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Complex networks possess a rich, multi-scale structure reflecting the dynamical and functional
organization of the systems they model. Often there is a need to analyze multiple networks simul-
taneously, to model a system by more than one type of interaction or to go beyond simple pairwise
interactions, but currently there is a lack of theoretical and computational methods to address these
problems. Here we introduce a framework for clustering and community detection in such systems
using hypergraph representations. Our main result is a generalization of the Perron-Frobenius the-
orem from which we derive spectral clustering algorithms for directed and undirected hypergraphs.
We illustrate our approach with applications for local and global alignment of protein-protein inter-
action networks between multiple species, for tripartite community detection in folksonomies, and
for detecting clusters of overlapping regulatory pathways in directed networks.

I. INTRODUCTION

Complex networks in nature and society represent in-
teractions between entities in inhomogeneous systems
and understanding their structure and function has been
the focus of much research. At the macroscopic scale,
complex networks are characterized by, among others, a
degree distribution, characteristic path length and clus-
tering coefficient which are markedly different from those
of regular lattices or uniformly distributed Erdős-Rényi
random graphs [1, 2], while at the microscopic scale, they
contain network motifs, small subgraphs occurring sig-
nificantly more often than expected by chance [3]. The
intermediate level usually exhibits the presence of com-
munities or modules, sets of nodes with a significantly
higher than expected density of links between them, typ-
ical examples being friendship circles in social networks,
websites devoted to similar topics in the WorldWide Web
or protein complexes in protein interaction networks [4–
7].
However, the limitations of modeling a complex system

by a network with a single type of pairwise interaction
are becoming more and more clear. Folksonomies, online
social communities where users apply tags to annotate
resources such as images or scientific articles, have a tri-
partite structure with three types of interactions [8, 9].
In biology, cellular systems are characterized by different
types of networks which represent different physical inter-
action mechanisms operating on different time-scales, in-
tertwined with each other through extensive feedforward
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and feedback loops [10, 11]. To understand how evolu-
tionary dynamics shapes molecular interaction networks,
we need to compare them between multiple species with
non-trivial many-to-many relations between their respec-
tive node sets [12]. In order to move beyond simple net-
works of pairwise interactions to model these and other
systems, one suggestion has been to use hypergraphs,
where edges are arbitrarily sized subsets of nodes. Al-
though a number of studies have generalized various con-
cepts from graph theory to hypergraphs [8, 9, 13–16], a
rigorous mathematical foundation and general-purpose
algorithm for clustering and community detection in hy-
pergraphs is still lacking.

Here we present a framework for spectral clustering
in hypergraphs which is mathematically sound and al-
gorithmically efficient. It is based on a generalization
of the Perron-Frobenius theorem, which allows to define
and compute a dominant eigenvector for hypergraphs and
use its values for optimally partitioning the hypergraph’s
vertex set, similar to the operation of standard spectral
clustering algorithms in ordinary graphs [17]. We demon-
strate the validity of our approach through practical ap-
plications in the analysis of real-world networks. In par-
ticular we address the following problems. First, if two
networks are defined on separate node sets with a many-
to-many mapping between them (for instance protein-
protein interaction networks in different species), it is a
natural question to find matching communities in the two
networks. This is the so-called network alignment prob-
lem [12]. We show that this problem can be solved by
finding clusters in a hypergraph where each hyperedge
consists of two matching edges, one from each network
(Section VIII A). Second, if multiple networks are de-
fined on the same node set (i.e., together they form an
edge-colored graph), there often exist functionally mean-



2

ingful, higher-order relations between the different edge
types (for instance tripartite relations in folksonomies
[8, 9] or network motifs in biological networks [10, 11]).
Finding communities or modules which respect to these
higher-order relations is what we call the network inte-

gration problem. Here we show that any higher-order
edge relation between different networks defines a sub-
graph pattern in the corresponding edge-colored graph
and that all instances of this pattern form a hypergraph.
Hypergraph-based clustering can then be applied to iden-
tify modules in such edge-colored graphs (Section VIII B
and VIII C).

II. GRAPHS AND HYPERGRAPHS

A graph G is defined as a pair (V , E) of vertices V and
edges (pairs of vertices) E , which may be directed or not.
In a weighted graph, a number is assigned to each edge
which may represent, e.g., the cost, length or reliability
of an edge. A hypergraph is a generalization of a graph
where an edge, called hyperedge in this case, can connect
any number of vertices, i.e., E is a set of arbitrarily sized
subsets of V . A particular class of hypergraphs are so-
called k-uniform hypergraphs where each hyperedge has
the same cardinality k. Algebraically, a graph can be
represented by an adjacency matrix A of dimension N ×
N , with N the number of vertices, such that Aij = 1
if {i, j} ∈ E and 0 otherwise. For undirected graphs,
A is a symmetric matrix and for weighted graphs, Aij

is defined to be the weight of the edge {i, j}. For k-
uniform hypergraphs, the notion of adjacency matrix can
be generalized to an adjacency multi-array or tensor T ,
with Ti1...ik = 1 if {i1, . . . , ik} ∈ E and 0 otherwise. For
a general hypergraph, we define a function w on the set
of subsets of V such that w(E) = 1 for E ∈ E and 0
otherwise. In general, we allow weighted hypergraphs
where w can be any non-negative function.
A path between two vertices i and j in a hypergraph is

defined as a sequence of vertices i = i1, i2, . . . , ik+1 = j
and edges E1, . . . , Ek such that for all m, {im, im+1} ⊂
Em. A hypergraph is called connected if there exists a
path between any pair of vertices. A stronger constraint
on the structure of a hypergraph is that of irreducibil-
ity. A hypergraph is said to be reducible if there exists a
proper vertex subset I ⊂ V such that for any i ∈ I and
j1, . . . , jm 6∈ I, w

(

{i, j1, . . . , jm}
)

= 0, and irreducible if
it is not reducible. For ordinary graphs, connectedness
and irreducibility are equivalent, but for hypergraphs this
is not the case. An irreducible hypergraph is clearly con-
nected, but the opposite is not always true. Indeed, if
there exists a subset of vertices I such that paths cross-
ing from i ∈ I to j 6∈ I can always be chosen to do so
through an edge of the form {i1, . . . , ik, j1, . . . , jm}, with
k ≥ 2, i1, . . . , ik ∈ I and j1, . . . , jm 6∈ I, then we can
set w({i, j1, . . . , jm}) = 0 for all i ∈ I and j1, . . . , jm 6∈ I,
thereby making the hypergraph reducible, without break-
ing its connectivity.

