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Mixtures of materials that move relative to each other arise in a variety of applications, especially
in biophysical problems where the mixture consists of materials with different material properties.
The variety of applications leads to a bewildering array of multiphase models, each with slightly
different behaviors and interpretations, depending on the application. Some of the behaviors include
phase separation, traveling waves and linear instabilities. Because of the variability of the predicted
behaviors, there has been considerable attention payed to minimal models to determine the fun-
damental solutions, bifurcations and instabilities. In this manuscript, we describe a new solution
for the simplest two-phase system where both phases are dominated by viscous forces, one phase
response to osmotic forces and the phases interact through a drag term. The system develops a
traveling front separating an unstable, uniform solution from a patterned, phase separated solution.
We seek the velocity of the traveling front and show that, for large diffusion, marginal stability
gives a simple and accurate prediction for the velocity. For smaller diffusion constants, the front is
’pushed’, and the linear prediction fails.

PACS numbers: 89.75.Kd

INTRODUCTION

Multiphase models were initially developed to describe
the dynamics of heterogeneous mixtures of materials
without focusing on the microscopic interactions, instead
focusing on macroscopic interactions. Multiphase models
avoid describing the material using a single constitutive
law as other models such as Oldroyd-B do. Primarily
this is because multiphase models focus on applications
where there are clearly more than one material and the
relative motion and distribution of the materials is of
primary interest. One example is the dynamic swelling
of poly-electrolyte gels which are formed from networked
polymer that is hydrated by water [1]. Submerging a
region of gel within a bath of water causes the gel to
undergo deformations as the gel absorbs or expels wa-
ter due to the osmotic nature of the polymer network.
In addition, multiphase models are increasingly used to
describe biological processes. They have been used to de-
scribe the dynamics of biofilm growth and development,
tumor aggregation, and cell blebbing [2].

With the growing diversity of applications where multi-
phase models are employed, there is subsequent focus on
understanding the dynamics of these models. However,
these models are extremely flexible and exhibit a range
of behaviors. In addition to deformations that occur be-
cause of changes in the external state (such as osmotic
swelling described above), multiphase models have been
used couple fluid motion to the deformation of bacte-
rial communities termed biofilms. Since the biofilms are
mixtures of water and polymer, multiphase models join
the fluid and the biofilm regions smoothly, similar to the
regularization of phase-field models [3, 4]. This is a com-
putational advantage of the modeling framework that ex-
ploits the averaging of the multiphase models. It is also
well known that multiphase models that include osmotic

forces will phase-separate [3–5]. Since the osmotic forces
drop out if there is no network, or the network is in it’s
“preferred” density, uniform distributions are generically
unstable to perturbations [5, 6].

Recently, there have been studies that focus on trav-
eling wave behavior of similar multiphase models [7–9].
In [7] a simplified model is introduced and the authors
describe how initial conditions and perturbations can se-
lect for the velocity and direction of the traveling wave
and further relate this to cell crawling. In one dimension
and after long times, the traveling wave shape and speed
can be related to the parameters as in [9]. In [8] the au-
thors use the model from [3] and analyze the spreading of
an initially aggregate under suitable limiting parameter
values. The wave speed of a solution that arises from a
departure from the uniform solution is obtained numer-
ically and related to experimental observations. Finally,
the two-phase model of biofilm growth introduced in [3]
and used in [8] exhibits traveling fronts after long time
evolution [9]. We note that in last two applications there
is a feedback between production of one phase (the net-
work phase) and subsequent motion driven by gradients
in the osmotic pressure while the first system is driven
by asymmetries in the perturbations. It has been argued
that the multiphase framework is a natural description of
redistribution of mass for a wide array of biological pro-
cesses [2] and can drive systems to reinforce some wave-
length perturbations, or drive domain motion.

In this manuscript, we describe a different mode of
redistribution that, like the ones described above, is ini-
tiated by a departure from an equilibria. However, this
solution is not driven by production of one phase, nor
does it follow from classical linear instability arguments.
Instead, we note that localized perturbations lead to a
traveling front that separates a patterned region from a
uniform region. The aim is to determine the speed of the
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propagating front. We note that this solution may play
a role in the development and spreading of biofilm pat-
terns that are observed in microfluidic chambers where
the bacterium Xylella fastidiosa (the causative agent of
Pierces’ Disease) is introduced. Over the course of seven
days, a clear pattern is seen to travel throughout the do-
main.
We argue here that this behavior is built into the sim-

