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We compare the behavior of the finite-temperature Hartree-Fock model with that of thermal den-
sity functional theory using both ground-state and temperature-dependent approximate exchange
functionals. The test system is bcc Li in the temperature-density regime of warm dense matter
(WDM). In this exchange-only case, there are significant qualitative differences in results from the
three approaches. Those differences may be important for Born-Oppenheimer molecular dynamics
studies of WDM with ground-state approximate density functionals and thermal occupancies. Such
calculations require reliable regularized potentials over a demanding range of temperatures and den-
sities. By comparison of pseudopotential and all-electron results at T = 0 K for small Li clusters of
local bcc symmetry and bond-lengths equivalent to high density bulk Li, we determine the density
ranges for which standard projector augmented wave (PAW) and norm-conserving pseudopotentials
are reliable. Then we construct and use all-electron PAW data sets with a small cutoff radius which
are valid for lithium densities up to at least 80 g/cm3.

I. INTRODUCTION

Warm dense matter (WDM) encompasses the region
between conventional condensed matter and plasmas.
WDM occurs on the pathway to inertial confinement fu-
sion and is thought to play a significant role in the struc-
ture of the interior of giant planets. The theoretical and
computational description of WDM is important for un-
derstanding and performing experiments in which WDM
is created [1]. Two parameter ranges which are very dif-
ferent from those in standard condensed matter physics
characterize WDM: elevated temperature (from one to a
few tens of eV) and high pressure (up to thousands of
GPa). These ranges are challenging computationally be-
cause the standard solid state physics methods become
very expensive (due to high temperature) or standard ap-
proximations used in those methods cease to work (due
to high material density). From the plasma side, the
temperature and pressure are not high enough to employ
classical approaches.

A combination of a quantum statistical mechanical de-
scription of the electrons and classical molecular dynam-
ics for ions is a standard theoretical and computational
approach to WDM at present. Usually the quantum sta-
tistical mechanics is handled via finite-temperature den-
sity functional theory (ftDFT) [2–4]. There is a sub-
stantial literature, too large to review here, about such
calculations at zero temperature via Born-Oppenheimer
molecular dynamics (BOMD) or Car-Parrinello MD,
with DFT implemented via the Kohn-Sham (KS) pro-
cedure for the electronic degrees of freedom. The per-
tinent point is that the same techniques can be applied
to the finite-temperature case [5–19]. The combination,
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called ab initio molecular dynamics (MD), is computa-
tionally costly at high temperature (for a given density)
because of the large number of partially occupied KS or-
bitals which must be taken into account.
The great majority of the reported finite-temperature

ab initio MD calculations use zero-temperature
exchange-correlation (XC) functionals, Exc, with
Fermi-Dirac thermal occupations to construct the
electron density. In such calculations, the only T-
dependence in the XC contribution to the free energy
Fxc is through the T-dependence of the electron density:

Fxc[n(r,T),T] ≈ Exc[n(r,T)] , (1)

with n(r,T) the electron number density at temperature
T.
Most ftDFT calculations with ground state XC func-

tionals seem to have been done with the Vasp [20] or
Abinit [21] codes using either the local density approx-
imation (LDA) for Exc [22–24] or the Perdew-Burke-
Ernzerhof generalized gradient approximation (GGA)
functional [25].
The orbital-free density functional theory (OF-DFT)

treatment of electronic degrees of freedom is a less ex-
pensive alternative to orbital-dependent methods such as
KS. OF-DFT in principle provides the same quantum-
mechanical treatment of electrons as KS DFT, but the
lack of accurate orbital-free approximations for the ki-
netic energy functionals has limited the use OF-DFT,
even at standard conditions. In contrast, the high density
of the WDM regime is favorable for use of the OF-DFT
approach, which is a motive for developing functionals.
The standard KS approach clearly must be used to test
and calibrate such OF-DFT functionals. The limitations
and consequences of various choices in those thermal KS
calculations have not seen much detailed attention how-
ever. Two closely related sets of potentially significant
issues occur.
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First, the use of ground-state functionals in a ftDFT
calculation inevitably raises a topic for fundamental
DFT, namely, the adequacy, accuracy, and scope of Eq.
(1). Relative to the number of calculations, there are
comparatively few studies to assess this approach against
others [7, 8, 14, 16–19, 26]. Ref. 7 shows that the maxi-
mum density of the Al shock Hugoniot is increased about
5% or less by use of a temperature-dependent functional
of the Singwi-Tosi-Land-Sjölander (STLS) type [27]. Ref.
26 made essentially the same comparison but with re-
spect to simple Slater exchange (in Hartree atomic units)

Ex[n] =

∫

drn(r)ǫx,S[n(r)]

ǫx,S[n(r)] := Cx,Sn
1/3(r)

Cx,S := −
3

4

(

3

π

)1/3

. (2)

and with the added complication [for the purpose of as-
sessing Eq. (1)] of use of an OF-DFT approximation.
Ref. 8 compared calculations for ground-state LDA and
PW91 GGA [28] functionals. Faussurier et al. [14] com-
pared the electrical conductivity of Al computed with the
T-dependence from the classical-map hypernetted chain
scheme [29] versus ground-state LDA. They concluded
that the effects on conductivity are small in the WDM
regime but become increasingly important as the energy
density increases. Wünsch et al.[18] reversed the perspec-
tive and used ftDFT calculations with a ground-state
XC functional to calibrate hypernetted chain approxi-
mations, hence assumed the validity of Eq. (1). Vinko
et al. compared ground-state GGA calculations of free-
free opacity for Al with an RPA model and found semi-
quantitative agreement at lower photon energies with in-
creasing disagreement at higher ones, all over the range
0 ≤ T ≤ 10 eV [17]. As an aside, we note that the same
issues of use of ground-state approximate XC function-
als in a T-dependent context can arise in average-atom
models [30–34].
The second set of issues involves computational tech-