Directed hypergraphs can be defined in many ways.
For instance for k-uniform hypergraphs, we can impose
any form of permutation symmetry, or lack thereof, be-
tween some or all of the k dimensions in each edge. In
this paper, we will only consider the case where each edge
E can be written as a pair (S, T ), where S ⊂ V is called
the ‘source’ vertex set and T ⊂ V the ‘target’ vertex set,
with weight function w(S, T ). Underlying a directed hy-
pergraph, there is always an undirected hypergraph with
edges E = S ∪T for every directed edge (S, T ). As is the
case for ordinary directed graphs, a stronger notion of
connectivity is usually needed than simple connectivity
of this undirected hypergraph. We defer the somewhat
technical definition of strong connectivity of directed hy-
pergraphs to Appendix A.

III. DOMINANT EIGENVECTORS AND

SPECTRAL GRAPH CLUSTERING

Although countless measures have been designed to de-
fine clusters in a graph [5–7], perhaps the simplest def-
inition is that a cluster is a subset of vertices with a
high number of edges between them, relative to its size.
Mathematically, for a graph with adjacency matrix A,
the edge-to-node ratio of a subset X ⊂ V can be written
as

S(X) =

∑

i,j∈X Aij

|X |
,

where |X | denotes the number of elements in X . The
number of subsets of a set with N elements grows expo-
nentially in N and hence finding the subset with max-
imal edge-to-node ratio by exhaustive enumeration is
computationally infeasible for large graphs. However,
if we denote by uX the unit vector in R

N which has
uX,i = |X |−1/2 for i ∈ X and 0 otherwise, we can write S
as a scalar product and obtain the simple upper bound:

S(X) = 〈uX , AuX〉 ≤ max
x∈RN ,x 6=0

〈x,Ax〉

‖x‖2
= λmax, (1)

where 〈x, y〉 =
∑

i xiyi is the standard inner product on

RN , ‖x‖ =
√

〈x, x〉 is the length of x, and λmax is the
largest eigenvalue of A. By the Perron-Frobenius theo-
rem [18], if the graph is irreducible, the dominant eigen-
vector x, which satisfies λmax x = Ax, is unique, strictly
positive (xi > 0 for all i), and solves the variational prob-
lem in the right-hand side of eq. (1).
Hence, to find an approximate maximizer X of S, we

can take the set X for which uX is as close as possible
to the dominant eigenvector x, similar to what is done in
other spectral clustering algorithms based on the Lapla-
cian or modularity matrices [17], i.e., define

X̃ = argmax
X⊂V

〈uX , x〉 = argmax
X⊂V

1

|X |1/2

∑

i∈X

xi.
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Since x > 0, X̃ is of the form Xc = {i : xi > c} for some

threshold value c. Instead of X̃ , we therefore choose the
solution of the restricted variational problem

Xmax = argmax
c>0

S(Xc). (2)

as an approximate maximizer. Solving eq. (2) is linear in
the number of vertices, since we only need to consider the
values c equal to the entries of x. Moreover, S(Xmax) ≥
S(X̃), and hence Xmax is a better approximation to the

true maximizer of S than X̃.
Thus we obtain a numerically highly efficient spectral

graph clustering algorithm:

1. Calculate the dominant eigenvector x using for in-
stance a power method [19].

2. Find the cluster Xmax which solves the restricted
variational problem in eq. (2).

3. Store Xmax, remove all edges between nodes in
Xmax from the edge set E , and repeat the proce-
dure until no more edges remain.

This result of this algorithm is a partition of the edges
of the input graph. Edge clustering algorithms have re-
cently gained popularity as they allow for overlapping
communities where nodes may belong to more than one
community [20, 21].
This procedure generalizes immediately to directed or

bipartite graphs. In this case a cluster consists of a
‘source’ set X and ‘target’ set Y with edge-to-node ratio

S(X,Y ) =

∑

i∈X,j∈Y Aij
√

|X | · |Y |
.

The dominant eigenvector is replaced by the dominant
left and right singular vectors x and y corresponding to
the largest singular value of A, which are again unique
and strictly positive [18]. Xmax and Ymax are found by
maximizing S(X,Y ) over sets obtained by thresholding
on the entries of x and y.

IV. PERRON-FROBENIUS THEOREM FOR

HYPERGRAPHS

Our aim is to generalize the previous graph spectral
clustering algorithm to arbitrary hypergraphs. For this
purpose we first need a generalization of the Perron-
Frobenius theorem. Let H = (V , E) be an undirected
hypergraph on N vertices. Define for x ∈ RN and p ≥ 1

Rp(x) =
∑

E∈E

w(E)
∏

i∈E

( |xi|

‖x‖p

)
1

|E|

, (3)

where w(E) is the non-negative weight of edge E and
‖x‖p = (

∑

i |xi|
p)1/p is the p-norm of x. We have the

following key result:

Theorem 1. Rp attains its maximum on the set of unit

vectors SN
p = {u ∈ RN : ‖u‖p = 1}. If H is connected,

there is a unique maximizer x ∈ SN
p which is strictly

positive and satisfies the Euler-Lagrange equations

λp x
p
i =

∑

{E∈E : i∈E}

w(E)

|E|

(

∏

j∈E

xj

)
1

|E|

, (4)

subject to the constraint ‖x‖p = 1 and with λp = Rp(x).
By analogy with the matrix case, we call x the dominant

eigenvector of H.

For clarity, we first prove this theorem in the simpler
case when H is irreducible. The proof of the general case
is given in Appendix B.

Proof. Existence of a maximizer on SN
p follows from

Weierstrass’s theorem [18]. Clearly, since Rp(x) =
Rp(|x|), we can always choose a maximizer x to have
non-negative entries. Hence we can find x as a station-
ary point of the Lagrangian

L(x) =
∑

E∈E

w(E)
(

∏

i∈E

|xi|
)

1

|E|

−
λ

p

(

‖x‖pp − 1
)

,

giving rise (for non-negative x) to the Euler-Lagrange
equations

λxp−1
i =

∑

{E∈E : i∈E}

w(E)

|E|

(

∏

j∈E,j 6=i

xj

)
1

|E|

x
1

|E|
−1

i . (5)

Let I = {i ∈ V : xi = 0} and i ∈ I. Assume there
exists an edge E = {i, j1, . . . , jm} with j1, . . . , jm 6∈ I.
Then the left-hand side of eq. (5) is 0 while the right-
hand side is ∞. Hence such an edge cannot exist, but
this contradicts the assumption of irreducibility of H. It
follows that I = ∅ or x > 0. Multiplying both sides of
eq. (5) by xi we obtain eq. (4). Summing both sides in
eq. (4) over i gives λp = Rp(x) = maxx′ Rp(x

′).
Next assume y > 0 is another maximizer ofRp. Denote

c = mini(xi/yi), u = cy, and z = x − u ≥ 0. Since
‖x‖p = ‖y‖p = 1, we have c < 1 and cp ≤ c for p ≥ 1.
Denote I = {i ∈ V : zi = 0}. For any i ∈ I, by the
Euler-Lagrange equations,

0 = λp

(

xp
i − cpypi

)

≥
∑

{E∈E : i∈E}

w(E)
[(

∏

j∈E

xj

)
1

|E|

−
(

∏

j∈E

uj

)
1

|E|
]

.

