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Heterogeneous flows are observed to result from variations in the geometry and topology of pore
structures within stochastically generated three dimensional porous media. A stochastic procedure
generates media comprised of complex networks of connected pores. Inside each pore space, the
Navier-Stokes equations are numerically integrated until steady state velocity and pressure fields are
attained. The intricate pore structures exert spatially variable resistance on the fluid, and resulting
velocity fields have a wide range of magnitudes and directions. Spatially non-uniform fluid fluxes
are observed, resulting in principal pathways of flow through the media. In some realizations, up to
25% of the flux occurs in 5% of the pore space depending on porosity. The degree of heterogeneity
in the flow is quantified over a range of porosities by tracking particle trajectories and calculating
their attributes including tortuosity, length, and first passage time. A representative elementary
volume is first computed so the dependence of particle based attributes on the size of the domain
through which they are followed is minimal. High correlations between the dimensionless quantities
of porosity and tortuosity are calculated and a logarithmic relationship is proposed. As the porosity
of a medium increases the flow field becomes more uniform.

PACS numbers: 47.56.+r, 47.15.G-, 47.11.Bc, 91.60.Np
Keywords: flow in porous media, first passage percolation, immersed boundary method, porosity, principal
pathways, tortuosity

I. INTRODUCTION

Microscopic spatial variations of a porous medium
manifest themselves through the geometry of the pore
space (pore throat radii, the local curvature of pores)
and its topology (degree of connectivity). These varia-
tions induce heterogeneities in the flow of a fluid moving
through a porous medium. Resulting heterogeneities in
the velocity field are reflected in the particle trajecto-
ries and bundles of trajectories defining principal path-
ways of flow. The ability to investigate details of flow
within a pore network is important as it can guide ap-
plications ranging from design of engineered materials to
evaluation of environmental risks. Detailed predictions of
fluxes in pore networks can be limited by observational
constraints and analytical inadequacies in dealing with
complex boundary conditions arising from variable ma-
terial properties [1–4]. Computational experiments are
alternatives for investigating detailed characteristics of
flow within networks of pores and can yield detailed ve-
locity and pressure fields in complex pore spaces [5–19].

Multiple techniques are in use for numerically model-
ing flow through explicit pore spaces. Lagrangian parti-
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cle methods such as lattice Boltzmann [5, 6, 9, 10] and
smooth particle hydrodynamics [11, 12, 15, 17] have been
used to resolve both single and multiphase flows in arbi-
trary pore geometries. Eulerian methods integrate the
Navier-Stokes equations using finite volume or finite el-
ement techniques on meshes generated in explicit pore-
spaces [14, 19]. The immersed boundary method, the al-
ternative used here, inserts fictitious body forces into the
Navier-Stokes equations to represent the pore space [18].

This paper investigates the following aspects of flow
in porous media: how porosity impacts variations in the
velocity field; particle based attributes of tortuosity, tra-
jectory length, and percolation time; and principal path-
ways, which are comprised of trajectory bundles. The
methods for generating each porous medium, numeri-
cally integrating the Navier-Stokes equations, and track-
ing particles through the fluid velocity fields are discussed
in Section II. Multiple independent realizations of pore
spaces are stochastically generated for a range of porosi-
ties. Each realization is comprised of complex networks
of connected pores with varying degrees of pore throat
radii and connectivity (Section II A). Velocity and pres-
sure fields are obtained for each realization using the
immersed boundary method (Section II B). Fluid par-
ticles advected with the steady state flow field are fol-
lowed through every pore space realization using a par-
ticle tracker (Section II C).

The combination of the particle trajectory attributes
(tortuosity, first passage time, and trajectory length) pro-
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vides a portrait of a particle’s journey inside of a porous
medium. These particle attributes vary considerably
across pore spaces with different values of porosity (Sec-
tion IIIA) and depend upon the extent of the domain
through which particles are tracked (Section III B). The
tortuosity of a particle’s trajectory quantifies its devia-
tion from the straight line between its end points (Sec-
tion III C). The first passage percolation time of a parti-
cle trajectory relates to a particle’s mean velocity (Sec-
tion III D) while trajectory length is a primary integral
property of a particle’s motion (Section III E). Hetero-
geneity in a velocity field produces bundles of particle
trajectories which form in areas of greater fluid flux, i.e.
principal pathways (Section IV). We close with a discus-
sion of the results (Section V).