nique. The primary focus is control of the effects of pseu-
dopotentials (or regularization of the nuclear-electron in-
teraction). These are ubiquitous in the highly refined
codes in use for both WDM and ground state calcula-
tions. Clear insight into the behavior and limitations of
functionals requires that the regularized potentials not
introduce artifacts of their own. The challenge is to test
those potentials against high-quality all-electron (AE) re-
sults over the appropriate density range.
An obvious issue associated with pseuodpotentials is

the effect of a finite core radius upon compressibility
(hence, equation of state). Ref. [35] shows that a norm-
conserving pseudopotential for boron with the standard
cutoff radius (rc = 1.7 Bohr) is not transferable to the
high material density regime. In that work, the au-

thors built an “all-electron” pseudopotential with small
rc = 0.5 Bohr and tested its transferability to very high
material density by comparison with the Thomas-Fermi
(TF) limit calculated using an average-atom model [30].
Another issue is the extent to which removal of core

electrons has an unphysical effect on the distribution
of ionization. A related issue is the effect that remov-
ing core levels has on Fermi-Dirac occupation numbers.
At fixed density, such core levels should be progressively
depopulated with increasing temperature. Does the de-
population of pseudo-density levels behave correctly? A
significant computational practice issue is the minimum
magnitude threshold for retention of occupation num-
bers. That threshold is directly related to basis set size
or, equivalently, the plane-wave cutoff. We know of only
one study of any of these questions [36]. In it, all-electron
calculations with the full-potential linearized muffin-tin
orbital methodology were used to benchmark projector
augmented wave (PAW) calculations with a plane wave
basis. Two metals, Al and W, were treated at T 6= 0
K. At least for W, it appears that different XC function-
als were used for the comparison. Additionally, Ref. 36
used the free-electron expression for the non-interacting
electronic entropy, rather than the proper explicit depen-
dence on occupation numbers fi:

Ss = −kB
∑

i

{fi ln fi + (1− fi) ln(1 − fi)} . (3)

Despite these differences, to the extent that their topics
and ours overlap, the findings are consistent.
To establish a basis for comparison, first we consider

the issues of regularized potentials. We consider both or-
dinary pseudopotentials (PPs) and the pseudopotential-
like PAW technique. Those tests are against all-electron
(bare Coulomb nuclei potential) calculations for small Li
clusters of bcc symmetry. We establish a PAW which
demonstrably is reliable for the density range of inter-
est. Then we study the behavior and limits of the
use of ground-state X functionals in ftDFT by compari-
son of finite-temperature Hartree-Fock (ftHF) and DFT
exchange-only results. For clarity of interpretation, all
the bulk solid calculations reported here were performed
at fixed ionic positions corresponding to an ideal bcc
structure for Li.

II. CODES

We used the atompaw code [37] to form the PAWs.
For periodic systems, we used three codes, Abinit vers.
6.6 [21], Vasp vers. 5.2 [20], and Quantum-Espresso

ver. 4.3 [38]. All three are plane-wave, PP codes. All
three also implement PAWs. Abinit and Quantum-

Espresso are open source. Technical details of the ftHF
calculations are discussed below. For the all-electron cal-
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culations on finite clusters, we used conventional molec-
ular gaussian basis techniques as embodied in the Gaus-

sian 03 program [39].

III. REGULARIZED POTENTIALS

Diverse PP techniques commonly are used in KS cal-
culations to reduce computational cost by excluding the
core electrons from the self-consistent field (SCF) pro-
cedure and to regularize the singular external potential
in order to use an efficient, compact plane wave basis
set. Excluding core electrons implicitly invokes the frozen
core approximation (i.e., the omission of core electrons
from the SCF procedure). That approximation generally
is well-justified in standard conditions. There, the core
electrons are uninvolved in chemical bonding and their
state is essentially independent of the chemical environ-
ment. The validity of this justification is not obvious for
the WDM regime. In it, all electrons become important
for correct evaluation of the Fermi occupancy at high
temperature and correct description of the electron den-
sity at high external pressure. As a consequence, it is
mandatory to include at least some core electrons in the
solution of the relevant Euler equation (DFT or finite-
temperature HF) in the WDM regime. For light atoms
this may mean an all-electron PP. Those are, of course,
a particular form of regularized potential.

Generation of PPs usually is characterized by cutoff (or
pseudization) radii, rc. Values of rc are a compromise be-
tween softness of the PP (for compactness of plane wave
basis sets) and correct description of the one-electron
orbitals close to the nucleus. Standard PPs are devel-
oped for use under near-equilibrium condensed matter
and molecular conditions, hence their transferability to
the WDM regime needs to be explored. For example,
commonly rc is assumed to be somewhat smaller than
half the nearest-neighbor distance between atoms so that
there is no core overlap. There is no guarantee that such
equilibrium prescriptions are satisfactory for WDM stud-
ies.

