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A novel nonlinear phase-field model is proposed for modeling microstructure evolution 

during highly nonequilibrium processes. We consider electrochemical reactions at 

electrode/electrolyte interfaces leading to electroplating and electrode/electrolyte interface 

evolution. In contrast to all existing phase-field models, the rate of temporal phase-field 

evolution and thus the interface motion in the current model is considered nonlinear with 

respect to the thermodynamic driving force. It produces Butler-Volmer-type of 

electro-chemical kinetics for the dependence of interfacial velocity on the overpotential at the 

sharp-interface limit. At the low overpotential it recovers the conventional Allen-Cahn 

phase-field equation. This model is generally applicable to many other highly 

non-equilibrium processes where linear kinetics breaks down.  
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I. INTRODUCTION 

Phase-field method is a versatile mesoscale computational approach that has been 

successfully applied to modeling temporal and spatial microstructure evolution of materials 

undergoing a wide variety of processes such as phase transformations, deformation, and 

particle coarsening [1-5]. However, all existing phase-field models are based on linear 

kinetics, i.e., the rate of change of a phase field is assumed to be linearly proportional to the 

thermodynamic driving force, which is, in principle, only valid for systems close to 

equilibrium. For example, the diffusion flux of an atomic species is assumed to be linearly 

proportional to the local chemical potential gradient of the species, and the rate of changes of 

a nonconserved phase order parameter field is assumed to be linearly proportional to the 

variational derivative of the total free energy with respect to the phase order parameter. In 

reality, however, many material microstructure evolution processes take place in systems 

highly out of equilibrium. Examples include an undercooled liquid well below the melting 

temperature, phase transformations under a strong external force, electrochemical reactions 

under a large overpotential, and many others. In this letter, we present a non-linear 

phase-field formulation that is applicable not only to systems near equilibrium but also to 

systems that are highly out of equilibrium or the thermodynamic driving force is large, using 

electrode/electrolyte interface evolution arising from an electrode reaction, e.g., electrode 

plating, as an example.   

 Electrochemical reactions are ubiquitous, taking place in batteries and fuel cells or during 

corrosion, etc. [6-13]. Many electrochemical processes such as electrodeposition and 

dissolution leads to electrode/electrolyte interface evolution including interface shape and 

topology changes under the chemical and electrical driving forces. 



  

Existing mathematical modeling of electro-chemical processes [14] involves the solutions 

to coupled ionic/electronic diffusion equations within the electrolyte or electrode with the 

electrochemical reactions at the electrode/electrolyte interface specified as boundary 

conditions. The positions of electrode/electrolyte interfaces are assumed to be fixed, and thus 

the conventional mathematical models [15-17] are not suitable for modeling phase evolutions 

and morphological changes during electrochemical reactions leading to the 

electrode/electrolyte interface motion such as Li-plating and dendrite formation in Li-ion 

batteries. 

Existing phase-field models of Li-intercalation into and out of an intercalation compound 

such as LiFePO4 describe diffusion and phase separation process using the Cahn-Hilliard 

equation in which the flux is assumed to be linearly proportional to the chemical potential 

gradient, i.e. based on linear kinetics. The electrode reaction rate, which is assumed to be 

exponentially dependent on the variation of free energy with respect to lithium concentration, 

i.e. the nonlinear electrode reaction kinetics, is specified as boundary conditions at the fixed 

electrode/electrolyte interface [18-23]. 

The present article is focused on the nonlinear electrode/electrolyte interface evolution 

kinetics driven by the overpotential for the electrode reaction. The first attempt to model 

electrodeposition processes using the phase-field method was by Guyer et. al [8, 9]. It involves 

the solutions to a set of coupled diffusion equations for ion and electron transport, the Poisson 

equation for electrostatics, and an Allen-Cahn kinetics equation for the electrode/electrolyte 

interface evolution, i.e., assuming linear kinetics. Despite employing a linear phase field 

equation, Guyer et al. obtained the nonlinear Butler-Volmer type of kinetics. In this case, the 

nonlinear kinetics arises from the space charge double layer near the electrode/electrolyte 

interface and its response to overpotential rather than the nonlinear electrode reaction itself.  

