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Abstract

Lateral migration and equilibrium shape and position of a single red blood cell (RBC) in bounded
two-dimensional Poiseuille flows are investigated by using an immersed boundary method (IBM). An
elastic spring model is applied to simulate the skeleton structure of RBC membrane. We focus on
studying the properties of lateral migration of a single RBC in Poiseuille flows by varying the initial
position, the initial angle, the swelling ratio (s∗), the membrane bending stiffness of RBC (kb), the
maximum velocity of fluid flow (umax), and the degree of confinement. The combined effect of the
deformability, the degree of confinement and the shear gradient of the Poiseuille flow make the RBC
migrate toward a certain cross-sectional equilibrium position, which lies either on the centerline of
the channel or off centerline. For s

∗

> 0.8, the speed of the migration at the beginning decreases
as increasing the swelling ratio s

∗. But for s
∗

< 0.8, the speed of the migration at the beginning is
an increasing function of the swelling ratio s

∗. Two motions of oscillation and vacillating-breathing
(swing) of RBC are observed. The distance Yd between the cell mass center of the equilibrium
position and the centerline of the channel increases as increasing the Reynolds number Re and
reaches a peak, then decreases as increasing Re. The peak of the Reynolds number is a decreasing
function of the swelling ratio (s∗ < 1.0). The cell membrane energy of the equilibrium position is an
increasing function as the Reynolds number Re increases. The slipper shape cell is more stable than
the parachute shape one in the sense that the energy stored in the former is lower than that in the
latter. For a given Re, the bigger the swelling ratio (s∗ < 1.0), the lower the cell membrane energy.

Keywords lateral migration, equilibrium shape, equilibrium position, red blood cell, elastic
spring model, immersed boundary method, Poiseuille flow.

1 Introduction

The rheological property of the red blood cells (RBCs) is a key factor of the blood flow characteristics

in microvessels due to their large volume fraction (40%−45%), so called hematocrit (Hct), in the whole

blood. The normal RBC has a biconcave disk with a major diameter about 8 µm, and its membrane

composing of a lipid bilayer underlined by a spectrin network of cytoskeletal proteins is highly deformable

so that RBC can change its shape when an external force is acting on it and return to the biconcave

resting shape after the removal of the force [1]. Studying the dynamical behaviors (such as deformability

and the motion) of the RBCs suspending in fluid flow becomes an essential problem in biomedical and

biochemical industries and these studies may serve as a useful and practical method in designing the

cells separating microfluid devices based on their mechanical properties such as size, deformability and

etc [2]. Many researchers in mathematics, physics and mechanics, biology, and medicine have studied

this problem by using various entities, such as particles, drops, capsules, vesicles and RBCs theoretically

[3, 4], experimentally [5, 6, 7, 8, 9, 10, 11], and numerically [7, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23].

But most studies have been limited to the Stokes flow or the cells are restricted to the sphere or ellipse.

Here we examine the deformable cell behavior in the flow with inertial effect, and the biconcave cell is

also included.
∗Corresponding author. E-mail address: pan@math.uh.edu
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Several numerical methods have been developed to study the cross-stream migration of these entities

in Poiseuille flows. S. Mortazavi et al. studied that the cross-stream migration of a deformable drop

in a Poiseuille flow at finite Reynolds numbers by using the finite difference/front tracking method and

reported that the motion of the drop strongly depends on the viscosity ratio of its inside and outside, for

ratio 1.0 it moves away from the the center until halted by the wall repulsion [13]. Pozrikidis studied the

motion of spherical, oblate ellipsoidal and biconcave capsules in tube flow by using boundary element

method and observed that spherical capsules slowly migrate to the tube centerline, and oblate and

biconcave capsules develop parachute and slipper shapes, respectively [15]. B. Kaoui et al. studied the

cross-streamline noninertial migration of a suspended vesicle in an unbounded (bounded by Coupier et

al. [7]) Poiseuille flow at low Reynolds numbers by using the boundary integral method and found that

the vesicle deforms and migrates toward the center of the flow [16]. M. Yoshino and T. Murayama

applied the lattice Boltzmann method (LBM) to study the motion of a viscoelastic body in a Poiseuille

flow and observed that the equilibrium position is very close to the centerline for a low elasticity and

it is at a certain position between the centerline and the wall for a larger elasticity [14]. Danker et

al. investigated the effect of viscosity ratio on migration of vesicles in a Poiseuille flow by theoretical

analysis and predicted coexistence of two types of shapes: bulletlike shape and parachutelike shape [22].