A. Basic PAW formalism

PAW concepts are summarized in Ref. 40. We out-
line the relevant points here. The PAW valence electron
energy is comprised of a pseudo-energy evaluated using
a smooth pseudo-density and pseudo-orbitals plus atom-
centered corrections. An energy correction centered on
atom a is evaluated using an augmentation sphere of
radius rac . Within each sphere, the correction replaces
the valence pseudo-energy of atom a, Ẽa

v , by the valence
energy Ea

v generated from the valence part of the all-

electron atomic density

Ev = Ẽv +
∑

a

(

Ea
v − Ẽa

v

)

. (4)

Detailed descriptions of each term in Eq. (4) are given,
for example, in Ref. [41]. Here the issue is treatment of
core density contributions to the XC energy, as discussed
in that reference. In the scheme due to Blöchl [42], the
XC energy is expressed as

Exc = Exc[ñ+ ñc] +
∑

a

(

Exc[n
a + na

c ]− Exc[ñ
a + ña

c ]
)

,

(5)
where na and na

c are atom-centered valence and core elec-
tron charge densities corresponding to all-electron atomic
orbitals, ña and ña

c are atom-centered valence and core
electron pseudo-densities, and ñ, ñc are total valence and
core electron pseudo-densities. The idea behind Eq. (5) is
that the third term, which corresponds to atom-centered
contributions of pseudo-densities (evaluated within aug-
mentation spheres, radii rac ), cancels the corresponding
atom-centered pseudo-density contributions (evaluated
over all space) in the first term, and the canceled contri-
bution is replaced by the second term, which is evaluated
with atom-centered all-electron densities (again within
the augmentation spheres only).
The Kresse scheme [43] introduces a valence compen-

sation charge density, n̂, as well. Its purpose is to repro-
duce the multipole moments of the all-electron charge
density outside the augmentation spheres [41]. For the
XC contribution, n̂ is added to the pseudo-densities in
the functionals in Eq. (5) to give

Exc = Exc[ñ+ñc+n̂]+
∑

a

(

Exc[n
a+na

c ]−Exc[ñ
a+ña

c+n̂a]
)

.

(6)
This procedure can cause problems with GGA XC func-
tionals; see Ref. 40.
There are what are called all-electron PAWs, which

in essence are regularized potentials for all-electron cal-
culations. In customary notation, an “N-electron”
PAW retains N electrons in the valence. Thus a 3-
electron (“3e−”) PAW calculation for Li is an all-electron,
regularized-potential calculation.

B. PAW and high density lithium

We tested the PAW approach by calculating the pres-
sure of bcc Li over a large range of material densities,
from approximate equilibrium, ρLi = 0.5 g/cm3, to ρLi =
25.0 g/cm3 (46-fold compression ), all at T = 100 K. (The
equilibrium density from simple Slater LDA all-electron
calculations is 0.54 g/cm3, or lattice constant 6.59 Bohr,
close to the experimental value; see Ref. 45. Newer LDAs
give somewhat contracted results; see below.) Three dif-
ferent PAW data sets were used for each LDA and GGA
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exchange-correlation functional: (i) the standard set with
compensation charge density included from Ref. 46, (ii)
a set with the same cutoff radius (rc = 1.61 Bohr) but
without compensation charge density, and (iii) a set we
generated with rc = 0.80 Bohr and no compensation
charge density. The Perdew-Wang (PW) and Perdew-
Zunger (PZ) LDAs [23, 24] and Perdew-Burke-Ernzerhof
GGA [47] (PBE) XC functionals were used.

The upper segment of Table I compares the calculated
bcc Li equilibrium lattice constants and bulk moduli for
the various combinations. These were done with Abinit

using a 13 × 13 × 13 Monkhorst-Pack k-grid [48], and a
two-atom unit cell. The lattice constant and bulk modu-
lus were obtained by fitting the calculated total energies
per cell to the stabilized jellium model equation of state
(SJEOS) form [49]. One sees that the exclusion of the
compensation density slightly decreases the lattice con-
stant for both PW and PBE functionals. The results are
essentially unchanged when the rc value is decreased to
0.80 Bohr.

Table I also summarizes results obtained using both
Quantum-Espresso and Vasp. The lattice constant
and bulk modulus again were obtained via fitting to the
SJEOS form in all cases. The results for Vasp come from
using the PAW pseudopotentials supplied with the code
itself. There is excellent agreement between Quantum-

Espresso and Abinit results when the same 3e− PAW
data set is used. The Vasp PBE 3e− results do not
agree as well, consistent with the findings of Ref. 40 re-
garding the effects of the valence compensation charge
density contribution. Two LDA PPs also were used with
Quantum-Espresso, namely the 1e− Von Barth-Car
and 3e− norm-conserving pseudopotentials (both taken
from the Quantum-Espresso web page). The lattice
constant corresponding to the first of these PPs is un-
derestimated as compared to other PZ LDA calcula-
tions, independent confirmation of the importance of the
3e− treatment. For the 1e− (Vanderbilt ultrasoft) and
3e− (norm-conserving) PBE PPs (again taken from the
Quantum-Espresso web page), the lattice constant is
slightly overestimated and the bulk modulus is underes-
timated by the 1e− pseudopotential. The 3e− results are
in nearly perfect agreement with the PAW data.

To assess the PAW method for high material density,
we compared PAW and true all-electron (bare Coulomb
potential) results for two small lithium clusters with lo-
cal bcc symmetry; see Fig. 1. The interatomic dis-
tances in both clusters were set equal to the nearest-
neighbor distance in bulk bcc-Li for densities in the range
0.5 ≤ ρLi ≤ 150 g/cm3, which corresponds to compres-
sions of approximately from 1- to 280-fold. The all-
electron calculations were done with the Gaussian 03

code and two basis sets, 6-311++G(3df,3pd) and cc-
pVTZ. For the LDA calculations, we used the Vosko,
Wilk, and Nusair parameterization (VWN) [22]; it is very

close to the PZ parameterization and based on the same
data. For the GGA functional we used PBE. For high
densities, ρLi ≥ 50 g/cm3, we did additional calculations
with cc-pV5Z (8-atom cluster) and cc-pVQZ (16-atom
cluster) basis sets. The PAW calculations were done with
the Abinit code. In it, the clusters were centered in a
large cubic super-cell of size L. For the standard PAW,
we used L = 15 Å with an energy cutoff 1000 eV, while
L = 12 Å with energy cutoff 3000 eV was used for the
small rc PAW. The PZ LDA and PBE GGA functionals
were used in these calculations. Note that the difference
in behavior between PZ and PW is essentially negligible
for the purposes of this study.