Since each term in the last sum is non-negative, they
must all be zero. Hence for any j1, . . . , jk 6∈ I, if
{i, j1, . . . , jk} ∈ E then

0 =

k
∏

m=1

xjm −
k
∏

m=1

ujm

=

k
∑

m=1

(

m−1
∏

n=1

ujn

)

(xjm − ujm)
(

k
∏

n=m+1

xjn

)

. (6)
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Again each term in this sum is non-negative and must
therefore be zero, but this contradicts j1, . . . , jk 6∈ I.
Hence edges with i ∈ I and j1, . . . , jk 6∈ I do not ex-
ist, but this contradicts the assumption of irreducibility.
Since I 6= ∅, we must have I = V or x = y.

Next consider directed hypergraphs with hyperedges
E = (S, T ), S, T ⊂ V as defined before. Then define
Rp,q(x, y) for x, y ∈ RN and p, q ≥ 1

Rp,q(x, y) =

∑

(S,T )∈E

w(S, T )
∏

i∈S

( |xi|

‖x‖p

)
1

2|S|
∏

j∈T

( |yj |

‖y‖q

)
1

2|T |

. (7)

By identical arguments as for undirected hypergraphs,
it can be shown that for a strongly connected directed
hypergraph, there exists a unique pair x ∈ SN

p and y ∈

SN
q such that Rp,q(x, y) ≥ Rp,q(x

′, y′) for all x′, y′ ∈

RN . These maximizers are strictly positive and satisfy
the Euler-Lagrange equations

λp,qx
p
i =

∑

{(S,T )∈E : i∈S}

w(S, T )

2|S|

(

∏

i′∈S

xi′

)
1

2|S|
(

∏

j∈T

yj

)
1

2|T |

(8)

λp,qy
q
j =

∑

{(S,T )∈E : j∈T}

w(S, T )

2|T |

(

∏

i∈S

xi

)
1

2|S|
(

∏

j′∈T

yj′
)

1
2|T |

,

(9)

subject to the constraints ‖x‖p = ‖y‖q = 1 and with
λp,q = Rp,q(x, y). Details are given in Appendix B.

V. SPECTRAL CLUSTERING AND

BICLUSTERING IN HYPERGRAPHS

Having a generalization of the Perron-Frobenius theo-
rem, it is straightforward to also generalize the spectral
clustering method. Define for X ⊂ V ,

Sp(X) =

∑

E⊂X w(E)

|X |
1
p

= Rp(uX) ≤ Rp(x), (10)

with x the dominant eigenvector and uX ∈ S
N
p now de-

fined by uX,i = |X |−1/p for i ∈ X and 0 otherwise. The
parameter p balances cluster size versus edge density. For
p = 1, Sp is the ratio of edges to nodes inX . Taking p > 1
diminishes the influence of the denominator and progres-
sively favors to have a high number of edges rather than
a high number of edges per node in high-scoring clusters
(further details in Section VII). The spectral clustering
algorithm becomes:

1. Calculate the maximizer x of Rp.

2. Find the cluster Xmax which solves the restricted
variational problem

Xmax = argmax
c>0

Sp(Xc)

with Xc = {i ∈ V : xi > c}.

3. Store Xmax, remove all hyperedges between nodes
in Xmax from the edge set E , and repeat the proce-
dure until no more hyperedges remain.

The maximizer can be calculated using a generaliza-
tion of the power method for matrices [19] or tensors
[22]: starting with an initial vector x(0) and defining

λ
(0)
p = ‖x(0)‖p = 1, we compute x(n+1) from x(n) using

the Euler-Lagrange equations (4) in the following steps:

x
(n+1)
i ←

[

∑

{E∈E : i∈E}

w(E)

|E|

(

∏

j∈E

x
(n)
j

)
1

|E|

]
1
p

(11)

λ(n+1)
p = ‖x(n+1)‖p (12)

x
(n+1)
i ←

x
(n+1)
i

λ
(n+1)
p

, (13)

iterated until the components of x(n) become station-

ary or, equivalently, λ
(n)
p has converged to the dominant

eigenvalue, i.e.,
∣

∣

∣

∣

∣

1−
λ
(n+1)
p

λ
(n)
p

∣

∣

∣

∣

∣

< ǫ, (14)

where ǫ is a predefined numerical tolerance threshold.
Due to the uniqueness of x, the choice of starting vector
is not important. By taking a non-negative one, such as
the uniform vector x(0) = [1, 1, . . . , 1]T/N1/p, we ensure
that the powers of 1/|E| occurring in the Euler-Lagrange
equations are always defined unambiguously. Many of
the hypergraphs occurring in real-world applications are
not connected. In such cases it is important to ensure
that x(0) has support only on a single connected compo-
nent to obtain the unique maximizer for that component.
Although we typically view a cluster as a subset of

vertices, it is actually a subset of hyperedges (all hyper-
edges E ⊂ Xmax) and thus can be considered as a sub-
hypergraph as well. Higher-scoring clusters can thus be
obtained by recursively applying the previous procedure
to each of the clusters itself until no more subdivision
which improves the score is found.
For directed hypergraphs, we have a biclustering

method. Define for X,Y ⊂ V and p, q ≥ 1

Sp,q(X,Y ) =

∑

S⊂X,T⊂Y w(S, T )

|X |
1
2p |Y |

1
2q

.