II. METHODS

A. Pore Space Construction

Each virtual porous medium is a realization drawn
from an ensemble of pore spaces in R

3 with sides of length
Lx = Ly = 1.27 · 10−2 m and Lz = 2.55 · 10−2 m, and
volume V = 4.11 ·10−6 m3. Level set percolation [20, 21]
is used to generate the porous media. Each node on a
three dimensional regular grid is assigned an independent
identically distributed random value sampled from a uni-
form distribution on the closed interval [0, 1]. This ran-
dom field is convolved with a symmetric Gaussian kernel
to generate an isotropic correlated random topography.
The convolution is achieved by transforming the field into
frequency space, multiplying it by a Gaussian function,
and then transforming it back into real space. The corre-
lation length of the topography is determined by the full
half width at maximum of the Gaussian kernel, which
is fixed at 0.0235 for all porous media in this study. Be-
cause the topographies are based on sums of independent
uniform random variables weighted by a Gaussian kernel
with unit L2 norm, topography values are approximately
normally distributed with a mean of 1/2 and variance of
1/12 [22].
A level threshold, γ ∈ (0, 1), is applied to the resulting

topography to determine which nodes are in the void
space and which are in the solid matrix. If the value
at a node is greater than γ, then the node is placed in
the solid matrix, nodes with values below γ are placed
in the void space. Intuitively, as γ increases so does the
amount of void space in the porous medium. The result of
applying this technique is a statistically stationary pore
space in the sense that the finite-dimensional probability
distributions of pore space membership are invariant with
respect to translation in space.
For a fixed level of γ, the stochastic construction re-

sults in the variability of physical characteristics of the
pore spaces such as porosity n (the ratio of void vol-
ume over bulk volume). To study the influence of the
threshold parameter on the expected porosity of a real-

ization ne, eleven different levels of γ are selected and one
thousand independent identically distributed pore space
realizations are generated at each level. Each sample set
has finite variance and therefore the strong law of large
numbers (ergodicity) can be invoked to define the mean
porosity of these sample sets as the expected porosity for
a given level of γ. The relationship between threshold
parameter γ and the physical quantity ne is described by
the function

ne(γ) = 3.6γ − 1.3 . (1)

At γ = 0.36, ne = 0 and at γ = 0.64, ne = 1. Outside of
γ ∈ (0.36, 0.64), this method for generating porous media
ceases to produce physically meaningful structures. The
correlation coefficient between γ and ne is 0.99, which in-
dicates a strong linear relationship between the two. For
physical intuition, ne, rather than γ, is used to classify
pore spaces.
Horizontal cross sections for three realizations of pore

spaces are shown in Fig. 1. Black indicates a node in the
solid matrix and white a node in the void space.

FIG. 1: Cross sections of pore spaces with γ values and ex-
pected porosities of (0.45, 0.32), (0.50, 0.50), and (0.54, 0.64),
respectively. Black indicates a node in the solid matrix and
white a node in the void space. As the threshold parameter,
γ, increases the porosity increases.

B. Computational fluid dynamics

We follow the techniques of [18] for integrating the
incompressible Navier-Stokes equations under gravity.
Starting with a fluid at rest that fully saturates the pore
space, the equations are integrated to attain steady state.
One should refer to [18] for information regarding grid
resolution, optimization of the numerics on larger clusters
of processors, and a detailed description of the numeri-
cal methods used to integrate the governing equations
although the method is sketched here for the reader’s
convenience.
Flow is simulated by numerically solving the incom-

pressible Navier-Stokes equations on a Cartesian domain
with a linear scale ∼ 10−2 m. The grids for the virtual
pore spaces have 128 nodes in the horizontal directions
and 256 in the vertical direction. Each medium is peri-
odic in the vertical direction with no flow allowed across
lateral boundaries. The three components of velocity and
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pressure are computed at every point within each real-
ization of a porous medium.
The multi-scale computational fluid dynamics model-

