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Abstract 

Optical second-harmonic generation (SHG) has been studied in a trimer smectic C* 

liquid crystal especially designed for nonlinear optical applications. The molecule has a 

long conjugated donor-acceptor unit that transversally links three parallel rod-shaped 

moieties. A strong SHG signal has been observed at a fundamental wavelength of 1369 

nm even in the presence of the spontaneous helicoidal structure of the smectic C* phase. 

This unusual behavior has been interpreted as due to the existence of a phase matching, in 

which the wave vector mismatch is compensated by the wave vector of the helix. This 

point has been confirmed by the study of the SHG intensity versus sample thickness and 

light polarization characteristics. The main coefficient of the second-order susceptibility 

tensor of the material has been estimated to be d22=28 pm/V. 
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Introduction 

 
It is well known that ferroelectric liquid crystals (FLCs) are potentially attractive 

materials from the viewpoint of nonlinear optics [1].  FLCs with a large second-order 



susceptibility are a compelling alternative to inorganic and poled-polymer compounds 

since they offer important advantages. For example, FLCs possess inherent 

thermodynamically stable polar order, their polar direction can be externally controlled 

with an electric field, and they can be integrated with already available silicon technology 

on large areas, allowing for the fabrication of more complex hybrid devices.  

 

The first approaches to the design of NLO FLCs used normal calamitic mesogens [2-8]. 

More recently bent-core liquid crystals have also been studied, with improved NLO 

efficiencies [9-12] since their bent shape allows the effective incorporation of stronger 

chromophores while preserving the mesogenic character. 

 

Using an alternative idea proposed by Walba [13] we reported a class of laterally azo-

bridged H-shaped dimer FLCs [14,15] in which a disperse red (DR-1) unit transversally 

connects a pair of rod-shaped moieties. These materials possess an enantiotropic SmC* 

phase, and SHG measurements of one dimer at a wavelength of 1064 nm gave a d22 

coefficient of 17 pm/V. Continuing with this approach, an SHG investigation on the 

trimer shown in figure 1 has been recently presented [16]. Since the NLO moiety is 

longer than DR-1, an improved SHG efficiency far from material resonances was 

obtained. The SHG results show in addition some new unexpected features, the most 

prominent of which is the appearance of SHG signal in absence of applied electric field. 

 

The SHG process in helicoidal SmC* phases was theoretically analyzed some years ago 

[17-19]. In particular it was shown that the helicoidal structure provides some special 



possibilities to achieve phase matching (PM). The same effect was reported earlier for 

third harmonic generation in cholesterics [20]. The wave vector mismatch can be 

compensated with the wave vector of the helix similarly to what happens in the so-called 

quasi PM with periodically poled materials. In fact there are several possibilities for the 

PM. Some experimental studies carried out on this subject have shown an actual 

enhancement of the SHG by helicoidal distributed feedback action in SmC* phases [21]. 

This is a peculiar PM process involving two counter-propagating fundamental waves and 

generating light in both directions with a wavelength equal to the optical pitch of the 

helix. As far as we know this is the only helicoidal phase matching (HPM) 

experimentally investigated. As will be shown below our results can be explained in 

terms of two other HPMs involving waves propagating only in the forward direction. 

These HPMs have never been reported before. The main point of the present work is the 

detailed description and analysis of this phenomenon. 

 

 

 
Material characteristics and experimental procedure 

 
The phase sequence of the compound can be seen in Fig. 1. Despite the rather planar 

molecular shape, the material shows a broad SmC* phase. Textures (Fig. 2) show the 

typical lines, which indicate a helicoidal structure with a pitch p = 1.7 μm, practically 

constant in the SmC* range. The helicoidal structure can easily be unwound by an 

electric field. Polarization measurements gave a spontaneous polarization Ps = 27 nC/cm2 

at 120 ºC. Other characterization measurements (DSC, X-ray, tilt angle, electrooptic 



studies) confirmed the above phase assignment [16]. 

 

The material is rather absorbing in the visible range. In fact its absorption spectrum in 

CH2Cl2 solution [16] shows a strong band in the visible range at λ0= 572 nm (maximum 

molar absorption coefficient εmax=27700 M-1cm-1).  For this reason, the wavelength of a 

Nd:YAG laser (1064 nm) which is usual in SHG measurements is not a good choice in 

this case. Therefore, we placed a Raman-shifter crystal (Ba(NO3)2) after the Nd:YAG 

laser of our SHG equipment [22] to get a wavelength shifted by a second-Stokes process 

to 1369 nm. The material still shows some absorption at the second-harmonic wavelength 

684.5 nm, though the main effect is avoided. In any case, the absorption coefficient of the 

material at 684.5 nm, extrapolated from the measurements in CH2Cl2 solution, is quite 

high, α = 0.74 μm-1, and should be taken into account in the interpretation of the results. 