plest multiphase model and that the motion of the front
can be understood using marginal stability analysis. The
model that we use is a simplification of the model de-
scribed in [3] and also described in [10]. In particular,
here we do not try and relate the physics of the forces
to particular biological or biophysical processes. Instead
we consider a stripped-down, heuristic model that con-
tains the mechanisms the ensure reasonable interactions
between the phases (through interphase friction), within
each phase (viscous forces), forces the induce phase sep-
aration (osmotic forces) and forces the arise from incom-
pressibility (hydrostatic pressures). This is a different
approach than in [3] that describes a particular biologi-
cal process. In a later study, we will extend this model to
the particular case of biofilm mechanics, but the goal here
is to focus on deriving theory to understand the spread
of patterns in a multiphase model.
There are several other studies that also focus on the

spread of phase separation. The velocity of phase sep-
aration fronts was determined analytically and/or nu-
merically in [11–13] for diffusive dynamics governed by
gradient-flow dynamics; however, gradient-flow is much
simpler than the situation considered here that includes
the momentum of the phases. Rather than a front of
polymerization, we are focusing on situations that involve
mass redistribution and momentum cannot be neglected.
In [14, 15] the momentum is considered and numerical
methods are used to study the advancing front and One
of the novel aspects of this manuscript is the application
of marginal stability analysis that, while an approxima-
tion, is more general than purely numerical observations
and much simpler than other analytic methods.

MODEL DEVELOPMENT

We assume that a region of space is occupied by a mix-
ture of two phases that occupy volumes, θn and θf (refer-
ring to the polymer network and fluid volume fractions,
respectively). The entire space is occupied by either θn,
θf , or a mixture of the two. This implies a saturation

condition θn + θf = 1, that excludes any other volume.
Each of the components move with their own velocity,
un and uf . The model consists of statements of conser-
vation of volume and momentum for each of the phases.
We pose the model in one-dimension, but the model is
easily applied to multiple dimensions.
We include diffusion in the volume fraction, so that

the time rate of change of the volumes is balanced by
advection and diffusion. The diffusion coefficients are
assumed to be equal, for simplicity and this is discussed
further below. Conservation of volumes (or masses if the
densities of the phases are equal) are:

∂θn

∂t
+

∂(θnun)

∂x
= κ

∂2θn

∂x2
, (1)

∂θf

∂t
+

∂(θfuf )

∂x
= κ

∂2θf

∂x2
. (2)

Conservation of momentum for each phase and the
saturation condition yield the final governing equations.
In typical multiphase models, the viscous forces domi-
nate so that each phase is in force balance and inertial
terms are neglected. Forces from the viscosity of each

phase are denoted F
viscous
i = µi

∂(θi
∂ui
∂x

)

∂x
(implying that

each phase is a viscous fluid). The phases also interact
through friction which is incorporated as a drag force
that is proportional to the difference in the phase veloci-
ties, Fdrag

n = βθnθs(un−uf ) and the equal and opposite

force for the fluid: Fdrag
f = βθnθs(uf − un). Notice that

frictional interaction disappears if neither of the phases
is present (θi = 0, for i = n, f) or if there is no veloc-
ity difference. This is the simplest interaction between
the pahses that can be considered. Gradients in hydro-
static pressure, P , that arise to enforce incompressibil-
ity also induce forces on both phases and are denoted
F

pressure
i = θi

∂P
∂x

(just as in standard fluid equations).
Finally, since the polymer network is composed of chemi-
cally active polymers, there is an additional osmotic force
that acts on the network phase. We use a simplified
version Flory-Huggins theory to relate this force alge-
braically to the network volume fraction. We denote this
force F

osmotic
n = γ ∂Ψθn

∂x
, where Ψ(θn) = θ2n(θn − θ̂) de-

notes the osmotic pressure. The specific term chosen here
was derived in [3] as an approximation to the standard
mixing free energy. It the previous case, the parame-
ters were fixed by comparisons with biofilm experiments.
Here the motivation is different; we are focusing on a
simple multiphase model that exhibits phase separation
and this form of the osmotic pressure has been shown to
be a minimal requirement [16].
We note in passing that some authors [5] argue that the

osmotic force acts on both phases, but it is easily shown
that by redefining the hydrostatic pressure as the sum
of hydrostatic pressure and F

osmotic
f = 0. This rescaling

gives a statement that is equivalent to our formulation,
therefore we set Fosmotic

f = 0.
Conservation of momentum for the two phases, de-

scribed as a force balance is then F
viscous
i + F

drag
i +

F
pressure
i + F

osmotic
i = 0 for i = n, f . This gives the

two momentum equations:

∂(µnθn
∂un

∂x
)

∂x
− βθnθf (un − uf )
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FIG. 1: Dispersion curves for varying viscosities. We vary the
viscosities, µn and µf while keeping the ratio µn

µf
= 100.

