic temperature are obtained by considering B(Γ) = ∂Kx

∂Γ =
(

0, · · · , 0, p1x

mi
, 0, 0, · · · , pNx

mN
, 0, 0

)

which leads to

1

kBTK
=

〈

∑

1
mi

∑ pix
2

i

m2

i

〉

(11)
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Again, for equal masses and large N this result simplifies to the expression that would be directly obtained in the
canonical ensemble

kBTK =
1

N

〈

∑ p2ix
m

〉

(12)

with similar expressions for the y and z components.
The configurational temperature is obtained by considering

B(Γ) =
∂Φ

∂Γ
= − (F1, · · · ,FN , 0 · · · , 0) (13)

where Fi = − ∂Φ
∂ri

, which results in

1

kBTC
= −

〈

∑

i

∂
∂ri

· Fi

∑

i

F2
i

+

∑

j

∑

i

Fi ·
∂Fj

∂ri
· Fj

(

∑

i

F2
i

)2

〉

(14)

Again, the second term is negligible in comparison with the first for large systems, and the configurational temperature
can be written as

kBTC = −

〈

∑

i

F2
i

∑

i

∂
∂ri

· Fi

〉

(15)

The configurational temperature can also be resolved into three directional components, as was suggested by Baranyai
[7]. In this case, we consider B(Γ) = − (F1x, 0, 0, · · · , FNx, 0 · · · , 0), with the result

kBTCx = −

〈

∑

i

F 2
ix

∑

i

∂Fix

∂xi

〉

(16)

These derivations can also be done in the canonical ensemble. Consider the following integral,

∫

∂

∂Γ
·
(

B (Γ) e−βH
)

dΓ =

∫

∂

∂Γ
·B (Γ) e−βHdΓ− β

∫

B (Γ) ·
∂H

∂Γ
e−βHdΓ (17)

This is equal to zero by Gauss’s theorem and the fact that the probability density goes to zero at the limits of
integration, so we can express the temperature as

1

kBT
=

〈

∂
∂Γ ·B (Γ)

〉

〈

B (Γ) · ∂H
∂Γ

〉 (18)

Comparing this expression with Eq. (7), we see that they only differ by terms that are of order 1/N , in that the
canonical ensemble expression is a ratio of two ensemble averages whereas the microcanonical one is the ensemble
average of a ratio. Jepps et al. [12] have compared them and found that the numerical properties of the canonical
(fractional) expression for the configurational temperature,

kBTCf = −

〈

∑

i

F2
i

〉

〈

∑

i

∂
∂ri

· Fi

〉 (19)

are generally superior, so this is the form that we will use. Similarly, the canonical average is used for the kinetic and
directional kinetic temperatures.
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III. EQUATIONS OF MOTION

A. Equilibrium

The equilibrium simulations were carried out using the equations of motion

ṙi =
pi

mi
(20)

ṗi = Fi − αpi (21)

where the kinetic temperature is controlled by an isokinetic thermostat derived from Gauss’s principle of least con-
straint [1], which gives

α =

N
∑

i=1

pi ·Fi/mi

N
∑

i=1

p2
i

/

mi

(22)

This thermostat keeps the total thermal kinetic energy constant. However, the system is at equilibrium and so all
temperatures are equal to the set value, as long as one of them is thermostatted. This was confirmed numerically for
our system.

B. Non-equilibrium: kinetic thermostat

The non-equilibrium simulations with a thermostat on the total kinetic temperature were carried out using the
sllod algorithm with equations of motion given by

ṙi =
pi

mi
+ ri · ∇v (23)

ṗi = Fi − pi · ∇v − αpi (24)

where the velocity gradient tensor for planar shear is ∇v = jiγ̇. Note that in these equations, p is now the thermal
component of the momentum, i.e. the total momentum minus the streaming component. The thermostat used here
constrains the total thermal kinetic energy to a set value, so the individual directional components are allowed to vary
as dictated by the dynamics. To control all of the directional components of the kinetic temperature individually, we
must use the equations of motion

ṙi =
pi

mi
+ ri · ∇v (25)

ṗi = Fi − pi · ∇v − αxpixi− αypiyj− αzpizk (26)

with the thermostat multiplier for the x-kinetic thermostat equal to

αx =

N
∑

i=1

pix (Fix − (pi · ∇v)x)/mi

N
∑

i=1

p2ix
/

mi

(27)

and similar expressions for the y and z multipliers. Note that these thermostats apply constraints to the x, y and z
components of the thermal kinetic energy, so the actual number of degrees of freedom for a given directional component
is N − 2 because the total momentum and thermal kinetic energy of that directional component are both fixed.