 

SHG measurements were carried out at normal incidence using cells made of two glass 

plates treated with octadecyltriethoxysilane (ODS) to attain homeotropic orientation. One 

of the glasses was coated on its inner surface with two transparent ITO electrodes parallel 

to each other for electric field application. The gap between electrodes was 0.1 mm. Five 

cells were used, with thicknesses 1, 2, 3.75, 7 and 11 μm. The material was introduced by 

capillarity in the isotropic phase. In all cases very good alignment was achieved in the 

SmC* phase, with a uniform dark texture that became birefringent within the gap region 

upon field application. This fact indicates that the smectic layers are parallel to the plates 

and the helicoidal structure is wound or unwound depending on the absence or presence 

of the in-plane electric field. Typical values to unwind the helix in this homeotropic 



geometry are about 5 V/μm, similar to those needed for planar or unaligned samples.  

 

SHG results in a helicoidal SmC* structure 

 
As mentioned above a strong SHG signal was observed in all the cells even before field 

application. These large SHG signals were obtained in practically the entire SmC* range. 

Typically the SHG intensity increased with sample thickness and tended to saturate for 

thicknesses about 10 μm.  

 

In general the SHG light was found to be elliptically polarized for linearly polarized 

fundamental light. When the polarization plane of the input light was rotated by a certain 

angle, the azimuth of the output light rotated by the same amount. For other polarizations 

of the incident light the behavior of SHG intensity is interesting, as shown in Fig. 3. The 

different polarizations were achieved by means of a compensator placed at 45º with 

respect to the plane of polarization of the incident light. As can be seen, the SHG 

vanishes for right circularly (RC) polarized light and remains strong for left circularly 

(LC) polarized light. This characteristic unambiguously indicates that the helicoidal 

structure plays a relevant role in the effect. This left-right asymmetry together with the 

large size of the SHG intensity suggests that we are observing a SHG process where a 

PM condition takes place and where the SmC* helicoid is involved.  

 

We now summarize the basic aspects of the theory for SHG in helicoidal structures 

[18,19]. Fig. 4 shows the dispersion curves for light propagating along the helix axis of a 

SmC* structure. Mode l is a coherent superposition of two Bloch waves with wave 



vectors l ± q  where q = 2π / p  is the helix wave vector. The four curves can be calculated 

from the expressions [18] 

 

l = ± k0
2n 2 + q2( )± 4k0

2n 2q2 + a4k0
4[ ]1/ 2

,   (1) 

 

where all sign combinations are possible. Here k0 = ω /c  is the wave vector in vacuum, c 

the speed of light and ω the light frequency. The parameters n 2 and a2 account for the 

mean refractive index and anisotropy of the material. They are related to the values of tilt 

angle θ and the optical dielectric tensor components parallel ε //  and perpendicular ε⊥ to 

the director according to the equations 

 

n 2 =
1
2

2ε⊥ +
ε // −ε⊥( )ε⊥sin2 θ

ε⊥sin2 θ +ε // cos2 θ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ,       a

2 = n 2 −ε⊥  (2) 

 

For each frequency, four modes are allowed (except in the gap region).  

 

Modes in branches 1 and 2 have positive propagation velocities (forward propagation) 

and here we will restrict ourselves to these branches. For light frequencies of practical 

interest it can be shown that if the helix is positive (q > 0) the modes of branches 1 and 2 

have essentially left circular (LC) and right circular (RC) polarizations respectively. The 

corresponding refractive indices nL ,nR  are given approximately through the expressions 

 

l − q = k0nL      branch 1;  l + q = k0nR     branch 2   (3) 



 

The PM condition for SHG is realized for Δl = 0 [18,19], i.e.,  

 

l(ω)+l’(ω)=l’’(2ω)      (4) 

 

Here l and l’ denote the l-wave vectors of the fundamental light photons that combine to 

produce a 2ω photon with wave vector l’’. As can be seen the relation is similar to that of 

ordinary PM but now the expression involves Bloch (l) instead of usual wave vectors        

( k0n ).  

 

A further simplification arises if the anisotropy is small, a2 << ql . Except for terms in 

O a4( ), all the refractive indices become equal, i.e., nL = nR = n . Under these conditions 

Eq. (4) gives 6 different HPM possibilities that have been collected in Table 1. 

 

As can be seen, for a definite sign of the pitch and a definite sign of the dispersion only 3 

HPMs are possible. For positive pitch and positive dispersion, two of them (1 and 5) 

occur for a helicoidal pitch 

 

p =
λ

2 n2 − n1( )       (5) 

 

where n2  and n1 denote the refractive indices for the SHG and fundamental lights 

respectively and λ  is the vacuum wavelength. The third HPM (No. 4) takes place for a 



pitch three times larger. 