In most of the above studies, the deformability of these entities was included, but no inertial effect on

the cross-stream migration was considered.

The effect of the inertia on the lateral motion of particles in a Poiseuille flow was first documented

experimentally by Segré and Silberberg [8, 9]. They observed that rigid neutrally buoyant particles

migrate away from both the wall and the centerline, forming a concentrated layer at about half the

distance between the wall and the centerline. By using spherical particles and drops, Karnis et al.

further studied this effect and found that the deformable drops migrate to the centerline if their viscosity

is low [10, 11]. T. Ko et al. investigated the migration and multiple equilibrium positions of a single

particle in Poiseuille flows and observed that the equilibrium height of a neutrally buoyant particle

between the wall and the channel centerline depends on the Reynolds number [12]. Some theoretical

studies of the effect of the inertia have been limited to spherical particles [4]. Recently, the inertial

migration of an elastic capsule in a bounded Poiseuille flow at a finite Reynolds number was investigated

by Shin [18]. But the initial shape of the capsule is limited to either a circle or an ellipse. Doddi et al

studied the lateral migration of a three-dimensional deformable capsule in a Poiseuille flow based on a

mixed finite-difference/Fourier transform method for the flow solver and a front-capsule method for the

deformable interface and reported that the capsules without bending migrate toward the centerline [21].

In this paper, inertial migration and equilibrium position and shape of a cell with different initial

shape (convex and biconcave) in bounded two-dimensional Poiseuille flows have been studied by numerical

simulation. We have used an immersed boundary method combined with the elastic spring model [24] in

which the fluid motion is computed by using an operator splitting technique and finite element method

[25, 26] with a fixed regular triangular mesh so that a faster solver can be used to solve the fluid flow

[27, 28, 29, 30]. In Ref. [20], the validation of the methodology was presented on the RBC deformation in

linear shear flow by comparing with the simulation results obtained by the lattice-Boltzmann method in

Ref. [31]. Here several important factors have been examined for the inertial migration of a single RBC

in Poiseuille flows: the swelling ratio (s∗), the membrane bending stiffness of RBC (kb), the maximum

velocity of fluid flow (umax), and the degree of confinement (the ratio of the cell’s effective radius R0 to

the channel half height w). The combined effect of the deformability, the degree of confinement and the

shear gradient of the Poiseuille flow make the RBC migrate toward a certain cross-sectional equilibrium

position, which lies either on the centerline of the channel or off centerline. For s∗ > 0.8, the speed of

the migration at the beginning decreases as increasing the swelling ratio s∗. But for s∗ < 0.8, the speed

of the migration at the beginning is an increasing function of the increasing the swelling ratio s∗. Two

motions of oscillation and vacillating-breathing (swing) of RBC are observed. The distance Yd between
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the cell mass center of the equilibrium position and the centerline of the channel is monotonic decreasing

as s∗ increases in a narrower channel. For the elliptic shape cell and the almost circle cell with larger

values of kb , the distance Yd increases with increasing Re, reaches a peak at about Re = 40 and decreases

as Re increases.

The scheme of this paper is as follows: We discuss the elastic spring model and numerical methods in

Section 2. In Section 3, we study the lateral migration properties of a single RBC in Poiseuille flows, the

effect of the membrane bending stiffness of RBC (kb), the maximum velocity of fluid flow (umax), and

the degree of confinement, and the diagram of equilibrium shapes, positions and the associated energy

versus Re. The conclusions are summarized in Section 4.

2 Model and method

A RBC with the viscosity of the cytoplasm the same as that of the blood plasma is suspended in a

fluid domain Ω filled with blood plasma which is incompressible, and Newtonian. For some T > 0, the

governing equations for the fluid-cell system are the Navier-Stokes equations

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+ µ△u+ f in Ω× (0, T ), (1)

∇ · u = 0 in Ω× (0, T ). (2)

Equations (1) and (2) are completed by the following boundary and initial conditions:

u = 0 on the top and bottom of Ω and u is periodic in the x1 direction, (3)

u(x, 0) = u0(x) in Ω (4)

where u and p are the fluid velocity and pressure, respectively, ρ is the fluid density, and µ is the fluid

viscosity, which is assumed to be constant for the entire fluid. In Eq. (1), f is a body force which is the

sum of fp and fB, where fp is the pressure gradient pointing in the x1 direction and fB accounts for the

force acting on the fluid-cell interface. In Eq. (4), u0(x) is the initial fluid velocity.