C. Non-equilibrium: configurational thermostat

Although other configurational thermostats have been derived [15, 16], we have chosen to use the Nosé-Hoover type
of configurational thermostat developed by Braga and Travis [17], because of its superior performance. The equations
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of motion implementing this thermostat to control the temperature of the total potential energy are

ṙi =
pi

mi
+ ri · ∇v + ζFi (28)

ṗi = Fi − pi · ∇v (29)

with an additional equation of motion for the thermostat variable

ζ̇ =
1

Qζ

(

N
∑

i=1

Fi
2
− kBT

N
∑

i=1

∂

∂ri
·Fi

)

(30)

and the thermostat inertia Qζ which is chosen to give suitable relaxation of the fluctuations in the quantity being
controlled. Baranyai [7] has shown that it is also possible to define the directional components of the configurational
temperature, given by the fractional form of Eq. (16) so we have adapted the Braga-Travis thermostat to control
these temperatures. The equations of motion used for the directional configurational thermostats are

ṙi =
pi

mi
+ ri · ∇v + ζxFixi+ ζyFiyj+ ζzFizk (31)

ṗi = Fi − pi · ∇v (32)

and the equations of motion for the thermostat variables are

ζ̇x =
1

Qζ

(

N
∑

i=1

F 2
ix − kBT

N
∑

i=1

∂Fix

∂xi

)

(33)

ζ̇y =
1

Qζ

(

N
∑

i=1

F 2
iy − kBT

N
∑

i=1

∂Fiy

∂yi

)

(34)

ζ̇z =
1

Qζ

(

N
∑

i=1

F 2
iz − kBT

N
∑

i=1

∂Fiz

∂zi

)

(35)

To ensure that the temperatures of all degrees of freedom were equal, we also ran a set of simulations in which we
combined both the directional kinetic and directional configurational thermostats.

IV. VISCOMETRIC FUNCTIONS

For the velocity gradient tensor ∇v = jiγ̇ representing planar shear flow, the generalized non-Newtonian shear
viscosity is defined as:

η (γ̇) = −
Pyx

γ̇
. (36)

with the zero shear rate limit

η0 = lim
γ̇→0

η (γ̇) (37)

and the first normal stress coefficient is defined as

Ψ1(γ̇) =
Pyy − Pxx

γ̇2
(38)

with the zero shear rate limit

Ψ1,0 = lim
γ̇→0

Ψ1 (γ̇) . (39)

The above quantities can all be obtained directly from non-equilibrium molecular dynamics simulations [3, 18]. At
sufficiently low shear rates, the viscosity and the first normal stress coefficient are both found to be proportional to
the square of the shear rate. This was found to be the case for shear rates in the range 0 < γ̇ < 0.14. The limiting
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zero shear rate values were obtained by plotting the shear rate dependent viscosity and the shear rate dependent first
normal stress coefficient against the square of the shear rate at seven equally spaced points and fitting a straight line
to the data.
The zero shear rate viscosity and first normal stress coefficient can also be obtained from the equilibrium stress

relaxation modulus. This is calculated from the isotropically averaged equilibrium autocorrelation function of the
symmetric traceless component of the pressure tensor

G (t) =
V

10kBT

〈

P0s (t) : P0s (0)
〉

(40)

The zero shear rate viscosity follows from the standard Green-Kubo relation

η0 =

∫

∞

0

G(t)dt (41)

The equilibrium stress relaxation modulus can also be used to calculate the limiting zero shear rate normal stress
coefficient using the Coleman-Markovitz equation [4]

Ψ1,0 = 2

∫

∞

0

tG(t)dt (42)

V. SIMULATIONS

The simulations are conducted on the same system that was studied previously [5], for which there already exists a
large body of data for verification. The system consists of N = 500 particles interacting via the truncated and shifted
Lennard-Jones (LJ) interaction potential given by

φ(rij) =







4ǫ

[

(

σ
rij

)12

−

(

σ
rij

)6
]

− φc rij ≤ rc

0 rij > rc

(43)

where rij is the separation of two interacting atoms, ǫ is the potential well depth and σ is the value of rij at which
the unshifted potential is zero. The shift φc, which is equal to the value of the unshifted potential at the cutoff
rij = rc, is introduced to eliminate the discontinuity due to truncation of the potential energy. The cutoff point for

the potential is the position of the minimum in the LJ potential, rc = 21/6σ. This form of the truncated and shifted
LJ potential energy function is usually known as the WCA potential [6]. All simulations are conducted in periodic
boundary conditions.
The particle number density is n = 0.84 and the temperature is T = 1.0. All quantities are given in LJ reduced

units using the particle mass m, and the LJ potential energy and distance parameters ǫ, σ as reduction parameters
[11].