 

Our case corresponds to Eq. (5). We will give three evidences to prove this point. 

i) For LC fundamental light, the resulting SHG light is also LC (HPM No. 1). If HPM 

No. 4 should occur then the polarization of the SHG light would be RC. In addition, 

provided that n2 > n1, this fact implies that the helicoidal pitch is positive, i.e., a right 

handed helix (See table 1). 

ii) If the input light is linear the output SHG light is elliptical. This is explained as a 

coherent superposition of HPMs No. 1 and 5. Moreover, for a given input light, the 

output light polarization remains the same when rotating the sample about the helix axis. 

This was also experimentally observed. 

iii) For a more general polarization of the incident light, numerical calculations based on 

the exact theory described in ref. [19] give the results shown in Fig. 5 [23]. Here we have 

assumed Eq. (5) to be valid and have checked that the result does not depend very much 

on the anisotropy a and the precise values of ε //  and ε⊥. The data of Fig. 5 have been 

obtained with ε // (ω) = 2.50, ε⊥(ω) = 2.20, ε // (2ω) = 4.11, ε⊥(2ω) = 3.55, p = +1.7 μm, θ = 

20º, λ = 1369 nm and a cell thickness L = 11 μm.  As can be seen the correspondence 

with the experimental points (Fig. 3) is remarkable. 

 

 

If perfect HPM is achieved then Eq. (5) predicts a rather high dispersion, n2 - n1 = 0.4. 

This can be understood in terms of the relative proximity of 2ω to the band at 572 nm 

[16]. The sign of the index dispersion is assumed to be positive since at the fundamental 



and SHG wavelengths normal dispersion is expected. It is interesting to point out that 

though our results do not necessarily imply an exact HPM, the actual helicoidal pitch 

must be close to the HPM value. Fig. 6 shows the theoretical SHG intensity as a function 

of the pitch for a cell of 11 μm. A linearly polarized input light is assumed. As can be 

seen the width of the first SHG peak is rather small (the second peak corresponds to HPM 

No. 4). The experimental observation of an intense SHG implies then a margin for the 

pitch of less than 0.2 μm from the exact HPM value.  

 

 
Magnitude of the SHG efficiency 

 
A key point to identify a PM process is the study of the SHG intensity as a function of the 

sample thickness, which we present next, along with an estimation of the second-order 

susceptibility value dij  of the material. The exact analysis is complicated because, beside 

the helix, the SHG calculations should also incorporate the existence of absorption. Up to 

now no theory has been published taking into account both aspects of the problem.  

 

We will start by recalling an expression for the SHG intensity I2ω  in a homogeneous 

sample, at normal incidence and neglecting the absorption at ω, [24] 

 

I2ω = Cdeff
2 L2e−αL / 2 sin2 ΔkL /2( )+ sinh2 αL /4( )

ΔkL /2( )2 + αL /4( )2    (6) 

 

where C is a constant, α the absorption coefficient of SHG light, deff  an effective 



nonlinear coefficient depending on the input and output polarizations and ΔkL/2 is the 

phase mismatch between second harmonic and fundamental lights. In the presence of a 

helicoidal structure it seems reasonable to expect the validity of Eq. (6) except that now 

Δl should appear instead of Δk. For HPM, since Δl = 0, we will have 

 

I2ω = Cdeff
2 L2e−αL / 2 sinh2 αL /4( )

αL /4( )2     (7) 

 

If the absorption is dominant, as in our case, the SHG intensity is constant for thicknesses 

larger than a relatively short L (of the order of, let us say, 10/α ). However, in the 

hypothetical case of a non-absorbing material we have checked numerically that the 

intensity is proportional to L2.  In order to highlight this fact, in Fig. 7 a fit of the SHG 

intensity for LC polarized fundamental light divided by the absorption dependent factor 

F(L) = e−αL / 2 sinh2 αL /4( )
αL /4( )2  versus L2 is depicted. As can be seen a straight line is 

obtained in agreement with (7). The only fitting parameter is the proportionality constant 

Cdeff
2 . The absorption coefficient is taken α = 0.74 μm-1 (from the extrapolation of the 

absorption measurements in CH2Cl2 solution). The good fit gives us some confidence on 

our hypothesis, at least if the HPM condition holds. The constant C can be obtained by 

comparison of I2ω with the SHG signal of quartz I2ω
quartz . Using a y-cut quartz plate and the 

ordinary + ordinary  ordinary SHG conversion we have I2ω
quartz = 4Cd11

2 /(Δkquartz)2 for 

the maximum of the first Maker fringe. Taking d11=0.4 pm/V for quartz at 1369 nm we 

obtain deff =10 pm/V for the trimer material.  