In an attempt to mimic Butler-Volmer electrode reaction kinetics, Okajima et. al [24] assumed 



  

an exponential dependence of diffusional mobility on the overpotential for electrode reactions 

while the rate of electroplating is still linearly proportional to the thermodynamic driving force.  

In this work, we propose a nonlinear phase-field model to describe the 

electrode/electrolyte interface evolution driving by the overpotentials in existence of 

electrochemical reactions. The model reproduces the Butler-Volmer-type of electro-chemical 

kinetics at the sharp-interface limit of the diffuse-interface phase field model. The results are 

compared to the linear Allen-Cahn equation and classical sharp-interface Butler-Volmer 

equation results.  

II. MODEL FORMULATION 

To discuss our nonlinear phase-field model which is applicable to electrode/electrolyte 

interface motion under highly nonequilibrium electrode reactions, we consider a simple, 

general electrode reaction, 

                           MzeM z ↔+ −+ ,                (1) 

where the ions +zM  in the electrolyte solution react with electrons −e  in the electrode to 

produce the electrode M atoms. The thermodynamic driving force is given by 

−+ −−=Δ eMM zG z μμμ ,              (2) 

where μ represents the electrochemical potential of a species. To simplify the discussion, we 

assume that the electrode is a pure metal under a voltage φ, while the voltage in the 

electrolyte is assumed to be the zero, and hence 

                        +−+Δ=Δ zM
o aRTzFGG lnφ ,           (3) 

where ΔGo is the standard free energy change for the electrode reaction, F is the Faraday 

constant, and +zMa  is the activity of +zM  in the electrolyte, which, in general, depends on 

temperature and on the concentrations of other ions. Since we are focused on the electrode 



  

kinetics, we assume that +zMa
 
is a constant and does not evolve with time. In this case, there 

will be no overpotential drop for the charge transport in the electrolyte and electrode, and 

there is no space charge double layer, i.e., the entire overpotential drop is associated with the 

electrode reaction. At equilibrium, 

                    
0ln =−+Δ +zM

oo aRTzFG φ ,                (4) 

where φo is the equilibrium potential for the reaction at a given temperature and a given 

ion concentration in the electrolyte. Therefore, by subtracting Eq. (4) from Eq. (3) the 

thermodynamic driving force can also be expressed as,  

( ) ηφφ zFzFG o =−=Δ ,              (5) 

where η is the overpotential. If η < 0, the electrolyte is reduced; whereas if η > 0, the 

electrode is being oxidized. The change of energy landscape along the reaction coordinate 

with overpotential is schematically shown in Fig. 1. The energy landscape for 0=η  is 

represented by curve I (dashed line above) while for 0<η  it is changed to curve II (solid 

line). The energy barrier is shifted by ηαzF  for the forward reaction and ηβzF  for 

backward reaction.  

To model the interface migration, we introduce a phase-field variable ( )tr,ξ  to 

distinguish the electrolyte and the electrode. The value of ( )tr,ξ  varies continuously from 1 

to 0 in the interfacial region, i.e. a diffuse-interface description with a finite thickness [1].  

We employ a simple double-well free energy function ( )ξg  to describe the two 

equilibrium states for the electrode ( 1=ξ ) and electrolyte ( 0=ξ ) under zero overpotential,  

( ) ( )22 1−= ξξξ Wg ,                    (6) 

where W/16 represents the potential height of the double-well potential at ξ  = 0.5. Under a 



  

driving force, GΔ , we use ( )ξf  to represent the local free energy density of the electrode 

and electrolyte two-phase mixture,  

               ( ) ( ) ( ) ( ) ( )ξηξξξηξ gzFhgGhf +=+Δ=, ,                      (7) 

where ( ) ( )10156 23 +−= ξξξξh  is an interpolating function. 

