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The classical theory of electrokinetic phenomena is based on the mean-field approximation, that
the electric field acting on an individual ion is self-consistently determined by the local mean charge
density. This paper considers situations, such as concentrated electrolytes, multivalent electrolytes,
or solvent-free ionic liquids, where the mean-field approximation breaks down. A fourth-order
modified Poisson equation is developed that captures the essential features in a simple continuum
framework. The model is derived as a gradient approximation for non-local electrostatics of interact-
ing effective charges, where the permittivity becomes a differential operator, scaled by a correlation
length. The theory is able to capture subtle aspects of molecular simulations and allows for simple
calculations of electrokinetic flows in correlated ionic fluids, for the first time. Charge-density os-
cillations tend to reduce electro-osmotic flow and streaming current, and over-screening of surface
charge can lead to flow reversal. These effects also help to explain the suppression of induced-charge
electrokinetic phenomena at high salt concentations.

I. INTRODUCTION

The classical theory of the electric double layer and electrokinetic flow near a charged surface is over a century
old and remains in wide use today [1]. The classical theory has been extremely powerful in a number of diverse
fields such as colloidal science, biophysics, micro/nanofluidics and electrochemistry. While the usefulness of the
classical electrokinetic theory is not in question, there is a long history of recognizing the limitations and offering new
formulations [2, 3].
The equations are built on a set of assumptions which are clearly violated in various instances. The classical theory

was developed for a surface in chemical equilibrium with a dilute solution of point ions with a double-layer voltage
on the order of the thermal voltage, kT/e = 25 mV [4–6]. Stern recognized in 1924 that the assumption of point
ions leads to predicted concentrations that are impossibly high at modest voltages. Stern introduced the idea of a
molecular layer of finite size to reduce (but not eliminate) this un-physical divergence by imposing a distance of closest
approach of ions to the surface [7]. In many practical situations when the surface is unknown or uncontrolled, the
macro-scale observable quantities such as capacitance or fluid slip velocity are fit with effective Stern layer properties
to bring the classic model into agreement with experiment.
There has been recent interest in including finite ion size effects into the continuum electrokinetic model to go

beyond the simple Stern layer approach [2]. It is apparently not well-known that Stern proposed such an approach
as the final (un-derived) equation in his 1924 paper [7]. One driver for interest in steric effects are applications
where electrokinetic phenomena are exploited in devices with electrodes placed in direct contact with the fluid [8–11].
These “induced-charge electrokinetic phenomena” [12] have shifted attention to a regime where double-layer voltage
reaches several Volts ≈ 100 kT/e, a regime where the point ion theory is certainly invalid. To account for finite
sized ions, a variety of “modified Poisson-Boltzmann equations” (MPB) have been proposed [2, 13]. The simplest
possible MPB model is the one proposed (and subsequently forgotten) by Bikerman in 1942 [14], which is a continuum
approximation of the entropy of ions on a lattice [15]. Such modifications to the continuum theory can predict an
otherwise unexplained high frequency flow reversal in AC electroosmotic pumps [16], and capacitance of surfaces with
no adsorption [2].
In any electrolyte, it is also important to account for variations in the local dielectric permittivity. The solvation

shell around an ion lowers the local permittivity and leads to an additional dielectrophoretic force in a field gradient.
These “excess ion polarizability” phenomena were perhaps first noted by Bikerman [14] and recently included by
Hatlo, van Roij and Lue in an MPB model, which improves predictions of double-layer capacitance [17]. Bonthuis and
Netz have also shown that continuous variations in dielectric permittivity near a surface can improve the description
of electrokinetic phenomena [18, 19]. In this work, we neglect such spatial variations in dielectric permittivity, which
can still be described by mean-field theories. Instead, our focus is on describing electrostatic correlations between
discrete ion pairs via a theory that approximates nonlocal dielectric response.
Extensions of the classical electrokinetic theory are also required for room-temperature ionic liquids (RTILs). RTILs

typically have large organic cations and similar organic or smaller inorganic anions and hold promise as solvent-free
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electrolytes for super-capacitors, batteries, solar cells, and electro-actuators [20–27]. For these applications, data for
the RTIL/metal interface has typically been interpreted through models based on the classical theory despite the
fact that this dense mixture of large ions bears little resemblance to a dilute solution of point-like ions. Recently,
Kornyshev [28] stressed the importance of finite-sized ions and developed a theory equivalent to Bikerman’s, where
the bulk volume fraction can be tuned to describe electrostriction of the double layer.
In spite of some success in applying a theory which accounts for steric hinderance in electrolytes at high voltage

and RTILs, these models are unable to describe short-range Coulomb correlations [29]. In many important situations,
classical theory breaks down due to strong correlations between nearby ions. In concentrated solutions, systems with
multivalent ions (relevant for biology), RTILs, or molten salts, electrostatic correlations which go beyond the mean
electrostatic potential become dominant. Correlations generally lead to over-screening of a charged surface, where the
first layer provides more counter-charge than required; the next layer then sees a smaller net charge of the opposite
sign, which it overscreens with excess co-ions; and so-on.
Such overscreening is usually studied with molecular dynamics simulations, Monte-Carlo simulations (MC), Density