ing system EULAG [23] is used to numerically integrate
the governing equations for water flow, as in [18]. The
EULAG system accommodates a broad class of flows and
underlying fluid equations in a variety of domains on
scales ranging from wind tunnel and laboratory [24–26]
through terrestrial environments and climate [27–30], to
stellar [31].
The crux of our computational approach for simu-

lating flows in porous media is an immersed-boundary
method [32, 33] that inserts fictitious body forces in the
equations of motion to mimic the presence of solid struc-
tures and internal boundaries. Conceptually, this is in
the spirit of statistical theories that treat the solid phase
as an external force field constraining the fluid to the void
space [34, 35]. The resulting dynamics are such that ve-
locity is negligible and pressure irrelevant within the solid
matrix where the body forces are high. The particular
technique employed is a variant of feedback forcing [36],
with implicit time discretization admitting rapid attenu-
ation of the flow to stagnation within the solid matrix in
O(∆t) time comparable to the time step ∆t = 0.02 s of
the fluid model. Flow simulations are run for 8 seconds
with steady state conditions reached in 2-3 seconds.
For gravity-driven flows of a homogeneous incompress-

ible fluid, e.g. water, through a porous medium, the
Navier-Stokes equations are

∇ · v = 0 , (2)

∂v

∂t
+ v · ∇v = −∇π′ + g

′ + µ△v − αv .

The primes refer to perturbations with respect to static
ambient atmospheric conditions characterized by a con-
stant density ρ0 and pressure p0 = p0(z), so π′ =
(p− p0)/ρ and g

′ = (0, 0,−gρ′/ρ) where ρ = const ≫ ρ0
denotes the density of fluid and g is gravitational accel-
eration, g = 9.81 m/s2. The kinematic viscosity of water
µ is 10−6 ms−2.
The last term on the right hand side of the momentum

equation is the fictitious repelling body force of the im-
mersed boundary method, with a non-negative time scale
α−1(x) = 0.5∆t and the corresponding inverse time scale
α(x) = 0 within the solid and fluid, respectively. Even
though the mathematical form of the repelling body force
−αv is reminiscent of Stokes’ drag, there is no physi-
cal connection between the two. The former is merely
a mathematical prerequisite of the numerical device that
circumvents the difficulty of imposing exact no-slip condi-
tions along boundaries with complex geometry and topol-
ogy. Intuitively, setting α(x) = 0 within the fluid ad-
mits Navier-Stokes flows away from the solid boundaries,
while requiring α(x) → ∞ within the solid assures v → 0
there.
Our implementation of the immersed boundary

method is simple and effective but its application stands
upon the strengths of the EULAG system. Since all

calculations use exclusively the Eulerian option in a
Cartesian-framework, the prognostic equations (2) can
be idealized as

∂ψ

∂t
+∇ · (vψ) = F , (3)

where ψ symbolizes the components of v and F stands
for the corresponding right hand side. This system of
the conservation laws is numerically integrated using
a second-order-accurate, semi-implicit, non-oscillatory
forward-in-time approach, whose theory, implementation
and applications are broadly documented [37–39]. The
resulting system is implicit with respect to pressure and
all velocity components as all principal forcing terms are
assumed to be unknown at the next time step. Its so-
lution leads to an elliptic problem that is solved using
a preconditioned non-symmetric Krylov-subspace solver
[40, 41].
The nonlinear transport algorithm employed in the dis-

cretization of (3) suppresses spurious oscillations at sharp
gradients of advected fields in the vicinity of the fluid-
solid interface. This algorithm improves the condition-
ing of the explicit part of the elliptic problem (and thus
the solver’s convergence) and facilitates simulations with
substantially larger Reynolds number than for creeping-
flow motions [18].
The advantage of this approach is its computational

efficiency. One simulation with ∼ 4.2 · 106 degrees of
freedom performed on a PC with a 3.2 GHz processor
completes in ∼ 4 hours of CPU time compared to the
∼ 100 hours of CPU time on a PC with a 3.0 GHz pro-
cessor required for the three dimensional smooth particle
hydrodynamics simulation in [15] which consisted of a
system with 72, 169 particles. The method also bypasses
strenuous unstructured mesh generation required in the
approaches implemented in [14] and [19] as the mesh is a
uniform Cartesian grid. The efficiency of this approach
allows for many simulations to be preformed at a low
cost and is especially appealing for Monte Carlo based
experiments that require large numbers of stochastically
generated pore space realizations.
This simple approach comes at a price. Unlike other