  The total free energy of an inhomogeneous system is then given by 

                     ( ) ( ) dVf
v

F
Vm
∫ ⎥⎦

⎤
⎢⎣
⎡ ∇+= 2

2
1,1 ξκηξ ,         (8) 

where κ is the gradient energy coefficient. 

FIG. 1.  (Color 

online) Energy landscape vs reaction coordinate at equilibrium (curve I for 0=η  ) and 

during reduction reactions (curve II for 0<η ). 

 

Rather than assuming a linear kinetics in which the rate of a phase transformation or an 

interface motion is linearly proportional to the thermodynamic driving force, one natural 

nonlinear model to describe the temporal and spatial evolution of the phase-field variable, 



  

motivated by classical rate theory of chemical reaction kinetics, is 
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where t is time, R gas constant, T temperature, kn is a reaction rate constant, α and β constants 

satisfying the relation that α + β = 1.0. Under a small driving force, the equation is reduced to 

the conventional Allen-Cahn equation. Based on the sharp-interface limit of Eq.(9) using the 

asymptotic analysis method and actual numerical simulations, it is shown that that the 

kinetics described by Eq. (9) is sensitive to the choice of the interpolating function, ( )ξh .  

Furthermore, its sharp-interface limit lacks a simple analytical form, and hence it is difficult 

to map the parameters to the conventional models for electrode kinetics. Therefore, we seek a 

simplified form of nonlinear equation. We consider the fact that the driving force for interface 

migration consists of two contributions, interfacial free energy reduction and the electrode 

reaction affinity. While the driving force for the electrode reactions can be much larger than 

the thermal energy depending on the overpotential, the driving force from interfacial energy 

or curvature reduction relative to thermal energy (kbT or RT) is usually small. Therefore, we 

assume that the interface migration velocity is linearly proportional to the interfacial free 

energy reduction but nonlinear with respect to the overpotential. We assume that the 

nonlinearity of electrode reaction rate dependence on the driving force follows the usual 

kinetic rate theory for chemical reactions, i.e., the reaction rate is exponentially dependent on 

the activation energy for both forward and backward reactions. A simplified nonlinear model 

to describe the temporal and spatial evolution of the phase-field variable can be written as 
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where Lσ is the interface mobility, Lη is a reaction rate constant, and ∑ is the total interfacial 

free energy of an inhomogeneous system consisting of a mixture of electrode and electrolyte 

given by  

( ) ( ) dVg
V
∫ ⎥⎦

⎤
⎢⎣
⎡ ∇+=∑ 2

2
1 ξκξ .         (11) 

 The first-term on the right-hand side of Eq. (10), ( ) ξκξδξδ 2' ∇−=∑ g , is the 

contribution of interface-energy to the phase-field parameter evolution. The second-term on 

the right-hand side of Eq. (10) is the contribution due to the electrode reaction. The second 

term can also be viewed as an additional source term to the diffusion-reaction equation, 

( )[ ]ξκξξ σ
2' ∇−−=∂∂ gLt . For a flat-interface or a one-dimensional model, the electrode reaction 

source term is the only contribution which leads to the interface motion since there is no 

interfacial energy change. In the second-term of Eq. (10), the function ( ) ( )22 130' ξξξ −=h  

limits the electrode reaction to take place at the electrode/electrolyte interface. Other forms of 

( )ξ'h  such as ( ) ( )ξξξ −= 16'h  can also be used, but our test results show that the reaction 

kinetics is little affected by the choice of the ( )ξh -function [2]. At low overpotential, 

linearization of Eq. (10) immediately recovers the well-known Allen-Cahn equation [1], 

δξ
δξ FM

t
−=

∂
∂ ,                        (12)

 

where
 

( ) ( ) ( )( )dVGhgF
V
∫ ∇+Δ+= 221 ξκξξ , and M = Lσ = RTLη. 