Functional Theory (DFT), or integral equation methods based on the statistical mechanics of charged hard spheres.
While these simulations are based on more realistic assumptions than classic theory, the complexity prohibits analytical
progress and the computational cost and complexity can be high. In many applications we are interested in charging
dynamics, fluid flow, or other macroscale behavior where a simple model is needed. To date, essentially all modeling
of electrokinetic flow has been based on the mean field approximation, where the electric field acting on the ions is
self consistently determined by the mean charge density.
In this paper we maintain a continuum formulation and develop a modified Poisson equation which accounts for

electrostatic correlation effects in diffuse electric double layers. This model is applicable to concentrated or multivalent
electrolytes, room temperature ionic liquids, and molten salts. Recently, we (along with A.A. Kornyshev) derived and
applied this continuum model for RTILs [30]. In that work, we found good agreement in terms of the double layer
structure and the capacitance when compared to molecular dynamics simulations. In the present work, we present the
derivation in detail and apply the same continuum model to electrolytes, where correlations become important at high
salt concentration and with multi-valent ions. We also couple the modified electrostatic theory to the Navier-Stokes
equations, as we (along with M. S. Kilic and A. Ajdari) recently proposed [2]. From this theoretical framework, we
compute electrokinetic flows beyond the mean-field approximation for the first time. The model predictions are also
compared to molecular simulations and some experimental data.
Before we begin, we emphasize that any attempt to develop and modify continuum models for molecular scale

phenomena is fundamentally limited. Nevertheless, our goal is to develop and test models that are simple enough to
facilitate a better understanding of electrokinetics in macroscale experiments and devices. In particular, we describe
flows in correlated electrolytes and ionic liquids with only one new parameter, an electrostatic correlation length.

II. CONTINUUM ELECTROKINETIC EQUATIONS

A. Classical mean-field theory

The classic theory of electrokinetics assumes a dilute solution of point ions. The electrochemical potential, µi, of
the ith ionic species in an ideal dilute solution is,

µideal
i = kT logci + zieφ (1)

where k is Boltzmann’s constant, T is the temperature, ci is the concentration, zi is the charge number, e is the
elementary charge and φ is the electric potential. We relate the flux of each species, Fi, to the gradient in the
chemical potential and conservation of mass yields,

∂ci
∂t

= −∇ ·Fi = −∇ ·
(

ciu− Di

kT
ci∇µi,

)

. (2)

where Di is the diffusivity and u is the mass averaged velocity. It is important to remember that directly relating
the flux of each species to its own gradient in chemical potential is an assumption that is strictly only valid in dilute
solutions. This relationship assumes that the diffusivity tensor is diagonal. The system is traditionally closed by
making the mean field approximation in which the electric potential satisfies the Poisson equation,

−∇ · ε∇φ = ρ =
∑

i

zieci, (3)
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where ρ is the charge density and ε is the permittivity. Equations 2-3 are typically referred to as the Poisson Nernst
Planck (PNP) equations. The PNP equations are coupled to the Navier Stokes (NS) equations for fluid flow, where
an electrostatic force density, ρ∇φ, is added,

ρm

(

∂u

∂t
+ u · ∇u

)

= −∇p+ η∇2
u− ρ∇φ, (4)

∇ · u = 0, (5)

where η is the viscosity, ρm is the mass density, and P is the pressure. In the classical theory the fluid properties such
as the viscosity and permittivity are usually taken as constants.
Solutions to equations 2 - 5 require boundary conditions. Boundary conditions can vary depending on the physical

situation. Typically, the no-slip condition for fluid velocity is assumed, but modifications can allow for slip at a solid
surface. A common boundary condition for the ion conservation equation is that there is no flux of ions at a solid
surface. However, in cases with electrochemical reactions or ion adsorption, other boundary conditions are required.
The boundary condition for the potential depends upon the physics of the interface. Our interest is on metal

electrode surfaces where one can simply fix the applied potential φ = φ0 or allow for a thin dielectric layer (or
compact Stern layer) on the electrode surface through the mixed boundary condition [31],

∆φS = φ− φ0 = λSn̂ · ∇φ− qS
CS

, (6)

where λS = εhS/εS is an effective thickness of the layer, equal to the true thickness hS multiplied by the ratio of
permittivities of the solution ε and the layer εS , and CS = εS/hS is its capacitance. When applying (6) to a metal
electrode, one can set qS = 0 to model the Stern layer as a thin dielectric coating of solvent molecules [32], while
specific adsorption of ions would lead to qS 6= 0.
While the PNP+NS formulation is widely studied and widely used, the mathematical solution can be complicated.

In many cases we can make mathematical simplifications that allow for analytical progress or simple models to be
derived from the PNP+NS starting point. In this work, we are developing a physical modification to the equations.

B. Modifications for chemical effects

In a recent review article we (along with M.S. Kilic and A. Ajdari) discuss in detail a number of ways in which the
classical mean-field theory of electrokinetics breaks down and propose some simple modifications for large voltages
and concentrated solutions [2]. We stress that attempts to go beyond the classic equations have a long history and
refer the interested reader to Ref. [2] for a more complete account of the literature.
To account for various thermodynamic non-idealities in concentrated solutions, we can extend the chemical potential

by adding an excess term to that of the ideal solution,

µi = kT logci + zieφ+ µex.