VI. RESULTS AND DISCUSSION

The equilibrium stress autocorrelation function defined in Eq. (40) was calculated by averaging the results of 10
independent runs, each of 20 × 106 timesteps in duration, with a timestep of 0.002 reduced units, giving a total
effective averaging time of 4× 105 reduced time units.
Fig. 1 shows the result of applying Eq. (41) to the normalized equilibrium stress autocorrelation function. The

converged value of the viscosity from the Green-Kubo formula is η = 2.13± 0.01.
Fig. 2 shows the result for the integral of the time multiplied by the normalized equilibrium stress autocorrelation

function. The integral converges to a constant value at around t = 5, after which noise in the tail of the stress
autocorrelation function becomes dominant. The converged value is

∫

tG(t)dt = 0.20± 0.01 and the value of the first
normal stress coefficient obtained from this is 2

∫

tG(t)dt = 0.40± 0.02. The uncertainties are obtained by taking the
spread of the fluctuations in the integral at lag times between t = 2 and t = 5, after which the noise dominates. This
value for the first normal stress coefficient has recently been confirmed by more precise calculations [23].
The results of the non-equilibrium molecular dynamics computations of the viscosity are shown in Table I. Row

1 shows the results for the usual isokinetic thermostat, which keeps the total thermal kinetic energy, and therefore
the kinetic temperature, constant. This procedure does not guarantee that any one of the directional temperatures
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FIG. 1: Integral of the normalized stress relaxation modulus, showing the convergence of the Green-Kubo integral for the
viscosity. The converged value is η = 2.13 ± 0.01. Note that the vertical scale has been truncated and expanded to emphasise
the small statistical error.

FIG. 2: Integral of tG(t), showing the convergence of the Coleman-Markovitz integral for the first normal stress coefficient. The
converged value is

∫
tG(t)dt = 0.20 ± 0.01. The value of the first normal stress coefficient obtained from this is 2

∫
tG(t)dt =

0.40 ± 0.02.

is precisely equal to the set temperature except at equilibrium, because each of the directional temperatures is free
to change according to the dynamics of the system. Row 2 shows similar data, but for the total configurational
temperature. Row 3 shows the results when all of the directional kinetic temperatures are separately fixed to the set
value, and row 4 likewise for the directional configurational temperatures. Row 5 shows the results when all of the
kinetic and configurational directional temperatures are individually fixed. The viscosity is consistently found to be
constant within the uncertainties and the average value of the NEMD results, 2.119± 0.005 agrees very well with the
value found from the Green-Kubo calculation, 2.13± 0.01.
The values of the first normal stress coefficient, on the other hand, vary strongly with the type of thermostat

applied. The largest value is found for the directional kinetic thermostat, while the smallest is found for the non-
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TABLE I: Zero shear rate viscosities and first normal stress coefficients calculated by NEMD for various thermostats.

temperatures fixed η0 error Ψ1,0 error
TK 2.119 0.001 0.206 0.004
TC 2.118 0.002 0.193 0.009
TKα, α = x, y, z 2.124 0.006 0.27 0.03
TCα, α = x, y, z 2.115 0.002 0.205 0.009
TKα, TCα, α = x, y, z 2.120 0.003 0.24 0.02

directional configurational thermostat. In general, it appears that the directional kinetic thermostat tends to give a
larger value of the first normal stress coefficient, while the non-directional kinetic and the configurational thermostats
tend to give smaller values. All of the NEMD results for the first normal stress coefficients are much smaller than
the value obtained from the Coleman-Markovitz equation. This is similar to the result obtained by Hoover [10],
who found that the first normal stress coefficient calculated from homogeneous non-equilibrium molecular dynamics
simulations with a non-directional kinetic thermostat was significantly lower than the value found from boundary
driven and thermostatted shear simulations. Experimental tests of the Coleman-Markovitz equation on polymer
melts, for example, show that it accurately predicts the first normal stress coefficient found from direct measurements
(e.g. Table 5.3-1 of Bird et al. [19] or section 1.G.1 of Ferry [20]). These experimental tests are performed on systems
that are naturally thermostatted with temperature gradients that remain very small in the linear viscoelastic regime.
While there is good experimental evidence for the validity of the Coleman-Markovitz equation for complex fluids