Approximate maximizers Xmax and Ymax are found by
solving the restricted variational principle

(Xmax, Ymax) = argmax
(c1,c2)

Sp,q(Xc1 , Yc2),

with Xc1 = {i ∈ V : xi > c1} and Yc2 = {i ∈ V : yi > c2},
where x and y are the unique solutions of the Euler-
Lagrange equations (8)-(9), which can again be calcu-
lated using a power algorithm.
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VI. RELATION TO PREVIOUS WORK

The matrix algorithm for clustering in a simple graph
has its roots in a method for image pattern recognition
[23] and using the singular value decomposition to detect
densely linked sets in directed networks goes back to the
work of Kleinberg [24]. The novelty here lies in the defi-
nition of a discrete cluster through solving the restricted
variational problem, instead of using an ad-hoc cut-off on
the eigenvector entries. For k-uniform hypergraphs, we

can define rescaled variables yi = x
1/k
i such that maxi-

mizing Rp(x) becomes equivalent to maximizing

R′
p′ (y) =

∑

i1,...,ik
Ti1...ikyi1 . . . yik

‖y‖kp′

with p′ = kp. In this case, Theorem 1 reduces to a
multi-linear extension of the Perron-Frobenius theorem
to non-negative irreducible tensors of arbitrary dimen-
sion, which has been the subject of several recent papers
[25–27] (which all depend on the strong irreducibility con-
dition). The proof given in Theorem 1 is considerably
simpler, holds for general connected hypergraphs and fol-
lows more closely the proof of the matrix theorem [18]. In
the unscaled variational problem for R′

p′ , the maximizer

is unique for p′ ≥ k and thus it is unsuited for gener-
alizing to arbitrary hypergraphs where the uniqueness
condition would become p′ ≥ kmax, the maximum edge
size in the hypergraph. This explains why we introduced
the geometric average over the values xj in eq. (3). To
the best of our knowledge, Theorem 1 is the first proof
of a Perron-Frobenius theorem for general hypergraphs.

For k = 3, we have previously used a similar approach
to find clusters of 3-node network motifs in integrated in-
teraction networks [28, 29]. In this case an adjacency ten-
sor Trst is defined to be 1 if an instance of a 3-node query
motif or graph pattern exists between vertices (r, s, t) and
0 otherwise. More generally, we can define for any k-node
query pattern a k-uniform hypergraph consisting of all
instances of the query pattern in a given graph G. Our
algorithm will identify clusters of vertices in G with a
high number of pattern instances between them, which
often have a functional meaning in biological networks
[28, 30].

Another example for k = 3 concerns the analysis and
clustering of multiply linked data [31, 32] or multislice
networks [33]. Here we are given a set of M directed
or undirected graphs and define a hypergraph adjacency

tensor as Tijm = A
(m)
ij , whereA(m) denotes the adjacency

matrix of the mth graph. Clustering in this case identifies
vertex sets which are densely connected in multiple, but
not necessarily all, graphs.

VII. ALGORITHM VALIDATION

A. Random geometric graphs

The dominant eigenvector of a graph’s adjacency ma-
trix is often considered as a centrality measure (‘eigenvec-
tor centrality’ [1]) and is, in essence, equal to a simplified
PageRank [34] for ranking global vertex importance. It
may thus come as a surprise to see it playing a role in
identifying localized clusters (however, see the references
in the previous section). In order to demonstrate the
validity of our approach and illustrate the statements in
Section V, we applied it to randomly generated geometric
graphs of various sizes (see Appendix C 1 for details).
For visualization purposes, we generated as a toy ex-

ample a random geometric graph with 100 vertices and
radius r2 = 0.02 (Fig. 1A). The graph is evidently mod-
ular and the six highest-scoring edge clusters identified
by our algorithm (with p = 1) are indicated in color. The
profiles of the corresponding dominant eigenvectors are
clearly localized on a subset of nodes (Fig. 1B), illustrat-
ing that in a modular network, the dominant eigenvector
indeed indicates the location of a single cluster. Fur-
thermore, comparing the edge-to-node ratio for each of
the discovered edge clusters with the theoretical upper
bound in eq. (1) shows that the solution of the restricted
variational problem (eq. (2)) must be close to the true
maximum (Fig. 1C).
For a more systematic analysis we performed triangle-

based clustering on sequences of geometric graphs
with constant expected edge density and varying size.
Triangle-based clustering searches for overlapping sets of
triangles in an ordinary graph and corresponds to the
simplest form of k-clique clustering [35]. Here we consid-
ered each instance of a triangle in the input graph as a
hyperedge in a 3-uniform hypergraph to which we applied
our spectral clustering algorithm. The parameter p can
be used to identify clusters at different levels of resolu-
tion. Independent of network size, there is a low-p phase
where the fraction of nodes in a cluster is small compared
to total network size, and a high-p phase where a clus-
ter consists of a macroscopic network portion (Fig. 1D).
Interestingly, at p = 1 cluster size does not depend on
network size (Fig. 1D, insert). Hence clustering based
on (hyper)edge-to-node ratio scores (eq. (10)) does not
suffer from a resolution limit problem where cluster size
grows with network size irrespective of the presence of
‘natural’ clusters at smaller scales [36, 37]. As in the
previous example, the cluster scores are always close to
their theoretical upper bounds, demonstrating that the
solution of the restricted variational problem is close to
the true optimum in all cases [38, Fig. S1].

B. Edge-to-node scaling parameter

The transition in Fig. 1D as a function of the edge-to-
node scaling parameter p is a general feature, indepen-
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FIG. 1. (Color online) A. Example of a randomly generated geometric graph with 100 vertices and radius r2 = 0.02, showing
the largest connected component with the six highest-scoring edge clusters indicated by filled nodes. B. Dominant eigenvector
profiles for the six highest-scoring edge clusters. C. Edge-to-node ratio scores (left blue bars) and theoretical upper bound (right
red bars) for all 25 edge clusters. D. Cluster size as the fraction Φ of total number of network nodes for the highest-scoring
triangle-based cluster in random geometric graphs with N = 200, 400, 600, 800 and 1000 nodes and constant edge density
(ρ = 4) as a function of p. Each data point is an average over 10 random networks. The insert shows the absolute mean cluster
size and standard deviation over 10 random networks as a function of N for p = 1.

dent of the actual hypergraphs used, and can be easily
understood as follows. Assume we have a hypergraph
H = (V , E) with N = |V| nodes and M = |E| hyperedges.
Then the relative score of any set X ⊂ V with n = |X |
nodes and m hyperedges compared to the score of the
total hypergraph is

Sp(X)