Fig. 2 shows all-electron and PAW LDA total ener-
gies for the two clusters as a function of distance corre-
sponding to the stated bulk density. Fig. 3 shows the
corresponding GGA results. The behavior of the two
clusters is quite similar. For the standard PAW data set
(labeled “(i)” previously), the total energy starts to devi-
ate from the all-electron (AE) values at a critical density
of approximately ρclust−crit1

Li = 8.0 g/cm3 (15-fold com-
pression). For the standard PAW set without compen-
sation density [set (ii)], the critical density ρclust−crit2

Li

is approximately 25 g/cm3 (46-fold compression). In
contrast, the PAW with small rc and no compensation
density [set (iii)] gives essentially perfect agreement with
the AE results for the whole density range. For densi-
ties up to 30 g/cm3, two basis sets, 6-311++G(3df,3pd)
and cc-pVTZ, give essentially the same quality results.
At high density (50 g/cm3 and up), the cc-pVTZ basis
set energies lie above the values corresponding to the 6-
311++G(3df,3pd) basis. For those high densities, AE
calculations done with the larger cc-pV5Z (8-atom clus-
ter) and cc-pVQZ (16-atom cluster) basis sets lower the
total energy to the 6-311++G(3df,3pd) level (16-atom
cluster) or slightly lower (8-atom cluster). Once again
there is essential perfect agreement with the set (iii) PAW
plane wave results.

The corresponding PBE GGA comparison of PAW
and AE results, Fig. 3, shows that the critical densities
for each PAW data set are almost identical for the 8-
atom and 16-atom clusters. For the PAW data set (i),
ρclust−crit1
Li ≈ 6.0 g/cm3 (11-fold compression ) is slightly

lower than for the LDA case. For PAW data set (ii),
the critical density is essentially the same as for LDA
(≈ 25 g/cm3). Once again, the small rc PAW data set
(iii) gives good agreement with the AE results up to the
maximum density considered (150 g/cm3). We conclude
from these cluster comparisons that PAW data set (iii),
namely rc = 0.80 Bohr and no compensation charge,
is completely adequate for making reference KS calcu-
lations in the high density regime.

Another validation issue is the effect of PAW or PP
on the calculated pressure. A study [15] of the EOS for
warm, dense LiH found that the 3e− PAW for Li in VASP



5

TABLE I: Equilibrium lattice constant for bcc-Li, a (Bohr) and bulk modulus, B (GPa).

LDA GGA
Method rc PW PZ PBE

a B a B a B

Abinit (3e−, PAW, c.ch.a) 1.61 6.353 15.1 – – 6.504 14.1
Abinit (3e−, PAW) 1.61 6.354 15.1 6.351 15.2 6.489 13.9
Abinit (3e−, PAW) 0.80 6.353 15.1 6.350 15.2 6.488 14.0

Q-Espreso (3e−, PAW, c.ch.a) 1.61 6.355 15.1 – – 6.508 14.2
Q-Espreso (3e−, PAW, c.ch.a) 0.80 6.353 15.1 – – 6.488 13.9

Q-Espreso (1e−)b – – – 6.311 15.1 6.714 12.0
Q-Espreso (3e−)c – – – 6.353 15.2 6.491 13.9

Vasp (1e−, PAW, c.ch.a) 2.05 – – 6.361 15.2 6.502 14.0
Vasp (3e−, PAW, c.ch.a) 1.55-2.00 – – 6.351 15.2 6.492 14.0

aCompensation charge density is included.
bLDA: PZ exchange-correlation, nonlinear core-correction Von

Barth-Car; GGA: PBE exchange-correlation, nonlinear core-

correction, Vanderbilt ultrasoft pseudopotentials.
cPZ and PBE semicore state s in valence Troullier-Martins pseu-

dopotentials.

FIG. 1: Bcc Li8 (left panel) and Li16 (right panel) clusters
used to test PAW calculations.
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FIG. 2: All-electron (VWN XC) and PAW (PZ XC) LDA
total energies for the Li8 and Li16 clusters.
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FIG. 3: All-electron and PAW GGA total energies for the Li8
and Li16 clusters.

calculations was necessary for T = 2, 4, and 6 eV and
densities twice that of ambient and greater. Fig. 4 shows
the bulk bcc Li pressure as a function of material den-
sity at T=100 K calculated using Abinit with the same
three PAW data sets as before for both the PW LDA
and PBE XC functionals. (Use of the PZ LDA functional
gives results indistinguishable from those from PW LDA
on the scale of the figure.) One sees that the standard
PAW data set (i) starts to overestimate the pressure at
ρbulk−crit1
Li = 6.0 g/cm3 (11-fold compression) for LDA
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FIG. 4: Pressure vs. material density from PAW LDA (PW
correlation) (left panel) and from PAWGGA (PBE XC) (right
panel) calculations for bulk bcc-Li (2-atom unit cell, k-mesh
between 9× 9× 9 and 13× 13× 13 with larger size for higher
densities).

and at a slightly lower value for PBE. PAW data set (ii)
produces results which agree with the reference calcula-
tions (i.e., those from PAW set (iii)) for densities up to
ρbulk−crit2
Li = 15.0 g/cm3 (28-fold compression). Compar-

ison of critical density values in the clusters and in bulk
shows that ρbulk−crit1

Li is slightly lower than ρclust−crit1
Li .

A crude linear extrapolation of the results from PAW
data sets (i) and (ii) gives an estimated lower bound for
the critical bulk density for the reference PAW data set
ρbulk−crit3
Li to be 80 g/cm3 (150-fold compression). Ad-

ditional tests would be needed to get the actual value of
ρbulk−crit3
Li . Such a determination is not required for the

present purposes.