To obtain an analytical solution of the interfacial velocity, ν, under the sharp-interface limit 

of the nonlinear phase field model, we first multiplied Eq. (10) by u∂∂ξ  and then 

integrated over ∞<<∞− u , where u is a coordinate normal to the interface [25],  
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in which σ is the interfacial energy per unit area between electrode and electrolyte. Eq. (13) 

shows that the interface velocity varies nonlinearly with respect to the overpotential across 

the interface, which has a similar form as the well-known Butler-Volmer equation for the 

electrode reaction kinetics. Under low overpotential, linearization of Eq. (13) leads to 

η
σ

κ η zFL
v −= ,               (14) 

which is the sharp-interface limit of the Allen-Cahn equation. Under a high positive 

overpotential, the forward electrode reaction, the reduction reaction, dominates over the 

reverse reaction, and the sharp-interface limit of the nonlinear phase field equation reduces to 

the Tafel equation [14],  

⎟
⎠
⎞

⎜
⎝
⎛−=

RT
zFRTL

v ηα
σ

κ η exp .                      (15) 

Similarly, under a high negative overpotential, the reverse reaction, the oxidation reaction, 

dominates. 

III. NUMERICAL RESULTS AND DISCUSSION 

To numerically demonstrate the electrode reaction and thus the interface migration velocity 

of the electrode/electrolyte interface, we employ a one-dimensional model. We start with a 

phase parameter profile ξ which is equal to 1 in the electrode and 0 in the electrolyte, and it 

changes abruptly at the phase boundary (Fig. 2). We employ the finite difference method to 

solve the phase field equation [Eq. (10)].  The dimensionless parameters used for the 

calculations are as follows: grid size Δx =0.001, number of grid points = 20000, double-well 

potential height W = 100.0, gradient coefficient κ  = 0.0009, mobility Lσ = 0.1, valence of 

Mz+ z = 1, time step Δt = 0.001, symmetry factors α = β = 0.5, and overpotential 



  

VV 10.010.0 ≤≤− η  (positive sign for oxidation and negative sign for reduction).  

The phase order parameter develops a diffuse-interface profile across the 

electrode/electrolyte phase boundary after only a few time steps. Figure 2 shows the phase 

order parameter evolution with time for both reduction (overpotential less than 0) and 

oxidation (overpotential large than 0). The appearance of sharpness in the phase order 

parameter changes across the interface is due to the large scale for the simulation cell 

compared to the interfacial thickness. For the reduction case, the electrode grows while it 

shrinks under a positive overpotential. We determine the interface velocity for a given 

potential from the interface position as a function of time.  

 

(a)                                   (b) 

FIG. 2 (Color online) Phase order parameters evolve with time, (a) reduction reaction at 

overpotential η = 0.1V; (b) oxidation reaction at overpotential η = - 0.1V.  

 

The interface velocities numerically computed from both the nonlinear phase-field 

equation [Eq. (10)] and the classical Allen-Cahn equation [Eq. (12)] are compared to the 

analytical solutions from the corresponding sharp-interface limits [Eq. (13)] and [Eq. (14)] at 

different overpotentials in Fig. 3. The phase-field simulation results agree well with the 



  

analytical sharp-interface limit results for both the linear and the nonlinear cases. For the 

Allen-Cahn equation, the interface migration velocity is linearly proportional to the driving 

force (overpotential). The nonlinear phase field model is very close to the Allen-Cahn 

equation at lower overpotentials, but it exhibits strong nonlinearly at higher overpotentials. 

The discrepancy between the nonlinear phase-field model and Allen-Cahn equation increases 

with overpotential as expected. The results indicate that the existing phase field model based 

on the Allen-Cahn equation is valid only at small driving forces, and hence highly 

nonequilibrium processes such as electrochemical reactions at high overpotentials require 

nonlinear descriptions.  

 

FIG. 3 (Color online) Comparison of interface kinetics from the nonlinear phase field 

equation, Allen-Cahn equation, and the corresponding sharp-interface limits.  

 

For an electrochemical reaction, Butler-Volmer equation [14] describing the current across 

the electrode/electrolyte interface is given by 
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where the exchange current density i0 is the value of the current density at zero net current 

under an equilibrium condition. For migrating interfaces, the deposition/dissolution rate of 

the metal electrode M is directly related to the current flow across the electrolyte/electrode 

interface according to Faraday’s law; thus the current density in during the electrochemical 

reaction can be related to the interface velocity. Simply multiplying the interface velocity [Eq. 