immersed boundary methods, the pore space bound-
aries are aligned with the grid nodes and the resulting
media are simulated only with first-order accuracy in
space. However, the macroscopic uncertainty of micro-
scopic pore structure greatly exceeds numerical inaccu-
racies in detailed representation of internal boundaries
and therefore the first order approximation of a porous
medium is adequate; cf. [42] for a quantitative substan-
tiation and further discussion.

C. Particle Tracking

Every node in the void space at the top horizontal cross
section of the steady state velocity field generated by EU-
LAG is used as an initial position for a particle. Hence,
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the number of particles inserted into each realization de-
pends upon its porosity. A fourth order Runge-Kutta
scheme numerically integrates the trajectory equation,

dx(t,x0)

dt
= v(x(t,x0)) , (4)

of a particle with initial position x0. Trilinear interpo-
lation is used to compute the particle velocity at loca-
tions away from computational nodes. Information about
the initial location, current location, current trajectory
length, travel time, minimum, and maximum velocity is
recorded for each particle. Particles inserted in isolated
pores (a pore that does not connect through the entire
domain), do not move when their equation of motion is
integrated. Conversely, except for the singular points in
the flow (a topological set of measure zero), the particle
that does not move must be in an isolated pore, therefore
this is also the criterion for the detection. Conversely, ex-
cept for the singular points in the flow (a topological set
of measure zero), the particles that do not move must be
in an isolated pore, therefore this is also the criterion for
the detection.Since such particles do not percolate, they
are identified and removed from further analysis.
Throughout this paper the tortuosity τ(a, b) = ls/l of a

trajectory connecting two points a and b is defined as the
ratio of the total trajectory length ls over the Euclidean
distance l between a and b. This definition of tortuosity
results in values ranging between unity and infinity, 1 ≤
τ(a, b) <∞. A number of alternate definitions are in use
including τ2, τ−1, and τ−2 [43]. The mean tortuosity for
particles advected through a prescribed domain,

τ̄ =
1

N

N∑

i=1

τ(ai, bi) , (5)

is taken over i = 1, . . . , N tortuosities τ(ai, bi) where N
is the number of particles that percolate. Other methods
for calculating tortuosity are in use and a discussion of
their benefits and drawbacks can be found in [44].

III. PARTICLE TRAJECTORY ATTRIBUTES

A. Data Generation

For the computational simulations of fluid flow, thirty-
six new independent pore space realizations were gener-
ated with expected porosities ne derived in (1), with val-
ues ranging from 0.28 to 0.68, within a normal range of
actual porosity n of 0.2 < n < 0.7 as defined in [45].
These thirty-six were not among those used to define ex-
pected porosity ne in Section IIA even though they are
statistically identical. Three unique pore space realiza-
tions were created at twelve selected values of ne. Of the
thirty-six pore space realizations, thirty-four have actual
porosities within the normal range and are included in
the study. The combined sum of particles that percolate

through all thirty-four pore space realizations is 38,146.
The number of particles that percolate through a sin-
gle porous medium ranges from four to 4,008, (0.10%
and 35.67% of the initial number of particles inserted,
respectively).

FIG. 2: Particle trajectories shaded by their normalized ve-
locity magnitude v0 = |v|/max |v| within sub-volumes of pore
space realizations with expected porosities of 0.32, 0.50, and
0.61 (left to right). The particle are inserted within a disk cen-
tered atop the domain with a radius 1/5 the domain width
and the direction of flow is from top to bottom. As ne in-
creases the trajectories become straighter and more particles
percolate through the domain. Additionally, there are more
trajectories with higher normalized velocities.