We observe that for fcc Al at T=0 K, Levashov et

al.[36] found that the standard VASP PAW pressures
began to deviate materially from all-electron values at
about a compression of seven. Since it was standard
VASP, presumably that PAW included charge compen-
sation, hence their result should correspond to our set (i)
Li results, those labeled “PAW, rc = 1.61 bohr, c.ch.” in
Fig. 4. It is clear that the deviation they found in fcc
Al is at similar but modestly lower compression than we
find for bcc Li.

The remaining validation issue is inter-code differences
in the equation of state. Figure 5 compares pressure ver-
sus material density (T=100 K) for LDA (left panel)
and PBE GGA (right panel) for material densities in
the range 0.6 − 10.0 g/cm3 obtained from Vasp and
Quantum-Espresso using standard PPs (the PAW pro-
vided with the Vasp package and the norm-conserving
PP taken from the Quantum-Espresso web page), and
reference results obtained with our PAW data set (iii)
(for both the PZ LDA and PBE GGA XC functionals.)
For LDA, we also show the earlier all-electron results by
Boettger and Albers [50]. Observe first that our des-
ignation of the PAW (iii) as a reference is substanti-
ated by the agreement with the all-electron LDA cal-
culation. Second, the Vasp 1e− PAW LDA results start
to deviate from the reference values by 5% at about 4.0
g/cm3 (roughly 8-fold compression). By the same crite-
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FIG. 5: Validation of Vasp 1e−, 3e− PAW, Quantum-

Espresso 1e−, 3e− PZ LDA (left panel) and Vasp 1e−, 3e−

PAW,Quantum-Espresso 1e−, 3e− PBE GGA (right panel)
pseudopotential calculations: pressure as a function of density
for bcc-Li calculated at T=100 K (2-atom unit cell, 13×13×13
k-mesh).

rion, the 3e− PAW LDA pressure from Vasp agrees well
with the reference data for densities up to 8.0 g/cm3.
Quantum-Espresso results calculated with the 1e− PZ
LDA pseudopotential deviate (by the chosen criterion)
from the reference results for density between 2 and 3
g/cm3 (4 to 6-fold compression), whereas the 3e− po-
tential in Quantum-Espresso produces results which
agree virtually perfectly for the full density range. For
the GGA case, the right-hand panel of Fig. 5 shows that
the code comparison is very similar, except that both
the 1e− and 3e− PAW Vasp calculations start to devi-
ate from the reference results at almost the same density
(≈ 4 g/cm3). TheQuantum-Espresso 1e− calculations
overestimate the pressure for ρLi > 0.8 g/cm3. However,
theQuantum-Espresso 3e− results are in virtually per-
fect agreement with the reference PAW results for the
whole range of densities. Table II summarizes these re-
sults.

IV. FINITE TEMPERATURES

A. Pseudopotentials and level populations

In finite-temperature calculations (either KS or HF),
there is non-zero occupation of one-electron levels which
correspond to empty levels at T = 0 K (virtual states or
simply “virtuals”). Satisfaction of some computational
threshold for the smallest non-negligible occupation num-
ber requires an increasingly large set of those virtuals to
be considered with increasing T. Concurrently there is
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TABLE II: Maximum bcc-Li densities for which the devia-
tion in pressure from the reference values, evaluated using
the listed codes and pseudopotentials, is ≥ 5%.

Code Pseudo ρLi,max, g/cm
3

LDA

Vasp PAW 1e− ≈ 4.0
Vasp PAW 3e− ≈ 8.0
Quantum-Espresso 1e− ≈ 2.5
Quantum-Espresso 3e− > 25.0

GGA

Vasp PAW 1e− ≈ 4.0
Vasp PAW 3e− ≈ 4.0
Quantum-Espresso 1e− < 0.8
Quantum-Espresso 3e− > 25.0

depopulation of levels fully occupied at T = 0 K. One
would hope that PP methods which treat all electrons
self-consistently would be applicable for such finite-T cal-
culations. A related issue is the validity of using PPs
which remove some of the core. A rough estimate of the
relevant scale comes from taking the 1s ionization poten-
tial for the Li atom to be approximately the magnitude of
the LDA Kohn-Sham 1s eigenvalue, about 51 eV. Then
PP treatment of Li 1s electrons as core might be expected
to be applicable for temperatures much smaller than 51
eV. The question is the validity of any estimate of this
sort, in particular, how much smaller? We remark that
Levashov et al. [36] found that for ambient density Al,
the PAW pressure deviated from the all-electron value at
about T = 5-6 eV. This is less than 10% of the magnitude
of the LSDA 2p atomic KS eigenvalue (about 70 eV).

First consider the comparative performance of the
PPs. Figure 6 shows the hydrostatic pressure as a
function of temperature calculated using 1e− and 3e−

norm-conserving pseudopotentials for the bcc-Li struc-
ture (fixed nuclear positions, ρLi = 0.5 and 1.0 g/cm3).
Notice that this calculation uses a ground-state XC func-
tional: there is no explicit temperature dependence in
the PZ LDA XC functional. If the number of bands
taken into account for a two-atom unit cell for ρLi = 0.5
g/cm−3 is 128, the occupation number of the highest
energy bands is of the order of 10−6 − 10−7. Observe
that the results from the 1e− PP are in almost perfect
agreement with those from the 3e− calculations for T
up to 75,000 K, with small disagreement appearing at
higher temperatures. For low to moderate compression,
it appears that the range of applicability of standard 1e−

norm-conserving pseudopotentials is at least up to T =
100 kK or about 8 – 9 eV. This fits the rough argument
based on the Li 1s KS eigenvalue, with the criterion for
“much smaller” being of order 20 % at most.