In the case of volume constraints for finite-sized ions, following Bikerman [14], this excess chemical potential could be
written as

µex
i = −kT ln(1− Φ) (7)

where Φ is the local volume fraction of ions. The same model of the excess chemical potential can also be derived from
the configurational entropy of ions in a lattice gas in the continuum limit, as first noted by Grimley and Mott [15].. We
attribute this model to J.J. Bikerman though it has been independently rediscovered at least seven times since then
and was possibly first discussed by Stern in 1924. Other approaches can be used to modify the chemical potential
for volume constraints, such as Carnahan Starling equation of state for the entropy of hard-spheres in the local
density approximation [33–35]. Regardless of the model for steric volume constraints, these modifications all allow
the formation of a condensed layer of ions very close to the surface at high voltage. This layer forms at high voltage
as the classic theory allows for an impossibly high density of ions.
Another modification we have discussed in detail is charge induced thickening, where one supposes that the viscosity

of the fluid depends upon the local charge density and typically increases in the inner part of the double layer
(effectively moving the “shear plane” of no slip away from the surface). Charge induced thickening provides a possible
explanation for the decay in induced-charge electro-osmotic flow [12] that is observed in many experiments at high
salt concentration and/or high voltage [2, 36]. Below, we will argue that electrostatic correlations may also play a
significant role in explaining the data.
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The permittivity ε of a polar solvent like water is usually taken as a constant in (3), but numerous models exist
for field-dependent permittivity ε(|∇φ|), as discussed in [2]. The classical effect of dielectric saturation reduces the
permittivity at large fields due to the alignment of solvent dipoles [32, 37–39], although an increase in dipole density
near a surface may have the opposite effect [40]. A recent model which included excess ion polarizability demonstrated
excellent agreement with experimental capacitance data on surfaces with no adsorption [17].
While these and many other modifications have been explored, in this work we only consider the additional chemical

effect of finite ion size, so we can focus on novel effects of electrostatic correlations.

C. Simple modification for Coulomb correlations

The most fundamental modification of the classical theory, which has resisted a simple treatment, would be to relax
the mean-field approximation. While the study of electrostatic correlations in electrolytes has a long history, we are
not aware of any attempts to go beyond the mean-field approximation (3) in dynamical problems of ion transport or
electrokinetics. Dynamical problems with bulk flow would seem to require a simple continuum treatment of correlation
effects, ideally leading to a general modification of Eq. 3.
In recent work on RTIL, we (along with A.A. Kornyshev) derived a Landau-Ginzburg type continuum model which

accounts for electrostatic correlations in a very simple and intuitive way [30]. A general derivation based on nonlocal
electrostatics will be developed in the next section, but first we present the final result, which is a modified fourth-order
Poisson equation,

∇ ·D ≡ ε(ℓ2c∇4φ−∇2φ) = ρ (8)

and a modified electrostatic boundary condition,

n̂ ·D ≡ n̂ · ε(ℓ2c∇2 − 1)∇φ = qs (9)

where D is the displacement field. Due to Coulomb correlations, the effective permittivity ε̂, defined by D = −ε̂∇φ,
is a linear differential operator,

ε̂ = ε
(

1− ℓ2c∇2
)

. (10)

This unusual dielectric response, signifying strong correlations, is consistent with some well known properties for
molten salts, although we extend it here to more general situations. In particular, for small, sinusoidal perturbations
of the electric field of wavenumber k, the corresponding small-k expansion of the Fourier transform of the permittivity,

ε̂(k) = ε
[

1 + (ℓck)
2
]

(11)

grows with k in the case α0 > 0 where correlations promote charge density oscillations and discrete cation-anion-
cation-anion... ordering. This matches known results for molten salts, although at smaller wavelengths (larger k) the
permittivity transform ε̂(k) has divergences due to electronic relaxation and other phenomena [41, 42]. Here, we do
not use the notion of wavelength-dependent permittivity, which only applies to small periodic bulk perturbations.
Instead, we introduce the concept of a permittivity operator in Poisson’s equation, which can be applied to general
nonlinear response in asymmetric geometries and near surfaces. The new parameter ℓc is an effective length scale
over which correlation effects are important, discussed below. Its value is not precisely known, though we can place
approximate bounds on its value.
Similar higher-order Poisson equations have been derived as approximations for the equilibrium statistical mechanics

of point-like counterions (one component plasma) near a charged wall [43–45]; Santangelo [43] showed that (8) is exact
for both weak and strong coupling and a good approximation at intermediate coupling with ℓc set to the Bjerrum
length; Hatlo and Lue [45] developed an approximation for ℓc. The extension to electrolytes and non-ideal solutions
was first proposed in our review paper [2] as part of a general modeling framework for electrokinetics, but without a
derivation or any example calculations. In our recent work on RTILs [30], we presented a general variational derivation
of the model and first applied this modified Poisson equation to predict double layer structure and capacitance (RTIL),
using the ion size as the correlation length scale.
Since Poisson’s equation (8) is now fourth-order, we need an additional boundary condition. For consistency with

our derivation below, we neglect correlations very close to the surface (at the molecular scale) and apply the standard
boundary condition, −εn̂ · ∇φ = qs. Equation (9) then implies

n̂ · ∇(∇2φ) = 0 (12)
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which requires that the mean-field charge density is “flat” at the surface. Although this boundary condition is
consistent with the derivation of our model, we stress that it is neither unique nor rigorously derived. Alternative
boundary conditions should be considered in the future, including the possibility of nonlocal models (e.g. which
are required to describe density oscillations resulting from packing constraints [29]). Here, we use Eq. (12) partly
for its elegant simplicity and partly since it seems to consistently produce remarkably good results with our model
in comparison to molecular simulations, not only for RTIL [30], but also for concentrated electrolytes, as described
below.

III. DERIVATION OF THE MODIFIED POISSON EQUATION

The following derivation is adapted from the supporting information of our recent publication with A. A. Korny-
shev [30], providing some more details and explanations of the steps.