Images of particle trajectories shaded according to
their normalized velocities v0 = |v|/max |v|, where |v| is
the length of vector v and max |v| is taken over the entire
domain, are generated using the stream-tracer module in
Paraview [46] and are displayed in Fig. 2. Each subfig-
ure shows trajectories in a 1/64 sub-volume of the entire
domain, with linear dimensions Lx = Ly = 3.2 · 10−3 m
and Lz = 6.4 ·10−3 m. The entire domains have expected
porosities of 0.32, 0.50, and 0.61. For image clarity, the
trajectories of only five hundred particles in each real-
ization are shown. The particle are inserted within a
disk centered atop the domain with a radius 1/5 the do-
main width. In all of the subfigures, there are regions in
the flow field where trajectories group together (bundle)
and display higher velocities than the surrounding flow
field. At the lowest value of ne, the trajectories span a
wide range of behaviors. As ne increases the trajecto-
ries straighten, have higher velocities, and more particles
percolate. At the highest values of ne the trajectories are
more uniform.

B. Representative Elementary Volume

A representative elementary volume (REV) of a porous
medium is the smallest volume for which large fluctua-
tions of observed quantities no longer occur [43]. To se-
lect an appropriate REV for particle based attributes,
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sub-volumes of the entire porous medium are sampled
and particle tortuosities, trajectory lengths, and first pas-
sage times are measured and inspected to determine uni-
form ranges of small variation.
In [16], the authors used a lattice Boltzmann approach

to simulate flow through two dimensional porous media
composed of randomly placed squares and observed that
the measured value of tortuosity depends upon the ex-
tent of the observation domain (a subsection of the entire
domain through which particles are followed). Using dif-
ferent computational techniques, we extend their study
to three dimensions and investigate the influence of ob-
servational domain extent on tortuosity as well as the
dispersion of trajectory lengths and first passage time
distributions.
Mean tortuosity (5) is calculated in observation do-

mains extracted from three pore space realizations with
expected porosities of 0.32, 0.50 and 0.68. The horizontal
area is fixed at Lx×Ly and the height of the observation
domain L is increased from L = 10·∆z, to L = 250·∆z in
intervals of ∆L = 10 ·∆z, the full domain, Lz = 255 ·∆z,
is also included. Free parameters (τ∞, a, b) in models of
the form

T (L) = τ∞ − exp (a− bL) (6)

are uniquely fitted for each pore space using the nonlinear
fit module in Mathematica [47] and are shown in Table I
along with the computed mean tortuosity for the entire
domain. The computed mean tortuosity value from each
sample observation domain is plotted in Fig. 3 along with
the model (6) for each pore space.

TABLE I: Observation Domain Extent Fitting Parameters

ne

a τ∞
b a c b d τ̄ (Lz)

e

0.32 1.27 -1.32 0.057 1.27
0.50 1.16 -2.08 0.054 1.16
0.68 1.09 -2.73 0.049 1.09

aExpected porosity
bAsymptotic tortuosity
cFirst fitting parameter
dSecond fitting parameter
eComputed mean tortuosity (5) for entire domain

At the lower values of observation domain extent, the
computed mean tortuosity underestimates the tortuosity
of the entire domain by an appreciable amount, and this
underestimation is more significant for pore spaces with
lower expected porosities. Although oscillations about
the model (6) occur, Fig. 3 indicates that the computed
mean tortuosity converges to τ∞ exponentially with in-
creasing observation domain extent. When the obser-
vation domain is the entire porous medium, the differ-
ence between τ̄ (Lz) and τ∞ is minor, ranging between
6.6 · 10−3 and 1.7 · 10−5.
A similar study of the influence of observation domain

extent on the coefficient of variation (the ratio of the stan-
dard deviation to the mean) computed for first passage
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FIG. 3: Fitted models of the form T (L) = τ∞ − exp (a− bL)
are plotted along with the computed mean tortuosity (5) for
pore spaces with three different expected porosities as a func-
tion of observation domain extent. As the height of the obser-
vational domain increases the mean tortuosity values converge
to τ∞. Stabilization occurs more rapidly in pore spaces with
higher expected porosities.

time distributions and trajectory lengths reveals corre-
sponding behavior. For lower observation domain ex-
tents, the coefficient of variation overestimates the value
computed using the entire porous medium. As the extent
of the observation domain increases the dependence on
the height decays exponentially.
In order to minimize the dependence of measured par-

ticle based attributes on the extent of the observation
domain, the entire porous medium is used as the ob-
servation domain for the primary investigation of how
porosity influences tortuosities, trajectory lengths, and
first passage time distributions of particle trajectories.