Sp(V)
=

m

M

(

N

n

)
1
p

=
α2

α
1/p
1

≡ sp(α1, α2),

with α1 and α2 de fractions of nodes and edges inX . The
phase diagram of sp as a function of these two variables

is independent of the actual hypergraph under consider-
ation (Fig. 2). Naturally, not all combinations of α1 and
α2 are admissible. In general, there exists a boundary
α2 ≤ f(α1) with f(α1) ≈ α1 for α1 ≈ 1. In sparse hy-
pergraphs, we typically have M ∼ N1+δ with δ small,
often δ = 0. Locally however, the edge density can be
much higher. For instance in ordinary edge clustering
m ∼ n2 and in triangle-based clustering m ∼ n3, for n
not too large. Hence as α1 decreases from 1, the bound-
ary function f(α1) will deviate more and more from the
diagonal α2 = α1. In Fig. 2, we have sketched a typical
shape of a boundary function (thick line). At p = 1 (Fig.
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2, top left), the contour lines of sp are straight lines and
sp will clearly be maximal at small values of (α1, α2). As
p increases, the contour lines become increasingly more
concave, pushing the value where sp attains its maximum
towards α1 = 1. For the idealized boundary function in
Fig. 2, the transition is in fact discontinuous and jumps
from being at α1 = 0.1 (origin of the axes) to α1 = 1
around p = 1.95 [bottom left]).
Since the transition is in general sharp as a function of

p and can even be discontinuous, we will in practice only
use the default edge-to-node ratio score with p = 1 to
identify dense hypergraph clusters, or use a large value
of p (typically p & 10) to identify connected hypergraph
components.

C. Algorithm efficiency

For an undirected hypergraph with N nodes, M hy-
peredges and maximum edge size kmax, the update steps
in the power algorithm are at most of the order kmaxM
[eq. (11)] andN [eq. (12) and (13)]. The number of steps
needed to reach convergence depends on the convergence
parameter ǫ [eq. (14)] and therefore possibly also on the
hypergraph size. In practice, a maximal number of itera-
tions Imax is defined and convergence manually inspected
when Imax is exceeded. Determining the optimal thresh-
old value is at most of the order N (number of possible
threshold values) times M (calculation of the edge-to-
node ratio score). Taken together, runtime is bounded
by

trun ≤ Imax [O(kmaxM) +O(N)] +O(MN).

For directed hypergraphs, determining the optimal
threshold pair over all possible combinations of entries
of the dominant singular vector pair (x, y) is of the or-
der N2M , which is often prohibitive. In such instances,
taking

Xmax = argmax
c
Rp,q(uXc

, y)

Ymax = argmax
c
Rp,q(x, uYc

),

where we used the same notation as in Section V, results
in an approximation which is again O(MN).

VIII. APPLICATIONS

A. Local and global alignment of complex networks

The core idea for applying hypergraph clustering to
the analysis of edge-colored graphs is to translate the re-
lation between multiple interaction types (edge colors)
into higher-order hypergraph edges. We illustrate this
idea by showing that local and global alignment of com-
plex networks with a bipartite many-to-many mapping

between their vertex sets can be naturally viewed as a
hypergraph clustering problem.

Network alignment is the problem of finding topolog-
ically similar regions between two or more networks. In
local network alignment, small subgraphs in each network
are aligned independent of the alignment of other sub-
graphs, whereas global network alignment aims to find
a maximal alignment for each connected component in
the input graphs. Network alignment methods for com-
paring molecular interaction networks between different
species come in two main flavors. Topological network
alignment finds conserved regions between networks tak-
ing only the topology of each network into account [39].
The second class of methods takes into account that net-
works in different species have evolved from a common
ancestor through gene duplication and divergence mech-
anisms and hence that there exists a meaningful mapping
between the nodes in each network [12]. Methods have
been developed which assume a one-to-one mapping [40],
but in general a many-to-many map should be considered
[41].

More formally, consider two ordinary graphs G1 and G2,
whose vertices are connected by a bipartite graph M.
The directed alignment hypergraph H between G1 and
G2 is defined as the 4-uniform hypergraph containing the
edges ({i, j}, {k, l}) if and only if {i, j} ∈ G1, {k, l} ∈ G2
and {i, k}, {j, l} ∈ M (Fig. 3A). Such alignment hy-
peredges are also called interologs. Interolog mapping is
routinely used to transfer annotation information from
one organism to another [42] and interolog analysis is at
the heart of previous network alignment methods [41, 43].
Here we propose to address the network alignment prob-
lem by identifying hyperedge clusters in the alignment or
interolog hypergraph. Indeed, in a local alignment, we
search for small regions in each graph which map nearly
perfectly onto each other, i.e., have a high density of in-
terologs between them. This corresponds to hypergraph
clusters which maximize Sp for values of p close to one.
In a global alignment we search for maximally matching
regions in each graph, i.e., connected components in the
interolog hypergraph. These correspond to hypergraph
clusters which maximize Sp for large values of p.

We used our spectral clustering algorithm to locally
and globally align protein-protein interaction networks
between yeast and human, using orthology groups for
mapping conserved proteins between both organisms (see
Appendix C 2 for details). Protein-protein interaction
networks represent binary, undirected associations be-
tween proteins and they are, at present, the most ex-
tensively characterized molecular interaction networks in
biology [11, 44]. Typical examples of high-scoring lo-
cal alignment clusters are conserved protein complexes
[38, Table S2]. Fig. 3B shows two examples: first a
set of proteins which map one-to-one between yeast and
human from the MCM complex (cluster no. 19), which
plays an important role in DNA replication and is indeed
conserved among all eukaryotes [45]; the second exam-
ple (cluster no. 1) is a set of components of the V-type
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FIG. 2. (Color online) Phase diagrams of sp(α1, α2) for p = 1, 1.65, 1.95 and 5 (left to right, top to bottom). More yellow
(lighter gray) indicates higher values of sp; the thin lines are contours of constant sp, while the thick line indicates a possible
boundary of admissible states. Colors (gray scale levels) are relative to the minimum and maximum in each panel and not
comparable between panels.

ATPase (a proton pump) which has expanded in human
compared to yeast by gene duplications [46]. Other local
alignment clusters reflect more general functional net-
works than protein complexes [38, Table S3]. Fig. 3C
shows cluster no. 48, an example of a conserved net-
work involved in nucleic acid metabolism centered around
the general transcription factor TBP (SPT15 in yeast),
the TATA-binding protein. The largest connected com-
ponent in the network alignment hypergraph maps 651

yeast proteins to 766 human proteins and contains 90%
of all interologs [38, Table S4], showing that there exists
a high degree of network conservation at a global scale,
consistent with previous findings using topological net-
work alignment [39].
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B. Examples of local yeast-human protein complex alignments

C. Example of a local yeast-human functional network alignmentA. Network alignment hyperedge

PH1 PH2

PY1 PY2

H

Y

FIG. 3. A. A (directed) hyperedge in the yeast-human protein interaction network alignment hypergraph is a so-called interolog :
a pair of interacting yeast (Y) proteins and a pair of interacting human (H) proteins connected by orthology relations (dashed
lines). B. Examples of aligned protein complexes (cluster no. 19 left, no. 1 right). C. Example of a functional network
alignment (cluster no. 48). In all panels, yeast proteins are white and human proteins are grey; protein interactions are solid
and orthology relations are dashed.