0 20 40 60 80 100
T (kK)

−50

50

150

250

350

450

P
 (

kB
ar

)

LDA (1e− )
LDA (3e− )

ρLi=0.5 g/cm
3

0 20 40 60 80 100
T (kK)

100

300

500

700

900

P
 (

kB
ar

)

LDA (1e− )
LDA (3e− )

ρLi=1.0 g/cm
3

FIG. 6: Comparison of pressure vs. temperature for bcc-Li
obtained with 3e− and 1e− pseudopotentials for the Perdew-
Zunger LDA exchange-correlation functional as implemented
inQuantum-Espresso (2-atom unit cell, 9×9×9 k-mesh, 128
bands). Left panel: ρLi = 0.5 g/cm3. Right panel: ρLi = 1.0
g/cm3.

Implicit in the discussion of the range of applicability
of 1e− versus 3e− pseudopotentials is the notion of a T-
dependent pseudopotential. Putting aside issues of con-
tinuum orbital occupation in the pseudoatom, we note a
straightforward result from Ref. [44]. For bulk hydrogen,
all-electron pseudopotentials regularized at T=0 K yield
both total free-energies and pressures which are in per-
fect agreement with truly all-electron calculations with
the bare Coulomb external potential for temperatures up
to at least 100 kK and material densities corresponding
to compressions up to 30-fold. There is no evidence of
need for an explicit T-dependence in the pseudopotential.

Next comes the matter of significant fractional occupa-
tion of ever-higher energy orbitals with increasing tem-
perature. A related issue is energy level shifting and
reordering with increased density, an effect known for
T = 0 K Li [45, 51].

Again, we did calculations with ground-state XC on
bcc Li, with material density from 0.6 to 4.0 g/cm3

(rs = 3.14 to 1.67 Bohr). For all temperatures and
densities, we used a 7 × 7 × 7 Monkhorst-Pack k-grid
[48], a two-atom unit cell, and included 128 bands with
a plane wave energy cutoff of 150 Ry. The calculations
were done with Quantum-Espresso and the 1e− PP
just mentioned. The upper panel of Figure 7 shows a
sample of the orbital eigenvalues for a single k-point, Γ,
as a function of material density for T = 100 kK. The
T = 100 K plot is absolutely indistinguishable, due to
relatively small differences in the eigenvalues. The eigen-
values are labeled in order of increasing energy, ε1 lowest,
ε128 highest. The main point to be noticed is that as the
density increases, the spread in the lower half (roughly)
of the eigenvalues increases. Those are the eigenvalues
most pertinent to the calculation, in the sense that at
a given temperature, excited levels will be depopulated
at higher densities compared to the corresponding levels
at lower densities. (An exception would be a pressure-
induced switch in level-ordering.) The lower panels of
Fig. 7 show the occupation numbers for those same eigen-
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FIG. 7: Top: orbital energies for the Γ point, at 100 kK.
Bottom left: single-spin occupation number fi of the levels
plotted for T = 100 K. Bottom right: same but for T = 100
kK. The legend for the level number, given in the upper right,
is for all plots.

values. At low temperature and low density, the results
are as expected, an almost square-wave Fermi distribu-
tion with the lowest band fully occupied (since there are
two electrons in the unit cell) and the higher bands un-
occupied. At higher densities, some k-points, including
the Γ point, as shown in the lower left panel, for densi-
ties above 3 g/cm3, have no occupation while others have
two occupied levels. This repopulation is a consequence
of changes in the KS orbitals caused by changes in the ex-
ternal potential, hence also in the effective KS potential.
The lower right panel shows that at higher temperatures
there is not only a temperature dependence of the oc-
cupation numbers, but a significant density dependence
because of the spreading of the orbital energy levels.

Next we consider the number of bands required for
a stipulated precision, given by a minimum occupation
number threshold, as a function of temperature and den-
sity. For the calculations just discussed, we calculated a
zone-averaged band occupation. For a band of composite
index i, we sum the occupations of the εi level multiplied
by the k-point integration weight for all k-points. This
zone-averaged occupation is plotted for T = 100 kK in
Figure 8. One sees clearly that, for a given threshold
in occupation number, for example 10−6, the number
of required bands decreases significantly with increas-
ing density. This decrease again is due to changes in
the KS orbitals. At least at T = 0 K, it long has been
known [45, 51] that as Li is compressed, its band struc-
ture initially becomes less like the homogeneous elec-
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FIG. 8: Zone-averaged band occupation numbers for all bands
at T = 100 kK, for the various material densities listed.

tron gas (HEG) than the bcc zero-pressure bands. How-
ever, eventually, the system passes over to a Thomas-
Fermi-Dirac equation of state, signifying near-perfect but
spread parabolic bands (see upper panel of Fig. 7) and
corresponding HEG occupations.

B. Exchange free energy

Though it originated in the Greens function for-
malism of many-fermion theory, the finite-temperature
Hartree-Fock approximation is the thermodynamical
generalization of the variational optimization of a single-
determinant trial wave function which is ubiquitous in
quantum-chemistry and molecular physics as the HF ap-
proximation [52].