In this paper, the Navier-Stokes equations for fluid flow have been solved by using an operator

splitting technique and finite element method [25, 26] with a regular triangular mesh so that the faster

solver from FISHPAK by Adams et al. [32] can be used to solve the fluid flow. The motion of the RBCs

in the fluid flow is simulated by combining the immersed boundary method [33, 34, 35] and the elastic

spring model for the RBC membrane [24] (also see [27, 29, 30]).

2.1 Elastic spring model for the RBC membrane

The deformability and the elasticity of the RBC are due to the skeleton architecture of the membrane.

A two-dimensional elastic spring model in Ref. [24] is considered in this paper to describe the deformable

behavior of the RBCs. Based on this model, the RBC membrane can be viewed as membrane particles

connecting with the neighboring membrane particles by springs, as shown in Figure 1. Energy stores

in the spring due to the change of the length l of the spring with respect to its reference length l0

and the change in angle θ between two neighboring springs. The total energy of the RBC membrane,

E = El + Eb, is the sum of the total energy for stretch and compression and the total energy for the

bending which, in particular, are

El =
kl
2

N
∑

i=1

(
li − l0
l0

)2 (5)
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Figure 1: The elastic spring model of the RBC membrane.

and

Eb =
kb
2

N
∑

i=1

tan2(θi/2). (6)

In equations (5) and (6), N is the total number of the spring elements, and kl and kb are spring constants

for changes in length and bending angle, respectively.

In the process of creating the initial shape of RBCs described in Ref. [24], the RBC is assumed to

be a circle of radius R0 = 2.8 µm initially. The circle is discretized into N = 76 membrane particles so

that 76 springs are formed by connecting the neighboring particles. The shape change is stimulated by

reducing the total area of the circle through a penalty function

Γs =
ks
2
(
s− se
se

)2, (7)

where s and se are the time dependent area of the RBC and the equilibrium area of the RBC, respectively,

and the total energy is modified as E + Γs. Based on the principle of virtual work the force acting on

the ith membrane particle now is

Fi = −
∂(E + Γs)

∂ri
, (8)

where ri is the position of the ith membrane particle. When the area is reduced, each RBC membrane

particle moves on the basis of the following equation of motion:

mr̈i + γṙi = Fi. (9)

Here, (̇) denotes the time derivative, and m and γ represent the membrane particle mass and the

membrane viscosity of the RBC. The position ri of the ith membrane particle is solved by discretizing

Eq. (9) via a second order finite difference method. The total energy stored in the membrane decreases

as the time elapses. The final shape of the RBC is obtained as the total energy is minimized [27]. The

area of the final shape has less than 0.001% difference from the given equilibrium area se and the length

of the perimeter of the final shape has less than 0.005% difference from the circumference of the initial

circle. The value of the swelling ratio of a RBC in this paper is defined by s∗ = se/(πR
2
0).

2.2 Immersed boundary method

The immersed boundary method developed by Peskin, e.g., [33, 34, 35], is employed in this study

because of its distinguishing features in dealing with the problem of fluid flow interacting with a flexible

fluid-structure interface. Based on the method, the boundary of the deformable structure is discretized

spatially into a set of boundary nodes. The force located at the immersed boundary node X = (X1, X2)

affects the nearby fluid mesh nodes x = (x1, x2) through a two-dimensional discrete δ functionDh(X−x):

fB(x) =
∑

FiDh(Xi − x) for |Xi − x| ≤ 2h, (10)
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where h is the uniform finite element mesh size and

Dh(X− x) = δh(X1 − x1)δh(X2 − x2) (11)

with the one-dimensional discrete δ functions being

δh(z) =















1

8h

[

3− 2|z|/h+
√

1 + 4|z|/h− 4(|z|/h)2
]

, |z| ≤ h,

1

8h

[

5− 2|z|/h−
√

−7 + 12|z|/h− 4(|z|/h)2
]

, h ≤ |z| ≤ 2h,

0, otherwise.