C. Tortuosity and Porosity

A relationship between porosity and tortuosity has
been speculated by various researchers [5, 16, 48–53]. A
single parameter model,

τe(n) = 1− a log(n) , (7)

fits the data set well with a = 0.24. The model is consis-
tent with other models proposed in the literature [16, 50]
and meets physical requirements; that is, if n = 1, then
τe = 1. Other linear and nonlinear models were also fit-
ted to the data, but generated poorer matches and are
not shown. For the data set, the correlation coefficient
between expected porosity (1) and mean tortuosity (5)
is −0.95, and the correlation coefficient between actual
porosity n and mean tortuosity is −0.98.
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FIG. 4: Expected tortuosity as a function of porosity and
the proposed model τe(n) = 1 − 0.24 log(n). Crosses indi-
cate mean tortuosity for a realization and bars indicate one
standard deviation.

Mean tortuosity along with the standard deviation of
the entire set of particles that percolate through each
pore space is plotted as a function of porosity along with
the proposed fitted model (7) in Fig. 4. Crosses indicate
mean tortuosity for a realization and error bars indicate
one standard deviation. The variance of tortuosities de-
creases as n increases and the model follows the nonlinear
trend of τ̄ .

D. First Passage Time Distribution

The first passage time distribution (FPTD) is the em-
pirical distribution function generated by the time taken
for particles to percolate all the way through a prescribed
domain. These FPTDs are similar to the classically
defined breakthrough curves attained via the standard
continuum-scale advection dispersion equation. Each line
in Fig. 5 is an FPTD generated using all percolating par-
ticles for a fixed level of expected porosity ne. The high-
est value of ne, 0.68, is on the left and the lowest value,
0.28, is on the right. The number of particles that perco-
late for each set of pore space realizations of a particular
value of ne ranges from 16 (0.28) to 10, 052 (0.68). The
sharpening of the empirical distribution functions indi-
cates decreasing variance with increasing expected poros-
ity. Also, the percent of particles with relatively large
travel times decreases with higher expected porosity.

E. Trajectory Lengths

Six porous media are selected with expected porosity,
ne, values of 0.32, 0.39, 0.46, 0.54, 0.61 and 0.68 and
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FIG. 5: FPTD: Lines correspond to first passage time dis-
tributions generated by particles percolating through the do-
main at a given time. Each line is generated using all per-
colating particles from the pore space realizations at a fixed
value of expected porosity. From left to right lines corre-
spond to realizations with ne values of ne = 0.68 decreasing
to ne = 0.28.

a histogram of the particle trajectory lengths ls for par-
ticles that percolate through each pore space is shown
in Fig. 6. The vertical length of the observation domain
is 2.55 · 10−2 m. Out of all the particles trajectories,
the minimum length is 2.61 · 10−2 m and the maximum
is 3.66 · 10−2m. The mean, variance, minimum length,
maximum length, skewness, and kurtosis for the trajec-
tory lengths shown in Fig. 6 are displayed in Table II and
discussed in Section V.

TABLE II: Distribution of trajectory lengths shown in Fig. 6

ne

a Fig. 6 b µ c σ2 d min(ls)
e max(ls)

f s g k h

0.32 a 3.261 0.025 3.023 3.610 0.227 1.929
0.39 b 3.169 0.019 2.883 3.536 0.500 2.741
0.46 c 3.028 0.011 2.797 3.331 0.459 3.024
0.54 d 2.911 0.008 2.689 3.264 0.651 3.646
0.61 e 2.859 0.007 2.669 3.204 0.677 3.891
0.68 f 2.787 0.005 2.611 3.217 0.684 3.991

aExpected porosity
bFig. 6 subfigure
cMean [10−2 m]
dVariance [10−2 m]
eMinimum trajectory length [10−2 m]
fMaximum trajectory length [10−2 m]
gSkewness
hKurtosis
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FIG. 6: Histogram of trajectory lengths arranged by expected porosities. (a) 0.32, (b) 0.39, (c) 0.46, (d) 0.54, (e) 0.61 and (f)
0.68. The straight line path is Lz = 2.55 · 10−2 m.