To summarize, the thermal generalization of the fa-
miliar HF single-determinantal exchange energy may be
expressed in terms of the one-electron reduced density
matrix (1-RDM)

Fx[n] := −

∫

dx1 dx2 {g12Γ̄
(1)(x1|x

′

2)

× Γ̄(1)(x2|x
′

1)}x′

1
=x1,x′

2
=x2

, (7)

where x := r, s is a composite space-spin variable, g12 =
1/2|r1 − r2|, and the 1-RDM is defined in terms of the
relevant orbitals {ϕi} and occupation numbers {fi}

Γ̄(1)(x1|x
′

1) :=

∞
∑

j=1

fjϕj(x1)ϕ
∗

j (x
′

1) , (8)

subject to

fj ≡ f(εj − µ) = [1 + exp(β(εj − µ))]−1 (9)
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and
∫

dxϕi(x)ϕ
∗

j (x) = δij

∞
∑

j=1

fj = N , (10)

with β := 1/kBT as usual. Here µ is the chemical poten-
tial (determined by Eq. (10)) and the εj are the eigen-
values of the associated one-particle ftHF equation.
The analogue to ftHF in DFT is called finite-

temperature exact exchange (ftEXX hereafter) DFT [53].
In its pure Kohn-Sham form, ftEXX defines the exchange
free energy formally identically with ftHF, but evaluates
the density n(r,T) from orbitals which follow from a true
KS procedure, that is, from a one-body Hamiltonian with
a local (multiplicative) exchange potential. That poten-
tial follows from the system response function, δn/δvKS.
A full ftDFT calculation (not exchange only) would have
a correlation free energy functional and associated KS
potential as well.
Ground state DFT with so-called hybrid approximate

exchange functionals has a similar structure for the total
energy, in the sense that hybrids have contributions both
from single-determinant exchange and from exchange-
correlation functionals which are explicitly density de-
pendent. Instead of a KS procedure, one can go from such
a hybrid expression directly to coupled one-electron equa-
tions by explicit variation with respect to the orbitals. In
ground-state theory with a hybrid functional, this proce-
dure sometimes is called generalized KS. The relevant
point is that the same approach applies directly to ftHF.
Simply switch off the explicit density functionals for ex-
change and correlation and leave the exchange functional
which comes from the trace over single-determinants.
Since the capacity to do hybrid DFT as a generalized KS
approach exists in both Vasp and Quantum-Espresso,
one sees that such coding is immediately exploitable for
doing ftHF.
In parallel with ground state DFT, an LDA may be

obtained from considering the finite-T HEG. Its exchange
free energy is given in first-order perturbation theory by

FHEG
x = −

V

(2π)6

∫ ∫

dk dk′
4π

|k− k′|
f(k)f(k′) (11)

where f(k) = [1+ exp(β(k2/2−µHEG
0 ))]−1, and V is the

system volume. With the chemical potential expanded
to the same order as well, µHEG = µHEG

0 + µHEG
x , the

exchange portion is

µHEG
x (n,T) =

δFHEG
x

δn
(12)

If expressed in closed form, this result may be used
as the finite-T LDA, with exchange free energy per
electron fLDA

x (n(r,T),T) = (FHEG
x /nV )|n=n(r,T ), and

vLDA
x (n(r,T),T) = µHEG

x (n,T)|n=n(r,T). Here we
used the parametrization given by Perrot and Dharma-
wardana [54]. The LDA exchange free energy is then

FLDA
x [n(r),T] =

∫

fLDA
x (n(r,T),T)n(r,T)dr . (13)

The one-particle density follows by obvious analogy with
Eqs. 8 - 10.

C. Finite-temperature Hartree-Fock and DFT

X-only calculations

To study the importance of using an explicitly T-
dependent expression for the exchange free energy (rather
than a calculation with a ground-state X functional) and
to estimate the quality of the T-dependent exchange free-
energy functional defined by Eq. (13), we compare ftHF
calculations which use the exact exchange free energy Eq.
(7), Kohn-Sham calculations with T-independent LDA
exchange for the exchange free energy, Fx ≈ ELDA

x , and
KS calculations done with the T-dependent exchange free
energy functional FLDA

x . In the following discussion, the
ground-state functional calculations are labeled “LDAx”,
while those which used the explicitly T-dependent LDA
are labeled “LDAx(T)”. All the calculations were done
with Quantum-Espresso using the 1e− PZ LDA pseu-
dopotential taken from the Quantum-Espresso web
page. We treated bcc Li with fixed nuclear positions,
here with densities between ρLi = 0.6 and 1.8 g/cm3 (rs
between 3.14 and 2.18) and temperatures between 100 K
and 100 kK. This corresponds to a reduced temperature
(t = T/TF) range from near the degenerate limit t = 0
to t = 1.7 and t = 0.81 respectively. At these densities
and temperatures, the Quantum-Espresso 1e− pseu-
dopotential is adequate; recall Sections III B and IVA as
well as Figs. 5 and 6.

Convergence of the ftHF and the LDAx calculations
with respect to the k-mesh for the bcc-Li 2-atom unit
cell requires attention. It is known [55] that T=0 K LDA
calculations on bcc Li exhibit misleading convergence be-
havior at a relatively coarse k-mesh density. We tested
for the smallest real space cell size used, corresponding to
bulk density ρLi = 1.8 g/cm3. The ftHF total free energy
calculations converge much more slowly than the ftDFT
calculations. For the moderate 7×7×7 k-mesh, the DFT
calculations are converged to an iteration-to-iteration dif-
ference of 0.02 eV per atom, while the HF calculations
converge to the same precision only upon reaching the
much denser 17×17×17 mesh. Moreover, the HF calcu-
lation exhibits a potentially misleading energy minimum
at 15× 15× 15. The k-mesh convergence becomes faster
with increasing T. For example, at T = 100 kK, both
HF and LDAx calculations already are converged at the
3× 3× 3 k-mesh. In all calculations, both HF and DFT,
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FIG. 9: Comparison of finite-temperature HF, ground
state LDA X-only (LDAx) and T-dependent LDA X-only
(LDAx(T)) exchange free energy differences ∆Fx(T) =
Fx(T) − Fx(100K) per atom as a function of electronic tem-
perature T. Left panel: ρLi = 0.6 g/cm3 (rs = 3.14); right
panel: ρLi = 1.2 g/cm3 (rs = 2.49).

presented in this section, the 25 × 25 × 25 k-mesh was
used.