B. Tripartite community detection in online

folksonomies

Folksonomies, online communities where users collab-
oratively create and annotate data, are examples of so-
cial systems that cannot be adequately modeled by ordi-
nary graphs. For instance, tagged social networks such
as Flickr [47] or CiteULike [48] have a tripartite structure
that is best modeled by a 3-uniform hypergraph [8, 9].
Using CiteULike as a concrete example, each hyperedge
consists of a user who has annotated an academic arti-
cle with a certain keyword or tag [48] (Fig. 4A). Tradi-
tionally, the community structure of such tripartite net-
works has been analysed by considering one-mode ordi-
nary graph projections of the hypergraph, e.g. by con-
necting two users if they have annotated the same articles
or connecting two tags if they have been applied to the
same articles [9]. In contrast, hypergraph-based clus-
tering preserves the tripartite structure of folksonomy
data and reveals additional levels of community struc-
ture. We applied our spectral clustering algorithm to a
subset of the CiteULike data set containing more than
400,000 (user, article, tag) entries and identified nearly
14,000 hyperedge clusters (see Appendix C 3 for details).

The additional level of detail present in hyperedge clus-
ters is illustrated by looking at the user, article or tag
overlap between clusters. Fig. 4B shows an example of
two hyperedge clusters formed by the same set of users
who have annotated different sets of articles by different
sets of tags. Only one tag, ‘pattern recognition’, is com-
mon between both clusters. The remaining tags show
that the articles in the first cluster are about collective
computing and swarm intelligence, whereas those in the
second cluster deal with image analysis [38, Table S1],
which are indeed two distinct subjects within the broad
field of pattern recognition.

In general, we expect such sub-divisions of one-mode
projected communities to occur at the level of users (i.e.
the same set of users annotating different sets of arti-
cles using different sets of tags), but much less at the
level of articles or tags (i.e. we do not expect different
sets of users to annotate the same set of articles using
different sets of tags, or to use the same set of tags for
different sets of articles). Indeed, the 100 highest-scoring
clusters (which together contain about 20% of all hyper-
edges) overlap predominantly at the user level, to a much
lesser extent at the tag level, and hardly at the article
level, while about 21 of these clusters do not have any
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A. B.

C.

FIG. 4. A. CiteULike hyperedge which represents one instance of a user (hexagonal node) who has annotated an article
(circular node) with a certain tag (rectangular node). B. Example of two tripartite communities where the same set of users
(top) has annotated two sets of articles (middle) with two sets of tags (bottom). Only the two central articles and one central
tag (‘pattern recognition’) overlap between the two clusters. User-tag edges have been omitted for clarity. C. Coarse-grained
view of the CiteULike hypergraph using the 100 highest-scoring hyperedge clusters. Each node represents a cluster (node size
proportional to number of hyperedges in the cluster) and edges represent significant overlap between clusters (overlap score
> 0.5, edge size proportional to overlap score). Solid edges, user overlap; dashed edges, tag overlap; wavy edges, article overlap.
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significant overlap (overlap > 50%, see Appendix C 3 for
details) with any other cluster (Fig. 4C). Significant ar-
ticle overlap occurs in only two instances. In both cases,
it concerns a subset of users who have annotated a sub-
set of articles from a larger cluster with an additional
set of tags. Tag overlap occurs more frequently than
article overlap, but with lower overlap percentages than
user overlaps. Overlapping tags are typically general tags
which can be applied to a broad spectrum of articles.
For instance, the ten tags occurring most frequently in
the top 100 clusters are: bibtex-import, learning, social,
evolution, review, support, govt, non-us, collaboration,
design. Thus we conclude that hyperedge clusters cap-
ture topic-specific tripartite (user, article, tag) commu-
nities which reveal more structure of the underlying data
than user, article or tag communities based on a single
data-dimension only.

C. Path clustering in regulatory networks

Unlike protein-protein interaction networks, which are
undirected, regulatory networks, which control the cellu-
lar response to external or internal perturbations, are di-
rected and represent the flow of information within a cell
[10]. In transcriptional regulatory networks, the response
to perturbations can be measured experimentally by ge-
netically knocking-out a transcription factor (TF) and
measuring the resulting changes in gene expression lev-
els on a genome-wide scale [49]. In yeast, direct physical
binding interactions between a TF and its target genes
[50] as well as perturbational response data for the same
TF [49] are available for a comprehensive set of almost
200 TFs (see Appendix C 4 for details). On average only
3% of the genes which respond to a knock-out perturba-
tion of a TF are also direct physical targets of that TF
and various approaches have been proposed to under-
stand the mechanisms of indirect regulation and propa-
gation of network perturbations in this context [51–54].
It is thought that perturbational responses are organized
in a modular way, in the sense that groups of genes will
be affected by the knock-out of a TF through the same
intermediate regulatory pathways. However, due to the
variable length of these pathways, previous approaches
for clustering in directed networks (e.g., [55–57]), which
identify densely interacting node sets, are not directly
applicable to this problem.
Here we address the problem of identifying sets of

nodes which respond to the knock-out of a TF through
similar regulatory paths by defining a non-uniform hy-
pergraph where each hyperedge corresponds to a short-
est path between two nodes in the original regulatory
network. Hypergraph-based clustering will then find sets
of nodes with a high number of shortest paths running
through them and such clusters form potential ‘signal-
propagation’ modules, consistent with the notion that
high information flow in a network is associated to high
values of a node’s betweenness centrality (defined as the

number of shortest paths between all pairs of nodes pass-
ing through a given node). To test this hypothesis, we
calculated all directed shortest paths in the regulatory
network of yeast between a TF and the genes differen-
tially expressed upon knock-out of that TF. The result-
ing hypergraph contained 1332 hyperedges between 788
nodes and spectral clustering identified 25 non-singleton
and 14 singleton clusters (see Appendix C 4 for details).
Topologically, there appear to exist two distinct types of
path clusters. Combinatorial path clusters contain genes
responding to the knock-out of multiple TFs and form a
network of densely overlapping paths. Fig. 5A shows a
combinatorial cluster of 199 shortest paths from 20 TFs
to 186 genes involved in glycolysis and gluconeogenesis.
Hierarchical path clusters have a layered structure, where
the perturbational signal of usually not more than one
TF flows to its targets via a limited number of intermedi-
ate TFs, in a strictly hierarchical manner (Fig. 5B). The
functional relevance of regulatory path clusters is demon-
strated by the fact that they contain a significant fraction
of the genes affected by the deletion of the cluster’s TF
and that they strongly overlap with specific functional
categories [38, Table S5 and S6]. For simplicity, we con-
sidered here only shortest paths in the transcriptional
regulatory network, but clearly the approach can be ex-
tended to paths composed of multiple interaction types.