such as polymer melts, where the viscous relaxation time is expected to be much greater than the thermal relaxation
time, there is less evidence of its validity for simple fluids in which the two relaxation times are comparable. We have
used the Coleman-Markovitz equation to compute the first normal stress coefficient of a simple liquid as a function of
density, and we find that the value of the first normal stress coefficient that we obtain in the low density limit agrees
with the prediction of kinetic theory [23].
The disparity between the first normal stress coefficients obtained from NEMD simulations on homogeneously

thermostatted systems and the value obtained from the equilibrium stress relaxation function has several possible
causes.
An obvious relationship between an isokinetic thermostat and the first normal stress coefficient is that the normal

components of the kinetic part of the pressure tensor are trivially related to the directional kinetic temperatures,
e.g. Pxx = (1/V )

∑

p2ix
/

mi and similarly for the yy and zz components. This means that constraining all of the
kinetic temperatures to the same value also constrains the kinetic parts of the normal stress differences to zero. In the
dilute gas limit, this will obviously lead to a first normal stress coefficient of zero, which is at odds with the results
of kinetic theory [24]. This point was also made by Hoover [10]. The effect of a directional kinetic thermostat on the
configurational part of the pressure tensor, which is dominant in the liquid state, is less well understood.
In an equilibrium simulation, controlling one temperature still allows the others to fluctuate naturally around the

mean value. As long as the temperature being controlled is not trivially related to the quantity being calculated,
the calculations should be unaffected by the details of the thermostat. In a homogeneously thermostatted non-
equilibrium simulation, work is done on some degrees of freedom, and heat is removed from some degrees of freedom,
not necessarily the same ones. This leads to temperature differences between the different degrees of freedom of
quadratic order in the shear rate. Linear transport coefficients should remain unaffected by these differences. This
indeed what we find for the viscosity. However, non-linear properties are sensitive to these differences. In this case,
we might expect that thermostatting all of the temperatures to the same value should improve the agreement between
the equilibrium and non-equilibrium calculations. This is what seems to be implied in the discussion by Baranyai [7]
for example. However, we see that this is not the case. Simply equalizing all of the directional kinetic and directional
configurational temperatures does not improve the agreement.
An obvious shortcoming of the usual derivations of microscopic expressions for the temperature is that they are

based on equilibrium distribution functions. This would be satisfactory if we could verify that the local equilibrium
hypothesis is valid, but this does not apply to the non-linear properties. It has already been proposed that the
thermodynamic temperature for a shearing steady state should include a term that is quadratic in the stress (or the
shear rate) [21]. This is of the same order as the divergence of the temperatures of different degrees of freedom.
Therefore, both effects need be investigated in order to understand the behaviour of non-linear properties such as
the normal stress coefficients in homogeneously thermostatted simulations. A preliminary thermodynamic analysis of
these effects has been presented by Daivis and Jou [22].
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VII. CONCLUSIONS

We have calculated the first normal stress coefficient of a dense simple fluid in the limit of zero shear rate by
equilibrium and non-equilibrium molecular dynamics simulations. In the equilibrium simulations, the Coleman-
Markovitz equation was used to obtain the first normal stress coefficient from the shear relaxation modulus, which is
proportional to the equilibrium stress autocorrelation function. In the non-equilibrium simulations, several different
homogeneous thermostats were used; kinetic, configurational, directional kinetic, directional configurational and a
combination of directional kinetic and directional configurational. The first normal stress coefficient was found to be
sensitive to the thermostat, while the viscosity was not. In all cases, the value of the first normal stress coefficient
obtained from the non-equilibrium simulations was significantly lower than the value obtained from the equilibrium
simulations. This is similar to the result found by Hoover et al. when they compared the first normal stress coefficient
from homogeneous shear non-equilibrium molecular dynamics to that found from boundary driven shear simulations.
We suggest that there are two main reasons for the difference between the predictions of the Coleman-Markovitz
equation and the results of the homogeneously thermostatted non-equilibrium simulations. One is that the normal
stresses depend on the thermodynamic temperature and this is quadratically dependent on the shear rate. The other
is that, although the temperatures of different degrees of freedom may all depend quadratically on the shear rate, each
of these may have a different coefficient, leading to differences in the temperatures of the different degrees of freedom
(e.g. x, y and z kinetic and x, y and z configurational) that grow quadratically with shear rate. A thermostat that
is designed for computing non-linear properties as well as the linear ones by homogeneous non-equilibrium molecular
dynamics must correctly reproduce the boundary driven system in both of these respects. Work in this direction is
currently in progress.
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