(12)

The movement of the immersed boundary node X is also affected by the surrounding fluid and

therefore is enforced by summing the velocities at the nearby fluid mesh nodes x weighted by the same

discrete δ function:

U(X) =
∑

h2u(xj)Dh(X− xj) for |X− xj| ≤ 2h. (13)

After each time step, the position of the immersed boundary node is updated by

Xt+∆t = Xt +∆tU(Xt). (14)

Remark. At each time step, via operator splitting, we solve a sequence of subproblems, namely

a degenerated quasi-Stokes problem, the membrane motion, the advection problem, and the diffusion

problem as in Ref. [30]. We keep the conservation of area given in Eq. (7) when computing membrane

force in Eq. (8) since the divergence free condition is enforced in a weak sense through the finite element

method used in the computations.

3 Simulation results and discussions

In Ref. [20], as a benchmarking test, the steady inclination angles of the tank treading of two different

degrees of confinement for five values s∗ in shear flow are shown and compared with the simulation

results in Ref. [31]. In this paper, the lateral migration properties of a single RBC in Poiseuille flows

have been investigated by varying the swelling ratio (s∗), the membrane bending constant of RBC (kb),

the maximum velocity of fluid flow (umax), and the degree of confinement. Two motions of oscillation

and vacillating-breathing (swing) of the RBC are observed in both narrow (100 × 10 µm2) and wide

(100 × 20 µm2) channels considered here.

The values of parameters for modeling cells are same with [29, 30] as follows: The bending constant is

kb = 5×10−10 Nm, the spring constant is kl = 5×10−8 Nm, and the penalty coefficient is ks = 10−5 Nm.

The cells are suspended in blood plasma which has a density ρ = 1.00 g/cm3 and a dynamical viscosity

µ = 0.012 g/(cms). The viscosity ratio which describes the viscosity contrast of the inner and outer

fluid of the RBC membrane is fixed at 1.0. The computational domain is a two dimensional horizontal

channel. To obtain a Poiseuille flow, a constant pressure gradient is prescribed as a body force. In

addition, periodic conditions are imposed at the left and right boundary of the domain. The Reynolds

number is defined by Re = ρUH/µ where U is the average velocity in the channel, and H is the height

of the channel.

3.1 Initial position and angle tests

First we consider the effect of the initial position and the angle ϕ of the long axis of the cell with

respect to the centerline on the lateral migration.

Given the same initial angle ϕ, the effect of different initial positions has been investigated in a

Poiseuille flow with the fluid domain 100 × 20 µm2. The pressure gradient is set to as a constant so

that the Reynolds number of the Poiseuille flow without cell is about 0.8333. The initial velocity is zero
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Figure 2: (Color online). The snapshots of the cell migration with three different initial positions of s∗

= 0.481 (top), 0.9 (middle), and 1.0 (bottom) at different time (ms).

everywhere. The grid resolution for the computational domain is 64 grid points per 10 µm. Migrations

of the RBC with s∗ = 0.481, 0.9, and 1.0 for three different initial positions (5,3), (5,10), and (5,17)

are shown in Figure 2. The cells with the initial positions (5,3) and (5,17) deform and migrate to the

centerline of the microchannel where steady states are reached. The cell reaches the slipper shape for

s∗ = 0.481, the parachute shape for s∗ = 0.9 and the slightly bullet-like shape as its equilibrium shape

for the circular case of s∗ = 1.0, respectively. The deformation of the cell with the initial positions (5,3)

and (5,17) is greater than that with the initial position (5, 10) after the cells are placed in the fluid flow.

The three cells with different initial positions migrate to the same equilibrium position and attain the

same shape. The cell initial position does lead to different initial behavior, but the final position and

shape are not related with the initial positions of the RBC.

The effect of the angle is also studied for the biconcave shape cell with s∗ = 0.481 and the elliptic

shape cell with s∗ = 0.9, respectively. Figure 3 presents the snapshots of the cell migration with the

angles ϕ = 0o, 45o and 90o. By the combination effect of the wall and the deformability, the cell with

the initial angle ϕ = 0o deforms and rotates counterclockwise with an angle about 45o, the cell with ϕ

= 90o deforms and rotates clockwise with an angle about 45o, and the cell with the initial angle ϕ =

45o deforms and almost keeps the same angle. The deformation of the cells with the initial angles ϕ =

0o and 90o is greater than that with the initial angle 45o after the cells are released in the fluid flow. As

shown in Figure 3, it takes almost the same time (5 ms) for these three cells with different initial angles

to reach about the same shape and height in the flow. Then they keep migrating in the flow with no

significant different in shape and height. The initial angle has influence on the cell initial behavior, but

has no significant effect on its motion after its release into the fluid flow for a while.