IV. PRINCIPAL PATHWAYS

Since the fictitious internal boundaries are effectively
established at steady state, the total mass flux out of
every horizontal cross section must then be constant
to satisfy mass continuity. Nonetheless, the velocity
field within each cross section is nonuniform. This non-
uniformity can result in principal pathways, large con-
nected regions of high fluid velocity, through the pore
space.

Normalized velocity magnitudes v0 = |v|/max |v|
are calculated at horizontal cross sections within three
pore space realizations with expected porosities, ne, of
0.32, 0.50 and 0.61. Ten uniform ranges of v0 are se-
lected and the percent of the void space area occupied
by computational nodes with velocities in each range, as
well as the percent of the total flux through the cross sec-
tion transmitted at these nodes, is computed (Table III).
At the lowest value of ne the distribution of both flux and
area is highly nonuniform, e.g. ∼ 25% of the flux occurs
in ∼ 5% of the area. The velocity field becomes more
evenly distributed as the expected porosity increases.

Fig. 7 is a contour plot of v0 in one-fourth of a hori-
zontal cross section from the pore space realization with
ne = 0.61 used in Table III. Some of the highest veloc-
ities occur in narrow pores, yet wider pores with high
velocities also exist. Observations of particle exit loca-
tions reveals that they group together in areas of high
velocity, indicative of particle trajectory bundles.

Images of 1,250 particle trajectories shaded according
to v0 in an observation domain extracted from a pore
space realization with ne = 0.61 are generated using
Paraview (Fig. 8). The sub-volume is 1/512 the size
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FIG. 7: Normalized velocity magnitude v0 = |v|/max |v| of
the steady state solution to the Navier-Stokes equations in
one-fourth of the bottom horizontal cross section extracted
from a pore space with expected porosity of ne = 0.61.

of the entire domain, Lx = Ly = 1.6 · 10−3 m and
Lz = 3.2 · 10−3 m. The first image is rotated about the
vertical axis 90 and 180 degrees in the second and third
images to exhibit the three dimensional structure of the
fluid flow. Since the sub-volume was taken out of the
entire domain, some trajectories exit through the lateral
boundaries. There are principal pathways where a large
volume of fluid passes through connected regions of pores
and also subsidiary pathways where only minor flow oc-
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TABLE III: Precent of total flux and percent of void space area for a horizontal cross section of pore space realizations with
expected porosities of ne = 0.32, 0.50 and 0.61 in ten uniform ranges of normalized velocity magnitudes v0 = |v|/max |v|.

Normalized Velocity Magnitude ne = 0.32 ne = 0.50 ne = 0.61
v0 = |v|/max |v| Flux% Area% Flux % Area% Flux % Area%
0.00 ≤ v0 ≤ 0.10 14.61 60.16 4.87 27.60 3.19 18.67
0.10 < v0 ≤ 0.20 16.39 15.29 10.10 18.31 7.55 15.21
0.20 < v0 ≤ 0.30 17.07 9.45 14.10 15.16 13.74 16.61
0.30 < v0 ≤ 0.40 15.47 6.01 17.08 13.05 19.46 16.82
0.40 < v0 ≤ 0.50 14.81 4.42 17.55 10.47 24.11 16.28
0.50 < v0 ≤ 0.60 9.76 2.43 15.50 7.55 18.97 10.56
0.60 < v0 ≤ 0.70 5.69 1.19 10.96 4.50 9.02 4.28
0.70 < v0 ≤ 0.80 3.46 0.63 6.21 2.23 3.09 1.26
0.80 < v0 ≤ 0.90 2.19 0.35 2.60 0.82 0.73 0.27
0.90 < v0 ≤ 1.00 0.35 0.05 0.99 0.28 0.12 0.04

curs. Principal pathways are also observed in Fig. 2 at
other values of expected porosity.