A. Electrostatic energy functional

We begin by postulating general free energy functional broken into chemical and nonlocal electrostatic contributions.
Let G = Gel + Gchem, where Gel is the electrostatic energy and Gchem =

∫

V
drg is the chemical (non-electrostatic)

part of the total free energy, G. Suppose that Gchem is known, and let us focus on electrostatic correlation effects in
Gel.
The electrostatic potential, φ, is defined as the electrostatic energy per ion (free charge). The electrostatic energy

cost for adding a charge δρ in the bulk liquid volume V or δqs on the metal surface S is,

δGel =

∫

V

drφ δρ+

∫

S

drφ δqs. (13)

The charge is related to the displacement field D via Maxwell’s equation,

∇ ·D = ρ ⇒ δρ = ∇ · δD. (14)

The corresponding boundary condition for an ideal metal surface (where D = 0) is,

[n̂ ·D] = n̂ ·D = −qs ⇒ δqs = −n̂ ·D. (15)

Substituting these expressions into (13) and using Gauss’ theorem, along with the definition of the electric field,
E = −∇φ, we recover the standard electrostatic free energy equation [46],

δGel =

∫

V

drE · δD. (16)

In the linear response regime (for small external electric fields), we have

D = ε̂E, (17)

where ε̂ is a linear operator, whose Fourier transform ε̂(k) encodes how the permittivity depends on the wavelength
2π/k of the k-Fourier component of the field, due to discrete ion-ion correlations, as well as any non-local dielectric
response of the solvent. A crucial feature of our approach, however, is that we do not restrict ourselves to small
amplitude perturbations in Fourier space. Instead, we consider a general linear permittivity operator in real space
and focus on correlation effects.
By linearity, we can integrate (16) over δD through a charging process that creates all the charges in the bulk and

surface from zero to obtain

Gel =
1

2

∫

V

drE ·D. (18)

For a given distribution of charges ρ and qs, with associated displacement field D, the physical electric field E is the
one that minimizes Gel, subject to the constraint of satisfying Maxwell’s equations (14)-(15). Since E = −∇φ to



6

enforce ∇ × E = 0, we can minimize Gel with respect to variations in φ, using Lagrange multipliers λ1 and λ2 to
enforce the constraints,

Gel[φ] =

∫

V

dr

[

1

2
E ·D+ λ1 (ρ−∇ ·D)

]

+

∮

S

drs λ2 (qs + n̂ ·D) . (19)

To calculate the extremum, we use the Fréchet functional derivative:

δGel

δφ
= lim

ǫ→0

Gel[φ+ ǫφ0δǫ]−Gel[φ]

ǫφ0

(20)

where δφǫ = φoδǫ(r, r
′) is a localized perturbation of the potential (with compact support), which tends either to

a 3D delta function in the liquid (r ∈ V ) or to a 2D delta function on the surface (r ∈ S) as ǫ → 0, and φ0 is an
arbitrary potential scale for dimensional consistency. By setting δGel/δφ = 0 for both surface and bulk variations, we
find λ1 = λ2 = φ. Finally, using vector identities, we arrive at a general functional for the electrostatic energy,

Gel[φ] =

∫

V

dr

(

ρφ+
1

2
∇φ ·D

)

+

∮

S

drs qsφ (21)

whose variational derivative with respect to φ will be set to zero, once we know the relationship between D and
E = −∇φ.

B. Nonlocal electrostatics for correlations

To model the field energy, we assume linear dielectric response of the individual molecules (ions and solvent) with
constant mean permittivity ε, plus a simple non-local contribution for Coulomb correlations. Here, the permittivity
ε describes the electronic polarizability of the ions (for RTIL) as well as (in the case of electrolytes) the dielectric
relaxation of the solvent. There is an extensive literature on nonlocal electrostatic models of the form, D(r) =
∫

dr′ε(r, r′)E(r′), mainly focused on describing the nanoscale dielectric response of water [47–50]. In this work, we
take a very different approach because our aim is to model the transient formation of correlated ion pairs of opposite
sign (zwitterions), which act as dipoles and contribute to the nanoscale dielectric response of strongly correlated ionic
liquids.
The theory begins by postulating a non-traditional form of the energy density stored in the electric field in the

dielectric medium,

gfield = −1

2
∇φ ·D =

ε

2

(

E(r)2 +

∫

V

dr′K(r, r′)ρ̄(r)ρ̄(r′)

)

(22)

where we define

ρ̄ = ε∇ · E = −ε∇2φ, (23)

as the “mean-field charge density”, which would produce same the electric field in the dielectric medium without
accounting for ion-ion correlations [30]. In this theory, nonlocal electrostatic effects are assumed to derive from
pairwise interactions between effective charges, defined in terms of the local divergence of the electric field via the
standard second-order Poisson equation with constant permittivity ε. The non-local kernel K(r, r′) is intended to
describe correlations between discrete pairs of fluctuating ions resulting from Coulomb interactions in the liquid.