3.2 Lateral migration of a single RBC in a Poiseuille flow

3.2.1 Effect of the swelling ratio

Here we present the simulation results of a single RBC in a Poiseuille flow with the fluid domain 100

× 20 µm2. The pressure gradient is set to as a constant so that the Reynolds number of the Poiseuille

flow without cell is about 0.8333. The initial velocity is zero everywhere. The grid resolution for the
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Figure 3: (Color online). The snapshots of the cell migration with three different initial angles ϕ = 0o,
45o, and 90o of s∗ = 0.481 (top) and 0.9 (bottom) at different time (ms).

computational domain is 64 grid points per 10 µm. Seven different shapes of the cells (s∗ = 0.481, 0.6,

0.7, 0.8, 0.9, 0.95 and 1.0) have been studied and the simulation results are shown in Figure 4. The

initial position of the mass center of the single cell is located at (5,3) as in Figure 3. The initial angle is

ϕ = 0. The cells deform after they are released close to the bottom wall and migrate toward higher fluid

velocity field, i.e. toward the centerline of the channel and reach their equilibrium shapes and positions,

respectively. The average velocities of the fluid flow with the cells are 4.9562, 4.9546, 4.9528, 4.9504,

4.9501, 4.9515, and 4.953 cm/s for s∗ = 0.481, 0.6, 0.7, 0.8, 0.9, 0.95, and 1.0, respectively. The associated

Reynolds numbers are 0.826, 0.8258, 0.8255, 0.8251, 0.825, 0.8253, and 0.8255. Whiling migration, the

biconcave shape cell with s∗ = 0.481, 0.6, 0.7, and 0.8 moves to lateral location characterized by lower

shear rates accompanied with damped vacillating-breathing (swing) motion. The damped speed is an

inverse proportion function with the swelling ratio s∗. The equilibrium shapes for various swelling ratio

are shown in Figure 4. The equilibrium positions are at or near the centerline and the distance Yd is

monotonic decreasing to zero as increasing the swelling ratio from 0.481 to 1.0 since the shape is changing

from the asymmetric slipper shape to the symmetric shape. The energy stored in the cell membrane of

the equilibrium cell is also monotonic decreasing as increasing the swelling ratio from 0.481 to 1.0. The

extra energy due to the cell deformation shown in Figure 4 also indicates that the shape of s∗ = 0.8

has been changed the most. As shown in Figure 4, for s∗ > 0.8, the speed of the migration at the

beginning decreases as increasing the swelling ratio s∗. This result agrees very well qualitatively with

the experimental results reported in Ref. [7]. But for s∗ ≤ 0.8, which has not been studied in Ref.

[7], the speed of the migration at the beginning is an increasing function of the swelling ratio s∗. The

critical swelling ratio s∗ = 0.8 for having biconcave shape also plays a role here concerning the migration

velocity at the beginning. For s∗ > 0.8, the deformability is weaker for higher value of s∗ due to the lack

of the excess circumference. But for s∗ ≤ 0.8, the excess circumference is more than enough for the cell

to deform and the cell of larger s∗ can interact more with the faster flow region due to the larger cell

area and then migrates faster.

3.2.2 Effect of the membrane bending stiffness of RBC

To study the effect of the bending constant, we have kept the same values of kl and ks and considered

three different values of the bending constants, which are 0.1kb, 1kb, and 10kb, and other parameters

are same as in Section 3.2.1. The capillary numbers Ca are 135.337, 13.533, and 1.353 corresponding

to the bending constants 0.1kb, 1kb, and 10kb, respectively. Here Ca = µGrR0
3/B, where µ, Gr, R0

and B represent the plasma viscosity, the shear rate of fluid flow based on the gradient of the velocity
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Figure 4: (Color online). The history of the position of the cell mass center (top left) and the distance
Yd as a function of the swelling ratio s∗ for the degree of confinement R0/w = 0.28 (top right). The
history of the position of the cell mass center at the beginning 10 ms of s∗ = 0.481, 0.6, 0.7, and 0.8
(middle left) and s∗ = 0.8, 0.9, 0.95, and 1.0 (middle right). The initial cell membrane energy E0, the
cell membrane energy of the equilibrium state E, and the energy difference E−E0 (bottom left) and the
equilibrium shapes for various swelling ratios s∗ = 0.481, 0.6, 0.7, 0.8, 0.9, 0.95, and 1.0 (bottom right).
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at the wall, the effective radius of the cell, and the bending coefficient, respectively. The snapshots