 

deff  is the effective susceptibility for the process that transforms two LC ω photons into 

one 2ω LC photon when the SmC* helix is wound. This susceptibility is related in a 

rather complicated fashion with the four independent dij coefficients of the unwound 

structure [18]. However, assuming that, because of the molecular design, d22 is much 

larger than the rest (y is the axis parallel to the spontaneous polarization of the unwound 

structure) a simple expression for deff results [16], deff = d22 / 2( )3
. This gives d22=28 

pm/V, which is even higher than that reported for the dimer compound [14,15]. This 

considerable size for an NLO susceptibility is only a relative surprise because, as 

previously pointed out, the conjugation length of the chromophore is crucial for the 

magnitude of the hyperpolarizability. Though the coefficient is somewhat resonance 

enhanced, the obtained value indicates the efficacy of the employed chemical design in 

achieving high performance NLO FLCs.  

 
Conclusions 

 
In summary we have studied the SHG of an FLC especially designed for NLO 

applications. Despite the planar molecular shape, the material possesses a SmC* phase 

with a helicoidal structure. It has been shown that a SHG signal is observed even in the 

absence of any electric field. The phenomenon has been identified with a PM in which 

the helicoidal structure plays an important role. Finally we have estimated d22=28 pm/V 

at 1369 nm, which is a value enabling viable applications (e.g. the NLO coefficient for 

widely used commercial periodically poled lithium niobate (PPLN) is d33 = 27 pm/V).  
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Table 1.  

Possible HPMs for fundamental and SHG waves propagating in the forward 

direction. l1, ′ l 1 are the Bloch wave vectors for polarization LC (branch 1) and RC 

(branch 2) of the fundamental light. l2, ′ l 2  are the corresponding wave vectors for the 



SHG light. A positive helicoidal pitch means a right-handed helix. If the condition 

n2 > n1 is assumed, a right-handed helix gives rise to HPM’s No. 1, 4, and 5. 

 

 
HPM No.    Polarization combination        Wave vector conditions   Helicoidal Pitch  
 
   1  LC+LC LC   2l1 = l2   λ /2 n2 − n1( ) 
   2  LC+RC LC   l1 + ′ l 1 = l2   λ /2 n1 − n2( ) 
   3  RC+RC LC   2 ′ l 1 = l2   3λ /2 n1 − n2( ) 
   4  LC+LC RC   2l1 = ′ l 2   3λ /2 n2 − n1( ) 
   5  LC+RC RC   l1 + ′ l 1 = ′ l 2   λ /2 n2 − n1( ) 
   6  RC+RC RC   2 ′ l 1 = ′ l 2   λ /2 n1 − n2( ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  

Molecular structure of the trimer incorporating a strong chromophore along its 

polar axis and its phase sequence according to DSC data. Cr = the crystalline state, 

Iso = the isotropic liquid, gSmC* = the glassy state of the SmC* phase. 

 

 
 
 
 
 
 
 
 



 
 
 
Figure 2.  

Optical textures of the trimer compound at 120 º C in a cell of thickness 6 μm. The 

fact that the material is switchable with electric fields of about 4 V/μm and the helix 

lines in the absence of a field indicate a SmC* phase. From the distance between the 

lines a pitch of 1.7 μm was deduced. 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  

SHG for different polarizations of the fundamental wave in the 11 μm thickness cell. 

Horizontal and vertical components have the same amplitude and a phase difference 

given by φ, i.e., the Jones vector is
1
2

1
e± iφ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . Open and closed symbols correspond to 

the upper and lower signs respectively. For φ = π/2 the light is LC (plus sign) or RC 

(minus sign). 
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Figure 4.  

Dispersion relationship for light propagation along the helicoidal axis in a SmC* 

phase. Modes in branches 1 and 2 propagate in the forward direction. If the helix is 

positive (q > 0) and the anisotropy a is not too large, modes in branch 1 and 2 have 

essentially LC and RC polarizations respectively for all frequencies of practical 

interest. If q < 0 the polarizations are the opposite. These results do not apply near 

the gap (close to l = 0). 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  

Theoretical predictions for the SHG intensity at different polarizations of the 

fundamental light. A positive helix was assumed and SHG data were taken at the 

maximum of the PM peak. The Jones vector of the incident light was 
1
2

1
e± iφ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  with 

the open and closed symbols corresponding to the upper and lower signs 

respectively. For φ = π/2 the light is LC (plus sign) or RC (minus sign). 
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Figure 6.  

SHG vs. pitch for a L = 11 μm thick cell. A linearly polarized fundamental light is 

assumed. The HPM peak at p = 1.7 μm has a FWHM of 0.3 μm. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  

SHG intensity divided by the factor 

€ 

F L( ) = exp −αL 2( )sinh2 αL 4( )
αL 4( )2  as a function of 

the square of the sample thickness at 120 ºC at zero field. The fundamental light had 

a LC polarization. The straight line is a fit to Eq. (7) with the slope 

€ 

Cdeff
2( )as the only 

free parameter. 

 