C. The electrostatic correlation kernel

In principle, the correlation kernel K(r, r′) could have long-range power-law decay, as might be expected from
bare Coulomb interactions. The kernel must be isotropic in a homogeneous bulk system, but it may have gradient
corrections for nonuniform ion profiles. More importantly, near a boundary, the kernel should become anisotropic to
reflect interactions between the ions and charges on the surface. For example, for metal surfaces, the kernel should
include multipolar interactions between ions and their images in the metal. At least away from the surface, however,
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electrostatic screening by mobile ions should lead to rapid, isotropic decay of the kernel with the pair separation
distance.
To take into account screening in the simplest possible way, we assume that K(r, r′) is isotropic and decays

exponentially over a characteristic length scale ℓc. Below this distance, ions experience bare Coulomb interactions,
and beyond it, thermal agitation and many-body interactions act to suppress direct electrostatic correlations. The
correlation length is clearly bounded below by the ion size a, which becomes the most relevant length scale in a highly
concentrated electrolyte (including the solvent shell in the ion size) or a solvent-free ionic liquid. In the simplest
version of our theory for dense ionic mixtures, it is possible to avoid adding any new parameter by simply setting
ℓc = a, as in our work on RTIL [30]. In dilute electrolytes, however, the correlation length should increase with the
mean ion spacing, and we expect it to be cut off at the scale of the Bjerrum length ℓB, which is the separation distance
between ions below which the bare Coulomb energy exceeds the thermal energy kBT .

D. Gradient expansion

In order to obtain a simple continuum model, we further assume that charge variations mainly occur over length
scales larger than ℓc (corresponding to small perturbation wavenumbers, ℓc|k| ≪ 1). In this limit, we perform a
gradient expansion for the non-local term

gfield ∼ ε

2

[

|∇φ|2 +
∞
∑

n=0

αn

(

ℓn−1
c

ε
∇nρ̄

)2
]

(24)

where αn are dimensionless coefficients, which implies

Gel[φ] ∼
∫

V

dr

{

ρφ− ε

2

[

|∇φ|2 +
∞
∑

n=2

αn−2(ℓ
n−1
c ∇nφ)2

]}

+

∮

S

drs qsφ (25)

For simplicity, we typically truncate the expansion after the first term, even though this may become inaccurate in
situations of interest with charge density variations at the correlation length scale.
From the gradient expansion of the nonlocal electrostatic energy functional, we set δGel/δφ = 0 for bulk and surface

perturbations in (25). In this way, we recover Maxwell’s equations (14)-(15), with

D = ε̂E, (26)

where the permittivity operator has the following gradient expansion,

ε̂ = ε

(

1−
∞
∑

n=1

αn−1ℓ
2n
c ∇2n

)

. (27)

Eq. (10) results from the first term in the gradient expansion with the choice α0 = 1 (after suitably rescaling ℓc),
where the overall negative sign of this term is chosen to promote over-screening. The corresponding small-k expansion
of the Fourier transform of the permittivity,

ε̂(k) = ε

[

1 +

∞
∑

n=1

αn−1(−1)n−1(ℓck)
2n

]

(28)

grows with k at small wavenumbers in the case where correlations promote overscreening, α0 > 0, as noted above.
This is a hallmark of Coulomb correlations, promoting alternating charge ordering.

IV. CORRELATED ELECTROKINETICS AT A PLANAR SURFACE

A. Basic equations

To demonstrate how correlation effects may influence double layer structure and electrokinetic flows, we start by
exploring the behavior at a planar surface. We assume a 1D double layer at equilibrium with constant ε and a z+ : z−

binary electrolyte.
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The model we solve is thus,

ε

(

ℓ2c
d4φ

dx4
− d2φ

dx2

)

= ρ = z+ec+ − z−ec−. (29)

The boundary conditions at the electrode surface of fixed potential are,

φ = φ0,
d3φ

dx3
= 0. (30)

This electric potential equation is solved along with the equations that the chemical potentials must be constant at
equilibrium. In this work we consider the Bikerman model for volume constraints only with equal sized cations and
anions such that the chemical potential of the ions is,

µ± = kT logci − kT log(1− a3(c+ + c−))± z±eφ (31)

To calculate hydrodynamic slip, we start with the Navier Stokes equation and assume that in the electric double
layer we have a balance between the electric body force and viscous forces,

0 = η
d2u

dx2
+ ρeEt, (32)

where Et is the electric field tangential to the surface. In our model this becomes,

0 = η
d2u

dx2
+ ε

(

ℓ2c
d4φ

dx4
− d2φ

dx2

)

Et. (33)

As with the standard Helmholtz-Smoluchowski equation, we can integrate this equation across the double layer twice
to obtain (with the convention that far from the wall, φ=0).

u(∞) = −εEtφ(0)

η

(

1− ℓ2c
φ(0)

d2φ

dx2

∣

∣

∣

∣

x=0

)

. (34)

In the above expression, we are assuming that the medium permittivity and viscosity are constant within the double
layer, though this approximation can be relaxed. An important general prediction is that the classical Helmholtz
Smolukowski slip velocity, UHS = −εEtφ(0)/η, is modified by the inclusion of correlation effects. This can be
understood as a consequence of nonuniform permittivity.
The total charge in the double layer is given as the integral of the charge over the double layer,

q =

∫ ∞

0

ρedx =

∫ ∞

0

ε

(

ℓ2c
d4φ

dx4
− d2φ

dx2

)

dx

Evaluating this integral and using the boundary conditions at a solid electrode stated above we obtain,

q =

∫ ∞

0

ρedx = ε
dφ

dx

∣

∣

∣

∣

x=0

, (35)

with the total capacitance defined as C = q/φ(0).