of the cell migration in Poiseuille flows for s∗ = 0.481, 0.9, and 1.0 with these bending constants are

shown in Figure 5. The red asterisk denotes the same point on the cell membrane during the entire

simulation. The histories of the position of the cell mass centers are displayed in Figure 6. For the

above three bending constants, the cells migrate toward the equilibrium height close to the centerline of

the channel. Different deformability led by the different bending constants presents different dynamical

properties during the cell migration. For the lower bending constant 0.1kb, the cell with s∗ = 0.9

migrates to the equilibrium height faster than the other two as shown in Figure 6. The parachute

shape is obtained for both the biconcave shape cell and the elliptic shape cell, and a slightly bulletlike

shape is observed for the circular shape cell. For the bending constant 1kb, the cell with s∗ = 0.9 also

migrates faster to the equilibrium height. But both the biconcave shape cell and the elliptic shape cell

exhibit damped vacillating-breathing after they are released in the fluid flow as indicated in Figure 6.

The equilibrium location of the biconcave shape cell is 0.2863 µm away from the centerline due to its

asymmetric equilibrium shape (slipper shape). For the higher bending constant 10kb, both the biconcave

shape cell and the elliptic shape cell exhibit damped oscillation until they attain the equilibrium states

aligning themselves at an angle with the direction of the flow as shown in Figure 5 (g) and (h). The

damping rate of the elliptical shape cell is again bigger than that of the biconcave shape cell as shown by

the history of the angle θ in Figure 6. Concerning the vacillating-breathing behavior in a Poiseuille flow,

it was first observed without considering the lateral migration in the study [20]. To obtain this kind of

behavior, the bending constant needs to be large enough with respect to the velocity umax so that the

cell can not be deformed into either a symmetric parachute or a bullet-like shape at the centerline. In

another word, the cell shape has to be a long body shape in the central region of the channel as shown

in Figure 5 (d), (g) and (h) so that when the mass center of the cell moves up and down, its inclination

angle oscillates since the portion of the membrane closer to the wall moves slower than that in the central

region does. When the mass center finally settles to a steady height, the oscillation disappears.

3.2.3 Effect of the maximum velocity

The effect of umax on the lateral migration of a single cell in Poiseuille flows has been investigated.

In the simulations, we have kept other parameters same as in Section 3.2.1. We observed that umax

plays a critical role on the migration, the deformation, the equilibrium position and shape of the cell.

The higher umax, the faster the cell deforms. So when the velocity of the cell migration is higher, it

reaches the equilibrium shape more quickly. During the migration, both the biconcave shape cell and the

elliptic shape cell exhibit a damped vacillating-breathing motion after the cell reached the centerline of

the channel for lower umax and the vacillating-breathing motion damps out quickly for the elliptic shape

cell. When the equilibrium shape is symmetric with respect to the centerline of the channel such as

ellipse, parachute shape and bullet shape, the mass center lies in the centerline of the channel, otherwise,

when the equilibrium shape is asymmetric such as slipper shape, the mass center settles between the

centerline and the wall. The histories of the cell mass centers are shown in Figure 7. The distance Yd

as a function of the Reynolds number Re and the corresponding equilibrium shapes for three different

swelling ratio s∗ = 0.481, 0.9, and 1.0 are displayed in Figures 8 and 9, respectively.

For the biconcave shape cell with s∗ = 0.481, a slipper shape as its equilibrium shape is obtained

for various umax. For the elliptic shape cell with s∗ = 0.9, a slipper shape as its equilibrium shape is

observed for umax < 7.5 cm/s (Re < 0.83), a parachute shape as its equilibrium shape is observed for 7.5

cm/s ≤ umax ≤ 230 cm/s (0.83 ≤ Re ≤ 25.56) and umax ≥ 410 cm/s (Re ≥ 45.56), and an asymmetric

shape as its equilibrium shape is observed for 230 cm/s < umax < 410 cm/s (25.56 < Re < 45.56). For

the circular shape cell with s∗ = 1.0, a (slightly) bulletlike shape as its equilibrium shape is obtained

for umax < 60 cm/s (Re < 6.67) and umax ≥ 900 cm/s (Re ≥ 100), and an asymmetric shape as its
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Figure 5: (Color online) The snapshots of the cell migration in Poiseuille flows for s∗=0.481, 0.9, and
1.0 with different bending constants at different time (ms): (a) s∗ = 0.481 and 0.1kb, (b) s