IX. CONCLUSIONS

Over the past decade, graph theory has become crucial
to represent and reason about complex network data. In
particular clustering, the detection of densely intercon-
nected groups of vertices with few connections to the rest
of the network, has become a standard coarse-graining
procedure to understand the structure and function of
complex networks. With more and more data becoming
available to highlight different aspects of the same com-
plex systems, a need has arisen to analyze networks with
multiple types of interactions simultaneously. In this pa-
per, we have proposed to use hypergraphs to characterize
higher-order relations between simple graphs and we have
introduced efficient algorithms for clustering and biclus-
tering in such hypergraphs.
Our main result is a spectral clustering algorithm for

hypergraphs, based on a generalization of the Perron-
Frobenius theorem for directed and undirected hyper-
graphs. More precisely, we have shown that, like in ordi-
nary graphs, there exists a unique, positive vector, called
the dominant eigenvector, over the set of vertices of a
hypergraph, which maximizes a natural generalization of
the Rayleigh-Ritz ratio for matrices. The importance of
this result lies in the fact that the ratio of the number of
edges to the number of nodes in any subset of vertices can
be expressed as the same Rayleigh-Ritz ratio, in graphs
and hypergraphs alike. Densely interconnected clusters
can therefore be found very efficiently by first comput-
ing the dominant eigenvector and then converting it to



12

A. Combinatorial path cluster

B. Hierarchical path cluster

FIG. 5. (Color online) Examples of a high-scoring combinatorial (A, Cluster no. 6) and hierarchical (B, Cluster no. 1) path
clusters in the yeast transcriptional regulatory network. Red (dark gray) rectangular nodes, knocked-out transcription factors
(TFs); yellow (light gray) circular nodes, genes differentially expressed upon knock-out of the TFs; white diamond-shaped
nodes, all other TFs. Node size, resp. edge width, is proportional to out-degree, resp. edge betweenness (defined for the
purposes of this figure as the number of shortest paths between all pairs of cluster nodes passing through a given edge).



13

a discrete set of vertices. Uniqueness of the dominant
eigenvector guarantees unambiguity of the solution and
rapid convergence of the numerical procedure, whereas
positivity implies that the discretization can be achieved
by setting an optimal threshold on its entries.
Our work has been motivated by concrete problems

of data integration in social and biological networks. We
have given three practical examples for using hypergraph-
based clustering in these contexts, namely the alignment
of protein-protein interaction networks between multiple
species using interolog clustering, the detection of tripar-
tite communities in folksonomies and the identification
of overlapping regulatory pathways in perturbational ex-
pression data using shortest path clustering. Undoubt-
edly, many more applications for hypergraph-based clus-
tering exist in the analysis of other biological, social, com-
puter, communication or neural networks. From a theo-
retical point of view, we have considered the edge-to-node
ratio as a simple quality score for clusters in graphs and
hypergraphs. Although this score has many attractive
properties, such as its direct relation with the dominant
eigenvector and the absence of any resolution limit prob-
lems, it will still be of interest to generalize clustering
algorithms based on other quality scores from graphs to
hypergraphs as well. Popular methods like those based
on minimal cutsets or modularity maximization also rely
on spectral properties of, respectively, the graph Lapla-
cian and modularity matrix. Although certain mathe-
matical aspects, such as eigenvalue multiplicity and its
implications on algorithm convergence and cluster dis-
cretization, are more complicated in these cases, we be-
lieve our work lays the theoretical foundations for future
studies in this direction.

Appendix A: Strong connectivity of directed

hypergraphs

Consider first an undirected hypergraphH = (V , E) on
N vertices. Although connectedness of H does not imply
irreducibility, we do have the property that if there exists
a proper subset I ⊂ V such that for all i1, . . . , ik ∈ I and
j1, . . . , jm 6∈ I, w

(

{i1, . . . , ik, j1, . . . , jm}
)

= 0, then H
is not connected (since there can then be no path that
starts in I and escapes from I). Hence if H is connected,
no such set I exists.
For a directed hypergraphH = (V , E) we can define an

underlying undirected hypergraph H̃ = (V , Ẽ) by consid-
ering all possible partitions of a subset E ⊂ V into source
and target sets, i.e. w̃(E) =

∑

{(S,T ) : S∪T=E} w(S, T ).

This procedure generalizes the definition of a symmetric
adjacency matrix B = A+ AT from the asymmetric ad-
jacency matrix A of a directed graph. Clearly, to call H
connected, we shall ask that H̃ is connected as defined in
Section II.
Now consider two subsets I, J ⊂ V such that I ∪ J

is neither empty nor equal to V . Since H̃ is connected,
there exists vertices i1, . . . , ik ∈ I, j1, . . . , jℓ ∈ J and

h1, . . . , hm 6∈ I ∪ J such that

w̃
(

{i1, . . . , ik, j1, . . . , jℓ, h1, . . . , hm}
)

> 0.

This implies that there exists at least one partition of
these nodes into a source and target set with non-zero
directed weight. We ask slightly more, namely that there
is a partition of the form

w
(

{i1, . . . , ik, h1, . . . , hn}, {j1, . . . , jℓ, hn+1, . . . , hm}
)

> 0,

i.e., the source as well as the target set should contain at
least one element not in I or J . Note that the require-
ment that all i’s go into the source set and all j’s into
the target set is purely notational convenience, since I
or J are allowed to be empty, as long as their union is
not. If the above condition is fulfilled for all pairs of sets
(I, J), we say that the directed hypergraph H is strongly
connected.