B. Dimensionless formulation

We assume a binary z+ : z− electrolyte such that the far field concentrations of the cations and anions follows
z+c+∞ = z−c−∞. For simplicity we assume that the cations and anions are of the same diameter. We make the formu-

lation dimensionless using the scales c̃+ = c+/c+∞, c̃− = c−/c+∞, and φ̃ = φ(e/kT ). The dimensionless concentrations
can be written as explicit functions of the electric potential,

c̃+ = β(φ̃)e−z+φ̃ (36)

c̃− =
z+

z−
β(φ̃)ez

−φ̃ (37)
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where the function, β, is given by

β(φ̃) =
1

1− ν + ν
z−+z+

(

z−e−z+φ̃ + z+ez−φ̃

) (38)

where ν is the volume fraction in the bulk and has a value ν = (1 + z+

z−
)c+∞a3. For the case of a 1:1 electrolyte note

that β(φ̃) = 1/(1 + ν(cosh(φ̃)− 1)) = 1/(1 + νsinh2(φ̃/2)) as has been used in previous works [13, 28]. We relate the
lattice size parameter, a, to the spherical ion diameter, d, as a3 = π

6
d3/0.63 = 0.83d3 where the factor of 0.63 is the

maximum volume fraction for random close packing of spheres.
The Poisson equation is scaled by the Debye length; i.e. x̃ = x/λD where

λD =

√

εkT

e2c+∞z+(z+ + z−)
.

Under this scaling our governing equation becomes,

(

d2φ̃

dx̃2
− δ2c

d4φ̃

dx̃4

)

= β(φ̃)
e−z+φ̃ − ez

−φ̃

(z+ + z−)
(39)

where δc = ℓc/λD. This equation is subject to the boundary conditions that the potential at the electrode is fixed,
the third derivative of the potential is zero, and the potential goes to zero smoothly at infinity.
There are three dimensionless parameters which emerge from our formulation, the bulk volume fraction ν, the

correlation length scale δc, and the applied voltage (or known surface charge). The solution also depends on the
valences of the ions z+ and z−.
In dimensionless terms, the slip velocity relative to the Helmholtz-Smulokowski velocity is,

u(∞)

UHS

=

(

1− δ2c

φ̃(0)

d2φ̃

dx̃2

∣

∣

∣

∣

∣

x̃=0

)

. (40)

where UHS = εEtφ(0)/η. The capacitance relative to the Debye-Huckel capacitance, CDH = ε/λD is simply,

C

CDH

= − 1

φ̃(0)

dφ̃

dx̃

∣

∣

∣

∣

∣

x̃=0

. (41)

For the remainder of the paper we will drop the tilde notation and only refer to dimensionless quantities in our
equations.

C. Low voltage analytical solutions

When the voltage is small relative to the thermal voltage, kT/e, the problem is drastically simplified and the right
hand side of our equation becomes,

(

d2φ

dx2
− δ2c

d4φ

dx4

)

= φ. (42)

This equation can be solved analytically, though the form depends upon whether the value of δc is less than, greater
than, or equal to 1/2.

1. Solution δc < 1/2, ”weak” correlation effects

When δc < 1/2 the analytical solution at low voltage has the form,

φ(x) =
φ(0)

1− k31/k
3
2

(

e−k1x − k31
k32

e−k2x

)

, (43)
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FIG. 1: (color online) Low voltage solutions to the continuum model. a) Double layer structure at different values of δc.
Solutions are shown for δc = 0 (dashed) and δc = 1, 2, and 5. As δc increases the structure departs from that at δc = 0. b)
Capacitance and c) slip velocity as a function of the correlation length scale, δc.

where

k1 =

√

1−
√

1− 4δ2c
2δ2c

, k2 =

√

1 +
√

1− 4δ2c
2δ2c

.

The capacitance of the double layer is,

C

CDH

=
k1

(

1− k2
1

k2
2

)

1− k31/k
3
2

, (44)

and the slip velocity is,

u(∞)

UHS

=



1− δ2c

k21

(

1− k1

k2

)

1− k31/k
3
2



 . (45)

In the limit of δc going to zero k1 = 1 and k2 = ∞, thus we recover the Debye-Huckel solution φ(x) = φ(0)e−x. This
new solution has a functional form very similar to the classic double layer. The structure is given as the sum of two
exponentials with decay lengths on the order of unity, though slightly modified.

2. Solution for δc > 1/2, ”strong” correlation effects

When δc > 1/2 the analytical solution at low voltage has the form,

φ(x) = φ(0)e−k1x (cos(k2x)−A sin(k2x)) (46)

where

k1 =

√
2δc + 1

2δc
, k2 =

√
2δc − 1

2δc
, A =

√
2δc + 1(δc − 1)√
2δc − 1(δc + 1)

The capacitance of the double layer is,

C

CDH

=

√
2δc + 1

δc + 1
(47)

which decays with increasing correlations. The slip velocity is,

u(∞)

UHS

=

(

1− δ2c
δc + 1

)

. (48)
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FIG. 2: (color online) Example solutions for a 1:1 (a, b, and c) and 2:1 electrolyte (d, e, and f) with 0.3 nm ion sizes. (a)
Double layer structure showing the charge density profiles at wall voltages of -1, -2, -5 and -10 in units of kbT/e for a 1 Molar
concentration of cations. (b) Dimensionless capacitance as a function of voltage for concentration of 0.01 (black), 0.1 (red) and
1 (blue) molar from top to bottom. Corresponding solutions with no correlation effects (δc = 0) are shown as the dashed lines.
(c) Dimensionless slip velocity as a function of voltage for concentration of 0.01 (black), 0.1 (red) and 1 (blue) molar from top
to bottom. Without correlations the slip velocity is always 1. Figures (c), (d), and (e) are the same, only for the 2:1 system.
The asymmetry is easily seen in the capacitance and slip velocity.

The slip velocity changes sign if δc is sufficiently large. In particular, there is an electro-osmotic flow reversal or
electrokinetic charge inversion of the surface when the dimensionless correlation length exceeds the golden mean:
δc > (1 +

√
5)/2 = 1.618.