∗ = 0.9 and
0.1kb, (c) s

∗ = 1.0 and 0.1kb, (d) s
∗ = 0.481 and 1kb, (e) s

∗ = 0.9 and 1kb, (f) s
∗ = 1.0 and 1kb, (g) s

∗

= 0.481 and 10kb, (h) s
∗ = 0.9 and 10kb, (i) s

∗ = 1.0 and 10kb. The red asterisk denotes the same node
point on the cell membrane.
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left), 30 (top right), 240 (bottom left), and 900 cm/s (bottom right). The associated Reynolds numbers
Re are 0.278, 3.33, 26.67, and 100.

equilibrium shape is observed for 60 cm/s ≤ umax < 900 cm/s (6.67 ≤ Re < 100).

The asymmetric shape (slipperlike shape) of vesicle in an unbounded Poiseuille flow at zero Reynolds

number has been studied by Kaoui et al. [3], and the similar results of vesicle also mentioned in [36, 37,

38]. But the difference is that our simulation results show the cell of s∗ = 0.9 and 1.0 can stay away from

the centerline with an asymmetric equilibrium shape as increasing value of umax and then shift back to

the centerline with a symmetric parachute and bulletlike shape with enough higher umax as shown in

Figures 7 and 9. The above migration of the cell of s∗ = 0.9 and 1.0 depends mainly on two lift forces

in the narrow channel considered here: one is a positive force toward the channel center generated by

the inertial effect of the wall, and the other is a negative force toward the wall generated by the shear

gradient of the Poiseuille flow. The cell migrates toward the channel center when umax is very slow since,

besides the cell deformability, the effect of the wall is stronger than that of the shear gradient of the flow

then the positive lift force from the wall is larger than the negative lift force when the cell is closer to

the wall. As umax is larger, the effect of wall becomes weaker comparing the effect of velocity profile of

the fluid flow, the composite force becomes negative, and then the equilibrium position shifts away from

the centerline. When umax increases further, the curvature of velocity profile of the fluid flow becomes

very small, the negative lift force generated by the shear gradient of the Poiseuille flow decreases. So

the cell migrates to the centerline of the channel for much higher umax in a narrower channel considered

here. The similar tendency for the capsule was reported in Ref. [18]. For a neutrally buoyant particle

of an elliptic shape moving in a bounded Poiseuille flow, the mass center also moves to the centerline of

the higher enough umax in [19] under the same reason.
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3.2.4 The effect of the degree of confinement

Finally, we compare the equilibrium position and shape of the RBC in Poiseuille flows by varying the

degree of confinement. In this section, we consider two different degrees of confinement R0/w = 0.56

(100 × 10 µm2) and 0.28 (100 × 20 µm2) and six swelling ratios s∗ = 0.481, 0.6, 0.7 , 0.8, 0.9, and 1.0.

Simulation results are reported in Figures 10 and 11 for these two degrees of confinement, respectively.

In Figure 10, the Reynolds number Re is between 0 and 0.5 for the degree of confinement R0/w = 0.56.

The distance Yd increases as increasing the Reynolds number Re and reaches a peak, then decreases as

increasing Re for s∗ = 0.481, 0.6, 0.7, and 0.8. The peak of the Reynolds number (0.1389, 0.1111, 0.0833,

and 0.0694) is a decreasing function of the swelling ratio s∗ (0.481, 0.6, 0.7, and 0.8). After the distance

Yd reaches its peak, the cell equilibrium position shifts back to the centerline of the channel and the

equilibrium shape becomes parachute shape for s∗ ≤ 0.9 and bulletlike shape for s∗ = 1.0. The diagram

of the equilibrium shape in Figure 10 is similar to the simulation results in Ref. [3]. In Figure 11, the

Reynolds number Re is between 0 and 5 for a less degree of confinement R0/w = 0.28. The distance

Yd increases as increasing the Reynolds number Re and reaches a peak, then decreases as increasing Re

for s∗ = 0.481, 0.6, 0.7 , and 0.8. The peak of the Reynolds number (2.222, 1.333, 0.833, 0.667, and