Appendix B: General proof of the Perron-Frobenius

theorem for connected hypergraphs

Consider a non-negative maximizer x of Rp(x) and
without loss of generality assume ‖x‖p = 1. Let again
I = {i ∈ V : xi = 0} and assume I 6= ∅. Let k be the
smallest integer for which there exists at least one set
i1, . . . , ik ∈ I and at least one set j1, . . . , jm 6∈ I such
that w

(

{i1, . . . , ik, j1, . . . , jm}
)

> 0. Such k must exists,
since H is connected (see Appendix A). For ǫ > 0, define

x̃i =

{

xi i 6∈ I

ǫ i ∈ I

We will show that for ǫ small enough, Rp(x̃) > Rp(x),
contradicting the assumption that there can exist a max-
imizer with zero elements. We have

‖x̃‖pp = ‖x‖pp + |I|ǫ
p = 1 + |I|ǫp,

or, to leading order in ǫ,

1

‖x̃‖p
= 1−

|I|

p
ǫp + o(ǫp). (B1)

For the denominator of Rp(x̃), we have

∑

E∈E

w(E)
(

∏

i∈E

x̃i

)
1

|E|

=
∑

{E∈E : E∩I=∅}

w(E)
(

∏

i∈E

xi

)
1

|E|

+
∑

{E∈E : E∩I 6=∅}

w(E)
(

∏

i∈E

x̃i

)
1

|E|

= Rp(x) +
∑

{E∈E : E∩I 6=∅}

w(E)
(

∏

i∈E

x̃i

)
1

|E|

. (B2)
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From the preceding discussion, it follows that the leading
term in ǫ of the second term in eq. (B2) is of the order

ǫ
k

k+m for some k,m ≥ 1. Hence, for ǫ small enough, the

extra positive term of order ǫ
k

k+m in eq. (B2) offsets the
negative term of order ǫp in eq. (B1), and we get, for
some c > 0,

Rp(x̃) = (1 − |I|
p ǫp + o(ǫp))

(

Rp(x) + cǫ
k

k+m + o(ǫ
k

k+m )
)

= Rp(x) + cǫ
k

k+m + o(ǫ
k

k+m )

> Rp(x).

Having established that a maximizer x must be posi-
tive, x > 0, the remainder of the proof is the same as the
proof for irreducible hypergraphs, since in eq. (6), it suf-
fices that at least one jm 6∈ I to arrive at a contradiction,
which is guaranteed by the connectedness of H.
For directed hypergraphs, the condition (and defini-

tion) of strong connectivity in Appendix A is tailor made
to ensure that the above argument still goes through.
More precisely if (x, y) are a pair of non-negative maxi-
mizers of Rp,q(x, y) (cf. eq. (7)), define I = {i ∈ V : xi =
0} and J = {j ∈ V : yj = 0}. Setting the zero-elements
in x and y to a small positive value ǫ, strong connectivity
implies that the numerator of Rp,q increases by a term
of order ǫα with α < 1, whereas the denominator (the
norms of x and y) can only decrease Rp,q by a term of

order ǫ
p+q

2 with p, q ≥ 1. The uniqueness argument again
follows along the lines leading to eq. (6).

Appendix C: Network data and numerical settings

Here we summarize the data sources and parameter
settings used in the example applications (Section VII
and VIII).

1. Random geometric graphs

A geometric graph with N vertices and radius r is de-
fined by a set V of points in a metric space and edges
E = {(u, v) ∈ V : 0 < ‖u − v‖ ≤ r}. We generated ran-
dom geometric graphs by sampling with uniform proba-
bility N points in the unit square [0, 1] × [0, 1] and tak-
ing the standard 2-norm as the distance measure. For a
given vertex, the probability that it is connected to any
other vertex is πr2. Hence if we increase N while keep-
ing ρ = Nr2 constant we obtain a sequence of random
geometric graphs with constant average expected degree.

2. Alignment of yeast and human PPI networks

We obtained physical protein-protein interactions
(PPI) for yeast from the BioGRID [58] database and
physical and functional PPIs for human from the Bi-
oGRID and STRING [59] databases. The yeast network

had 36,391 interactions between 4,847 proteins; the hu-
man network 40,630 interactions between 9,602 proteins.
We integrated these networks with orthology mappings
from the InParanoid database [60]. There were 3,390
orthology relations between 2,245 yeast and 3,255 hu-
man proteins which had at least one interaction in their
respective PPI networks. We performed recursive spec-
tral clustering on the directed alignment hypergraph con-
sisting of 2,567 interolog-hyperedges (cf. Fig. 3A). At
p = q = 1, 180 clusters with at least two hyperedges
were found; 119 hyperedges had no connections in the
hypergraph, forming singleton clusters. The complete
distribution of hyperedges, nodes and scores for all clus-
ters is shown in [38, Fig S2]; the functional analysis of
the local and global alignment clusters is given in [38,
Table S2 and S3].

3. Tripartite community detection in the

CiteULike data

We obtained the complete ‘who-posted-what’ data
from CiteULike [48] (http://www.citeulike.org/faq/
data.adp), containing (as of Feb. 1st, 2012) 16,553,642
(user, article, tag) entries. To create a more manageable
data set, we considered all entries from 2005, resulting in
a hypergraph of 466,948 (user, article, tag) hyperedges
between 4,693 users, 121,071 articles and 36,489 tags.
Recursive hypergraph spectral clustering with p = 1
identified 13,987 clusters with at least two hyperedges;
4,616 hyperedges formed singleton clusters. The com-
plete distribution of hyperedges, nodes and scores for all
clusters is shown in [38, Fig S3]. While comparing the
user, article and tag overlap of two hyperedge clusters,
we were primarily interested to detect when the set of
users, articles or tags of a smaller cluster is entirely con-
tained in a larger cluster (cf. Fig. 4). We therefore used
the overlap score defined for two sets X and Y as

ovlp(X,Y ) =

∣

∣X ∩ Y
∣

∣

min
(

|X |, |Y |
) ,

which reaches its maximum value of 1 whenever X ⊂ Y
or Y ⊂ X .

4. Path clustering in the yeast transcriptional

regulatory network

We obtained a network of 11,373 physical transcrip-
tion factor (TF) binding interactions between 198 TFs
and 3,535 target genes in yeast from [50] and knock-out
microarray data for 266 TFs from [49]. The knock-out
data can be represented as a directed network of per-
turbational interactions where each TF is connected to
the genes which respond to the knock-out perturbation
of that TF. 182 TFs with physical binding data also had
knock-out data for a total of 7,090 perturbational interac-
tions. We constructed a directed hypergraph consisting
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of 1,332 hyperedges and 788 nodes, where each hyper-
edge is a shortest path in the regulatory network between
a TF and a gene differentially expressed upon knock-out
of that TF. We defined the source set of a hyperedge as
the knocked-out TF and the target set as the remainder
of the path. Recursive spectral clustering identified 39
clusters of which 14 were singletons.

5. Supplementary data and algorithm

implementation

An implementation of the clustering algorithm in Java,
together with the input data and clustering results de-
scribed in Section VIII, is available from the project
homepage at http://schype.googlecode.com.
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[8] G. Ghoshal, V. Zlatić, G. Caldarelli, and MEJ Newman,
“Random hypergraphs and their applications,” Phys Rev
E 79, 066118 (2009).
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