The form of the double layer becomes modified as δc increases. We find that the functional form consists of decaying
sinusoids with a length scale provided explicitly by k1 and k2. At relatively large values of δc the length scale of the
decay and the oscillations is approximately

√
2δc.

D. Numerical results

At low voltage, the solution has only one free parameter, the correlation length scale, δc. The structure of the
double layer as δc is varied is shown in Figure 1. We see that as the strength of the correlations is increased the
double layer shows charge density oscillations. From the analytical solution we see that the oscillations emerge when
δc is greater than 1/2. The length scale for the whole double layer also increases as the correlations are increased.
From the analytical solution we can easily see at large δc that the size of the double layer grows with the square root
of δc. For small values of δc the results become indistinguishable from the classic Debye-Huckel solution.
In Figure 1 (b) we show the capacitance and (c) slip velocity as a function of δC . We see a decrease in the slip

velocity and the capacitance with increasing δc. As correlation effects become stronger the flow is quenched and then
reverses direction. Note that from the analytical solution that at δc = 1 that the flow velocity is half of UHS and the
flow reverses when δc > 0.618. These values of δc are easily reached at high concentration in aqueous electrolytes, as
we will soon see.
At higher applied voltage the structure of the solution changes dramatically as we show in Figure 2. Here we show

sample solutions for a 1:1 and 2:1 electrolyte of 0.3 nm ions as the voltage is changed. In Figure 2a we show the
structure of the double layer at different voltages at a cation concentration of 1 molar. Using the ion size as the
correlation length scale and as the volume fraction then for the 1:1 system δc = 0.988, ν = 0.0270 and for the 2:1
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system δc = 1.71, ν = 0.0405. As the voltage increases, the charge density at the wall saturates to a value determined
by the steric constraints. This condensed layer of ions grows as the voltage is increase. Without the correlations effect
the charge density would decay monotonically from the maximum value to zero far from the wall. However, with the
correlation effects included in the model, the charge density oscillates and changes sign. These oscillations are more
pronounced in 2:1 system when the divalent ions crowd the wall.
Turning to the capacitance in Figure 2b we find that correlation effects reduce the capacitance. The dimensionless

capacitance is always 1 at zero voltage when δc = 0, however when δc > 0 the capacitance at zero voltage reduces
according to Figure 1b. At higher voltage, the shape of the capacitance curve is similar to when δc = 0, the values are
simply lower. This reduction in capacitance is consistent with previous work on steric constraints with the Bikerman
model which found generally that the theory needed ion sizes that were bigger than one would expect physically to
fit the experimental data [2, 16]
The most dramatic departure from the classical model comes when computing the slip velocity in Figure 2c. We

see that at high concentration the model can predict reverse flow even at small voltages in the 2:1 system. At low
concentration, we find that the model predicts classic slip at low voltage but predicts reverse flow as the voltage is
increased even moderately. As the voltage is increased further, the model predicts the forward component of the flow
begins to increase as the condensed layer grows. At high voltage the slip velocity for all concentrations begin to come
together as the condensed layer begins to dominate the double layer structure.
These preliminary flow results must be interpreted with caution. The model currently does not account for changes

in the viscosity of the solution near the wall in the condensed layer. It is also unclear (as it is in classical theory)
where the slip plane should be placed. Recent work by Jiang and Qiao shows via molecular dynamics simulations
that electroosmotic flow can be amplified by short wavelength hydrodynamics [51]. These effects (and others) are not
included in our model and may be required for more detailed comparisons with experimental data.

V. VALIDATION

A. Comparison with molecular simulations

In order to determine whether this model has validity in the context of aqueous electrolytes, we can compare the
model predictions to those made by more sophisticated simulations such as Monte Carlo or Density Functional Theory
(DFT). Monte Carlo simulations are often considered the standard for equilibrium chemistry while DFT has proven
to quantitatively compare well against Monte Carlo at a much lower computational cost [52]. Our aim is to determine
whether an even simpler continuum model can capture the same features.
In a prior paper we compared this correlations model to molecular dynamics simulations of ionic liquids [30]. In

that work we assumed that the potential at x = 0 in the continuum theory was the potential offset from the wall by
the radius of the ion. In comparisons to data for electrolyte solutions that follow, we find that here we obtain good
results by taking the voltage at x = 0 to be the electrode, i.e. not accounting for the radius of the ion as it approaches
the surface.
In Figure 3 we compare the ion distributions, g(x) = c(x)/c∞, predicted by the continuum model to those predicted

by Monte Carlo simulations of Boda et al [53]. The conditions here are a 2:1 electrolyte with surface charge of -0.3
C/m2 and an ion diameter of 0.3 nm. We find that the continuum model predicts much of the same structure as
the Monte Carlo simulations, though the length scale of the oscillations and the amount of over-screening predicted
by the continuum model is larger than seen in the simulations. Better agreement can be obtained by reducing the
correlation length scale by about 50 percent. However, the classic electrokinetic model can only predict ion profiles
which decay monotonically, so it is interesting that this extension for correlations effects can provide the basic double
layer structure with no fitting parameters.
In Figure 4 a-b we compare the continuum model to the Monte Carlo simulations looking at the relationship between

the double layer charge and electrode voltage. In a) we show results for a monovalent ion and in b) we show a 2:1
electrolyte at two different concentrations. The continuum model predicts the basic trends of the more complicated
MC simulations, though under-predicts the voltage for a given charge. The inclusion of correlation effects brings the
continuum results in better agreement with the MC simulations than when we only account for finite size effects.
In Figures 5 we compare the continuum model to results of density functional theory (DFT) simulations of Gillespie