Figure 9 compares changes in the exchange free energy
contribution with increasing T relative to 100 K values,
Fx(T) − Fx(100K). The T-independent LDA exchange
free energy practically does not change over that range,
i.e., FLDA

x [n(r,T)] ≈ FLDA
x [n(r, 100K)]. In contrast, the

HF exchange free energy increases significantly (by about
4-5 eV per atom) with increasing T. The T-dependent
LDA exchange free energy reproduces the HF behavior
at least qualitatively.

The exchange free energy is, of course, a small portion
of the total free energy. Figure 10 shows total free energy
differences ∆Ftot(T) = Ftot(T) − Ftot(100K) as a func-
tion of electronic temperature. The free energy is mono-
tonically decreasing with increasing T, in agreement with
non-negativity of the entropy evaluated from the thermo-

dynamic relation S = −∂F
∂T

∣

∣

∣

N,V
. The DFT X-only total

free energies from T-independent LDA X lie below the
corresponding ftHF values for all T and both densities.
At T ≈ 20 kK, the interval is about 2 eV/atom, growing
to about 4-5 eV/atom by 40 kK. The T-dependent LDA
X gives total free energy behavior much closer to that of
ftHF, with discrepancies not exceeding 1− 2 eV/atom.

The effect of explicit T-dependence in exchange upon
the pressure may be estimated from the difference be-
tween the ftHF or LDAx(T) and the LDAx values. Fig-
ure 11 provides this comparison. As a function of T, the
pressure from ftHF starts below the LDAx curve, then
crosses and goes above it at about 55-75 kK, depend-
ing upon the material density. The temperature of this
crossing point increases slightly with material density. To
isolate the effect of exact T-dependent X upon the pres-
sure, we consider the difference between ftHF and LDAx
values, offset by the near-zero-temperature difference

∆PHF−LDAx(T) = PHF(T)− PLDAx(T) (14)
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FIG. 10: Comparison of finite-temperature HF, ground
state LDA X-only (LDAx) and T-dependent LDA X-
only (LDAx(T)) total free energy differences ∆Ftot(T) =
Ftot(T) − Ftot(100K) per atom as a function of electronic
temperature. Left panel: ρLi = 0.6 g/cm3 (rs = 3.14); right
panel: ρLi = 1.2 g/cm3 (rs = 2.49).

at T = 100 K, i.e.,

∆∆PHF−LDAx(T) = ∆PHF−LDAx(T)

−∆PHF−LDAx(100K) . (15)

One can see from the right-hand panels of Fig. 11
that the maximum magnitude of this difference at T=
100 kK is about 10 % for all material densities con-
sidered. For low temperatures, the effect of exact T-
dependent X on pressure is stronger. For example, at 30
kK ∆∆PHF−LDAx(30kK) ≈ 5 GPa for material density
1.0 g/cm3, that is, the shift is ≈ 30% of the HF pres-
sure (about 15 GPa) at that T. Again, the LDAx(T)
and ftHF temperature-dependence resemble one another
qualitatively whereas the LDAx result does not. Note
that the LDAx(T) crossing temperature with respect to
the LDAx curve increases much more rapidly with in-
creasing material density than for ftHF. For material
density ρLi = 0.6 g/cm3, both curves cross at T ≈ 60
kK. At ρLi = 1.2 g/cm3 the LDAx(T) pressures crosses
the LDAx curve at T ≈ 100 kK, higher than the temper-
ature of the HF-LDAx crossing point T ≈ 70 kK. With
increasing material density the shift between LDAx(T)
and ftHF increases especially for T ≥ 50 kK.

V. CONCLUSIONS

Detailed computational examination of the applica-
bility of standard PP and PAW methods to the WDM
regime, with bulk Li as the test system, yields several
insights. By unambiguous comparison with all-electron
results from small Li clusters of bcc-derived symmetry,
we find that the PAW scheme requires a small augmen-
tation sphere radius, that the compensation-charge term
is not helpful, and that all electrons must be treated in
the SCF calculation. We have constructed such PAW
data sets for LDA and GGA functionals and used them
to generate reference data.
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FIG. 11: Effect of temperature-dependent exchange on pres-
sure. Left panels: pressure as a function of electronic temper-
ature as predicted by HF, LDAx, and LDAx(T) calculations
for ρLi = 0.6, 0.8, 1.0 and 1.2 g/cm3 (rs = 3.14, 2.85, 2.64, and
2.49 correspondingly). Right panels: differences in pressure
between calculations with T-dependent and T-independent X,
P(HF)− P(LDAx) and P(LDAx(T))− P(LDAx).

We have located the maximal material density of bulk
bcc-Li usable for standard PPs in Vasp, Abinit, and
Quantum-Espresso codes. And we have delineated the
validity of using such PPs at high T by comparison of 1e−

and 3e− PP results. The transferability of PPs and PAW
data sets developed for near-equilibrium conditions to the
WDM regime is conditional. At near-equilibrium densi-
ties it appears to be acceptable, but not at high densities.
Clearly, such transferability should not be assumed.

With these issues settled, we have found that there is
non-trivial effect of explicit T-dependence in the X func-
tional in the specific sense of comparison with ftHF. In
particular, the LDA T-dependent exchange contribution
to the total free energy is much closer to the exact HF
exchange value than is the contribution from exchange
approximated by the LDA ground-state X functional. Al-
though the exchange free energy is a small portion of the
total free energy, this difference carries over into clearly
significant differences in the equation of state. Thus, the
effect of explicit T-dependence in X is relevant for an
accurate characterization of the Li equation of state in
the WDM regime. We suspect that this may be gen-
erally true of WDM systems. If so, T-dependent LDA
exchange may serve as a starting point for development
of more refined GGA-type exchange free energy function-
als, analogous with the role of LDA in the ground state.
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