0.444) is a decreasing function of the swelling ratio s∗ (0.481, 0.6, 0.7, 0.8, and 0.9). The distance Yd is

almost zero for the swelling ratio s∗ = 1.0 due to its symmetric shape. For the wider channel, it needs

higher umax to obtain a symmetric shape for the cell of smaller values of the swelling ratio s∗, especially

for the one of s∗ = 0.481. It indicates that the degree of confinement is also important for obtaining

the parachute shape in a bounded Poiseuille flow. In general, for the bigger degree of confinement, the

distance Yd is highly related to the equilibrium shape: Yd is zero for the symmetric equilibrium shape

such as parachute shape and bulletlike shape, but Yd is nonzero for the asymmetric equilibrium shape

such as slipper shape.

Given a swelling ratio s∗, the cell membrane energy of the equilibrium position is an increasing

function as the Reynolds number Re increases. The slipper shape cell is more stable than the parachute

shape one in the sense that the energy stored in the former is lower than that in the latter. This is

another way to explain why the slipper shape is a favorable shape in a Poiseuille flow besides the one

based on reducing the lag by assuming a slipper shape discussed in Ref. [3]. For a given Re, the bigger

the swelling ratio (s∗ < 1.0), the lower the cell membrane energy. The membrane energy of the cell of

s∗ = 1.0 behaves differently from the others for the both degrees of confinement considered here. The

corresponding equilibrium shapes of the various swelling ratios s∗ = 0.481, 0.6, 0.7 ,0.8, 0.9, and 1.0 are

shown in Figure 10 (bottom).

4 Conclusions

Lateral migration and equilibrium shape and position of a single red blood cell (RBC) in bounded two-

dimensional Poiseuille flows are investigated by using an immersed boundary method (IBM). An elastic

spring model is applied to simulate the skeleton structure of RBC membrane. We focus on studying the

properties of inertial migration of a single RBC in Poiseuille flows by varying the initial position, the

initial angle, the swelling ratio (s∗), the membrane bending stiffness of RBC (kb), the maximum velocity

of fluid flow (umax), and the degree of confinement. The combined effect of the deformability, the degree

of confinement and the shear gradient of the Poiseuille flow make the RBC migrate toward a certain

cross-sectional equilibrium position, which lies either on the centerline of the channel or off centerline.

For s∗ > 0.8, the speed of the migration at the beginning decreases as increasing the swelling ratio s∗.

But for s∗ < 0.8, the speed of the migration at the beginning is a increasing function of the swelling ratio

s∗. Two motions of oscillation and vacillating-breathing (swing) of RBC are observed. The distance Yd

between the cell mass center of the equilibrium position and the centerline of the channel increases as
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Figure 10: (Color online). The distance Yd between the cell mass center of the equilibrium position and
the centerline of the channel as a function of the Reynolds number Re (top left), the cell membrane energy
of the equilibrium position as a function of the Reynolds number Re (top right), and the corresponding
equilibrium shapes of the various swelling ratios s∗ = 0.481, 0.6, 0.7 ,0.8, 0.9, and 1.0 (bottom). R0/w =
0.56.
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Figure 11: (Color online). The distance Yd between the cell mass center of the equilibrium position and
the centerline of the channel as a function of the Reynolds number Re (top left), the cell membrane energy
of the equilibrium position as a function of the Reynolds number Re (top right), and the corresponding
equilibrium shapes of the various swelling ratios s∗ = 0.481, 0.6, 0.7 ,0.8, 0.9, and 1.0 (bottom). R0/w
= 0.28.
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increasing the Reynolds number Re and reaches a peak, then decreases as increasing Re. The peak of

the Reynolds number is a decreasing function of the swelling ratios (s∗ < 1.0). The distance Yd is almost

zero for s∗=1.0. Given a swelling ratio s∗, the cell membrane energy of the equilibrium position is an

increasing function as the Reynolds number Re increases. The slipper shape cell is more stable than the

parachute shape one since the energy stored in the former is lower than that in the latter. For a given

Re, the bigger the swelling ratio (s∗ < 1.0), the lower the cell membrane energy. The deformability of

cell is harder for the bigger swelling ratio because excess perimeter is less.

Our simulation method has also been applied to the cases of multicells [29, 30]. Studying the migra-

tion, deformation and other dynamics of RBCs with the viscosity of the cytoplasm bigger than that of

the blood plasma in flow is an interesting and challenging problem and will be done in the near future.
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