et al [52] for a 2:1 electrolyte. In Figures 5 we show curves of constant voltage over a range of surface charge and
concentration. The results with the continuum model are in reasonable agreement with the DFT results, especially at
large concentrations and high charge. Importantly, the shape of these curves computed with DFT are well predicted
by this simple continuum model. When δc = 0 and at high concentration, the continuum model qualitatively departs
from the DFT results. What is interesting about the continuum model with correlations included is that there are no
fit parameters.
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FIG. 3: (color online) Comparison of the continuum model (solid lines) to Monte Carlo simulations of ref [53]. The conditions
here are a 2:1 electrolyte with surface charge of -0.3 C/m2 and an ion diameter of 0.3 nm. The points are the Monte Carlo
simulation and the solid lines are the continuum model.
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FIG. 4: (color online) Comparison of the continuum model with correlations (solid lines) to Monte Carlo simulations of ref [53]
(points) and the continuum model with only steric effects (dashed lines). The ion diameter is 0.3 nm. In a) we show the result
for a 1:1 electrolyte and in b) we show the result for a 2:1 electrolyte. The upper solid blue curve and dots is for 0.1 M and the
lower red curve and ’*’ is for 1 M concentration.

B. Comparison with experiments

We can also compare the model to an experiment, rather than to other simulations, as a more definitive test. In
Figure 6 we compare the model to the nanochannel electrokinetic data of van der Heyden et al. [54] as was done by
Gillespie et al [52]. In the experiment a nanochannel with a characterized surface charge is driven by a pressure driven
flow and the streaming current is measured. In this case the flow is driven by pressure and not electro-osmotically. To
compute the streaming current we simply multiply our charge density profiles by the pressure driven velocity profile;

I = W

∫ H

0

ρ(x)u(x)dx (49)

where W is the channel width of 50 µm, H is the channel height of 450 nm, and u is the parabolic velocity profile.
Since the double layer is so thin relative to the channel height of 450 nm, we can safely assume that the pressure
driven velocity profile is locally linear at the wall; du/dx = 4∆PH/(Lη) for Pouiselle flow. Thus to compute the
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FIG. 6: (color online) Comparison of the continuum model experimental nanochannel data of [54]. The electrolyte is a 2:1 with
an assumed ion size of 0.3 nm.

current per unit pressure drop for pressure driven flow we calculate,

I

∆P
=

4WH

Lη

∫ ∞

0

ρ(x)xdx. (50)

The current per unit pressure as a function of concentration is plotted in Figure 6 comparing the continuum model
to the experiment. The agreement is qualitatively correct and predicts a reversal in the current around the same
concentration as seen in the experiments. The slower velocities at high concentration seen in the experiment is
consistent with charge induced thickening, and increase in viscosity in a condensed layer of ions [2]. There is still
uncertainty in application of this model for flow. It is unclear where the slip plane should sit and whether the solution
viscosity near the wall should be taken as a constant. This uncertainty applies equally to the continuum model and
the DFT simulations, as in those simulations the current is calculated in the same way it is here, only the charge
profile is calculated via DFT in their work is used. More experimental data under controlled situations is needed for
further testing predictions of flow.
We also briefly draw attention to induced-charge electro-osmotic flows (ICEO) [2, 12], where the new model may help

to explain some puzzling experimental results (although we do not report any new simulations here). In particular, we
(along with L. R. Edwards and M. S. Kilic) showed that flow reversal in AC electro-osmotic micro-pumps (consisting of
interdigitated planar micro-electrode arrays) could be explained by a Bikerman-like model of the double layer, where
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the differential capacitance of the double layer decreases at high voltage [16]. A difficulty with this interperation of
the experimental data, however, was the fact that the inferred ion size was far too large, whether considering a lattice
gas or hard spheres. The problem could be alleviated by considering the possibility of reduction of the dielectric
constant near the surface, and we speculated that correlation effects might further reduce the effective ion size in the
model. From the present work, we can see that electrostatic correlations tend to reduce electro-osmotic flow while
also lowering the double-layer differential capacitance. The former effect could be wholly or partly misinterpreted
as a sign of charge-induced thickening (i.e. an increase in viscosity in a highly charged double layer that could also
reduce the net electro-osmotic flow), while the latter could reduce the capacitance without invoking such strong steric
effects with large effective ion sizes. Based on this evidence, it seems plausible that the new model might help to
describe ICEO flows at high voltage and high salt concentration, which have otherwise resisted a complete theoretical
understanding [2].

VI. CONCLUSIONS

We have developed a continuum model for electrokinetic phenomena that accounts for electrostatic correlations and
applied this model to electro-osmotic flow and streaming current in aqueous electrolytes of high valence and high salt
concentration at a flat, homogeneously charged surface. The model predicts the basic electric double layer structure
that has been observed in Monte Carlo simulations; namely oscillations in the charge density and reversal of apparent
charge of a surface based on electrokinetic flow. Without any fitting parameters, the continuum model which also
includes finite ion size effects reproduces features of much more complicated theories and simulations. While the
quantitative agreement between this model and Monte Carlo or DFT simulations is only approximate, the trends are
much closer than found with the classical mean-field theory. As in the case of RTIL [30], it is remarkable that such
a simple continuum theory can predict various subtle aspects of double layer structure and electrokinetic phenomena
at the molecular scale.
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