−θn
∂P

∂x
−

∂Ψ(θn)

∂x
= 0, (3)

∂(µfθf
∂uf

∂x
)

∂x
− βθnθf (uf − us)− θf

∂P

∂x
= 0. (4)

LINEAR ANALYSIS: DISPERSION CURVES

AND MARGINAL STABILITY

It is quite easy to see that any uniform distribution
of phases (θn = θ0n and θf = θ0f , both constant in
space) is a solution with constant pressure as long as
u
0
n = u

0
f . Throughout, we assume that the uniform

velocities are both zero. It is likewise easy to deter-
mine the linear stability of these solutions to perturba-
tions in space. Assuming that θn = θ0n + ǫθ1ne

−iλt+ikx,
θf = θ0f + ǫθ1fe

−iλt+ikx, un = ǫu1
ne

−iλt+ikx and uf =

ǫu1
fe

−iλt+ikxand substituting into Equations 1, 2, 3 and
4 we obtain a linear system of equations of the form
Av = 0 for the amplitude of the perturbations, v =
(θ1n, θ

1
f ,u

1
n,u

1
f ). Since we seek non-trivial perturbations

the determinant of A must be zero. This requirement
yields a dispersion relation between the growth rate, λ,
and the wave number, k, of the perturbation. The disper-
sion relation carries information about the growth/decay
of perturbations – by solving the relationship for λ(k),
we see that perturbations may grow if Im(λ) > 0, while
others do not. The dispersion relation is relatively com-
plicated and depends on the parameters of the model so
we do not write it explicitly, but Figure 1 shows the dis-
persion curve for a variety of parameters. Note that typ-
ically small wave numbers (e.g. long wavelength) pertur-
bations are unstable, while all sufficiently high frequency
perturbations decay.
Classical linear stability argues that spatial patterns

may arise from global perturbations from an equilibrium

state; however, in the time course many experiments, it
is clear that the pattern does not appear throughout the
entire domain. In fact, the uniform solution (with no ma-
terial) is invaded by a patterned solution. In the simple
two-phase model described here, Figure 2 compares the
time-course for the dynamics that start with the same
initial state. The first panel shows the results with a
random perturbation throughout the domain, while the
second panel shows the results of a localized perturba-
tion. Interestingly, for a local perturbation, we see an
invasion front were the patterned solution moves into the
uniform region at a more-or-less constant rate.
Even though the simple model does not include any bi-

ological mechanisms, we still see a traveling wave of sorts.
We can then try and determine the wave speed. We show
that the marginal stability hypothesis give quite accurate
predictions of the wave speed for a range of parameters.
Marginal stability is based on early work by Dee and
Langer [17] who proposed a very simple mechanism to
explain how patterns can develop in nonlinear systems.
They argue that the speed of propagation is the speed at
which the system is neither growing nor decaying as one
moves with the disturbance. Moreover, this speed can be
determined directly from the dispersion curve, λ(k) by
solving dλ

dk
− v∗ = 0; Im(λ(k∗)− v∗k∗) = 0, for the wave

speed, v∗ and mode k∗. This works for several models
where the wave-speed can be determined analytically and
is a bit surprising, since the underlying models are non-
linear and rely only on the dispersion curve that comes
from the linearlzation. This idea has been explored more
fully [18] and, as long as the model is not ’too’ nonlin-
ear, the basic idea is quite correct. The reason the linear
theory is predictive has to do with the formal lineariza-
tion of the patterning solution around the leading front.
As long as the nonlinearities do not draw in too much
information, the local analysis dominates. When this is
true the front is referred to as a pulled front. Otherwise,
when the linear theory does not predict the wave-speed,
the front is termed pushed [19, 20].
The simple, linear marginal stability analysis rests on

the assumption that the spreading velocity (the speed of
the front between the uniform, unstable state and the
stable patterned regions) that is generated by spatially
isolated perturbations can be found by linearizing the
equations about the unstable state. This is quite unex-
pected, since only the linear terms are included. There
are various arguments that can be used to generate the
simple hypothesis that the wave speed can be found from
the dispersion curve, λ(k) by solving the coupled system:

dλ(k∗)

dk
=

Im(λ(k∗))

Im(k∗)

v∗ =
dλ(k∗)

dk

for the speed v∗ and mode k∗. This can be derived from
hueristic arguments (that the speed and mode are found
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(a)

(b)

FIG. 2: Panel (a) shows the phase separation dynamics from
a perturbation that is applied to the entire domain. Panel (b)
show the dynamics when the perturbation is restricted to a
small region near x = 0. We see an invasion front of pattern
that moves into the, initially, un-patterned region.

from themarginal stability of the linear theory, i.e. where
the dispersion curve is zero), from more formal arguments
[18] or from the theory of pinch-point [18].