FIG. 8: Particle trajectories shaded according to their nor-
malized velocity magnitude in an observation domain one-
sixteenth the size of the entire pore space realization. The
second and third images are the same trajectories rotated
about the vertical axis 90 degrees and 180 degrees. The par-
ticle are inserted within a disk centered atop the domain with
a radius 1/5 the domain width and the direction of flow is
from top to bottom There are distinct regions of high veloc-
ity and low velocity along side one another in different pores.

V. DISCUSSION

The observed fluid flow across the thirty-four isotropic
virtual pore space realizations is diverse (Fig. 2), and
the flow within each porous medium is heterogeneous
(Table III). At lower values of porosity, there are parti-
cles with short, fast, and straight trajectories, and others
with long, slow, and twisted paths. Still other particles
have various combinations of these attributes (Figs. 4, 5,
and 6 a-c). The number of dead-end pores in these porous
media is substantial and results in a high degree of het-
erogeneity in the flow (Table III).
At higher values of porosity, the flow is fairly homoge-

neous (Table III). A majority of the particle trajectories

have similar lengths, first passage times, and tortuosities.
This uniformity results from smaller amounts of solid ma-
trix in the porous media which yields decreased resistance
to the fluid (Fig. 1). Yet, the long tails observed in first
passage time distributions (Fig. 5) and trajectory length
histograms (Fig. 6 d-f) reveal diversity in the seemingly
uniform flow field.

The influence of porosity on the degree of non-
uniformity in the fluid flow is manifested in the ob-
served particle trajectory attributes of tortuosity, trajec-
tory length, and first passage time. Low values of tortu-
osity result from straighter trajectories, and a decrease in
tortuosity with increasing porosity was observed (Fig. 4).
On the other hand, a nonlinear increase in mean tortuos-
ity occurs with decreasing porosity. The proposed model
(7) to predict mean tortuosity as a function of porosity
is logarithmic and captures this nonlinearity. Moreover,
the first passage time distributions (FPTD) exhibit a de-
crease in particle travel time at higher porosities, an in-
dication of higher fluid velocities, and the sharpening of
the FPTD at high porosities shows that the dissimilarity
of travel times decreases, suggesting that the flow field is
more uniform (Fig. 5).

The different shapes of the trajectory length distribu-
tions at various porosities are further evidence of poros-
ity’s influence on the fluid flow. At larger values of
porosity the histograms gather around a mean value and
exhibit a slight tail (Fig. 6 d-e). At the lowest value
of expected porosity shown, distinct spikes appear at
∼ 3.10 · 10−2 m and ∼ 3.40 · 10−2 m (Fig. 6 a). As the
porosity increases the variances decrease, the distribu-
tions are skewed to the right, and the maximum length
of the particle trajectories decreases, as does the mini-
mum (Table II). At low values of porosity, the kurtosis
values are less than three, which indicates the distribu-
tions are less prone to have outliers than a normal distri-
bution [54]. Conversely, at higher values of porosity the
values of kurtosis are greater than three, which indicates
that distributions of trajectory lengths are more prone to
have outliers.

Additionally, the calculated value of mean tortuosity
depends nonlinearly upon the vertical extent of the obser-
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vation domain and this dependence decays exponentially
with increasing extent (Section III B). If the observation
domain is not sufficiently long, the computed value of
mean tortuosity underestimates the value obtained using
the entire domain, consistent with [16]. As the extent
of the observation domain increases, fluctuations in the
computed values diminish and a representative elemen-
tary volume for tortuosity is observed. At higher values
of porosity, the computed tortuosity converges to the lim-
iting value of tortuosity at lower observational domain
extents (Fig. 3). At lower porosities, the dependence of
computed tortuosity on the extent of the observation do-
main is more significant. A similar dependence was found
between the coefficient of variation of particle trajectory
lengths and first passage times with the extent of the
observational domain.
The bundling of trajectories is demonstrated by the

grouping of particle exit locations in regions of high ve-
locity and suggests that particles are drawn into principal
pathways of flow. The pores traversed by these princi-
pal pathways are well connected, relatively straight, and
the fluid within them moves quickly. If a fluid parti-

cle enters such a principal pathway its tortuosity will be
lower, trajectory length smaller, and first passage time
shorter than a particles that does not. Determining the
particular geometric features and topological structures
of a medium that influence the formation and location of
principal pathways is an open question.
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