Using this, and the fact that we have a dispersion
curve, we can compare predicted speeds with numerical
simulations to see that the predictions are quite accu-
rate for a range of parameters. First, we should discuss
the numerical methods that are used for the simulations,
which is based on the scheme given in [9]. For a given

initial distribution of network and fluid volume fractions,
the network and fluid velocities and pressure are solved
using a multigrid method, which can also be used as a
right preconditioner for Krylov subspace methods to en-
hance robustness. The multigrid method uses standard
prolongation and restriction operators and red-black box
(or Vanka) relaxation for the smoother. To step forward
in time, we use explicit first-order upwinding for advec-
tion and impicit Euler for diffusion. The system is dis-
cretized using second-order finite differences on a MAC
grid. There are ample details in the implementation that
are discussed in [9] that require substantial sophistication
in the choice of preconditioning and multigrid cycling.
We note that the images in Figure 3 were found using
this scheme and our implementation is in agreement with
those published in [9] although the comparisons are not
shown here.
We are now in a position to use the marginal stabil-

ity theory in conjunction with the numerical methods
to estimate the front propagation speed. We keep most
parameters fixed and allow the viscosities to vary (with
constant ratio). Specific parameters, in nondimensional

form, are β = .2, Ψ(θn) = γθ2n(θn−θ̂) with γ = 5, κ = 0.1

and θ̂ = 0.5. As we change the viscosities between µn =
[0.0005, 0.005, 0.05] and µf = [0.000005, 0.00005, 0.0005]
(note that the network is assumed to be 100 times as
viscous as the fluid).

CONCLUSIONS

There are several things to notice about these results.
First, there is a correspondence between the maximally
unstable modes (the maximum of the dispersion curve)
and the corresponding patterning frequency. The bot-
tom panel has the highest maximally unstable mode and
correspondingly higher frequency pattern. Likewise the
speed at which the pattern appears correlates well with
the magnitude of the positive regions of λ.
Even though these results are quite promising, the are

only valid when the front is ’pulled’, rather than ’pushed’
by the nonlinearities. This can be seen by decreasing the
diffusion coefficient which makes the nonlinear terms con-
tribute more to the behavior. When we set κ = 0.001,
we find that the velocity predicted by the marginal sta-
bility calculation fails (see Figure 4). As is typical for
pushed fronts, the propagating front moves faster than
the speed predicted by the linear theory. The analysis of
the pushed front parameter regime is beyond the scope
of this paper and requires much more delicate reasoning.
The purpose of this manuscript is to introduce a new

class of solutions for multiphase systems. These solu-
tions are characterized by a patterned region that moves
into a uniform region. To our knowledge these solutions
have not been discussed previously; however they may
play an important role in physical or biological systems
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where the interactions between components of the sys-
tem lead to propagating patterns. Our motivating phys-
ical system is that of bacterial biofilms that form within
plant xylem referred to as Pierces’ Disease. X. fastidiosa
biofilms grown in artificial xylem (microfluidic chambers)
show an apparent spreading pattern that may be linked
to the spread of the disease within plant xylem. It is im-
portant to be able to estimate the time it takes for the
biofilm to spread– which is quite difficult to do in situ

since the spreading rates correlates with disease progres-
sion. The analysis discussed above, while applied to a
very simple model, gives a direction to push the analysis
for a biologically relevant model.
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(a)

(b)

(c)

FIG. 3: Comparisons for the marginal velocity obtained us-
ing linear theory (solid line) with the patterning obtained by
the numerical solutions. Figure 1 shows the corresponding
dispersion curves. Panel (a): µn = 0.05, µf = 0.0005. The
predicted velocity is 1.1, the reciprocal of the slope of the
white line. Panel (b): µn = 0.005, µf = 0.00005. The pre-
dicted velocity is 3.5. Panel (c): µn = 0.0005, µf = 0.000005.
The predicted velocity is 11.1.
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FIG. 4: As the diffusion coefficient, κ is decreased to 0.001, we
see that the marginal stability prediction is very inaccurate
(shown in white). Moreover, the front is not moving at a
constant rate. There are obvious alterations in the width
and spacings of the patterns. Therefore, even if the predicted
slope was accurate, which it clearly is not, simple linear front
velocity is not an accurate description of the pushed front.