(13)] by the charge density Q gives the current flow associated with the interface migration.  

We converted the interface velocity in Fig. 3 to current flow (in/i0) for both linear and 

non-linear phase field models, and compared the results with the current flow computed from 

the Butler-Volmer equation (red line) in Fig. 4. It is easy to see that the behavior of current 

flow obtained from interface velocity is essentially the same as the Butler-Volmer kinetics for 

current flow while the Allen-Cahn equation leads to linear kinetics.  

 

FIG. 4. (Color online) Comparison of the nonlinear phase-field model and Allen-Cahn 

equation with Butler-Volmer kinetics. The red line representing the Butler-Volmer equation 



  

overlaps with the blue line representing the sharp-interface limit of the nonlinear phase-field 

model.  

 

Figure 5 shows the effect of symmetry factors on the reaction current. The dots represent 

the Butler-Volmer equation and lines denote the results based on the interface migration 

velocity computed from phase field simulations. The symmetry factors in Fig. 4 α = 0.3 and 

β = 0.7 and α = 0 and β = 1.0 lead to large oxidation current while the case of α = 0.7 and β = 

0.3 and the limiting case α = 1.0 and β = 0 produce large reduction current. The phase field 

simulation results reproduce the Butler-Volmer kinetics for different symmetry factors.  

 

FIG. 5. (Color online) Comparison of the nonlinear phase-field model with Butler-Volmer 

kinetics under different symmetry factors. 

IV. CONCLUSTIONS 

We developed a novel nonlinear phase-field model for predicting interface motion and 

microstructure evolution involving highly nonequilibrium processes. Linearization of the 



  

nonlinear phase-field model recovers the conventional Allen-Cahn equation broadly used in 

essentially in all existing phase-field simulations. Its application to the electrode reactions 

leads to the Butler-Volmer kinetics of electrode/electrolyte interface migration during both 

oxidation and reduction. This work is the first-step to demonstrate the validity through 

comparing with the classical sharp-interface Butler-Vomler kinetics. 

The nonlinear phase-field model can be extended to many other complex electrochemical 

processes. For examples, it can be coupled with electronic/ionic diffusion equations to predict 

the coupled electron/diffusion transport processes associated with electrode reactions under 

applied voltages such as the electrodeposition of metal from metal melt solution, uranium 

shape changes on the solid cathode in electrorefining processes, and lithium-plating at the 

anode in lithium ion batteries. By coupling of the electrode reaction model with a heat 

conduction equation or an elasticity equation, it can be used to simulate the thermal or stress 

effects on the electrochemical reaction processes and electrode/electrolyte interface 

evolution.   

Although the numerical simulations in this work were performed in one dimension, the 

model is equally applicable to two or three dimensions allowing complex morphologies of 

the electrode/electrolyte interface structures and their evolutions. In fact, we already coupled 

this nonlinear phase field equation with the ion diffusion equation and Poisson’s equation and 

demonstrated the possibility of lithium metal deposit growth and dendrite formation in 

lithium ion batteries. This nonlinear phase field model is also applicable to many other 

general diffusion-reaction processes such as phase transformations under highly 

nonequilibrium conditions. 
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FIG. 1.  (Color online) Energy landscape vs reaction coordinate at equilibrium (curve I for 

0=η  ) and during reduction reactions (curve II for 0<η ). 

FIG. 2  (Color online) Phase order parameters evolve with time, (a) reduction reaction at 

overpotential η = 0.1V; (b) oxidation reaction at overpotential η = - 0.1V.  

FIG. 3 (Color online) Comparison of interface kinetics from the nonlinear phase field 

equation, Allen-Cahn equation, and the corresponding sharp-interface limits.  

FIG. 4. (Color online) Comparison of the nonlinear phase-field model and Allen-Cahn 

equation with Butler-Volmer kinetics. The red line representing the Butler-Volmer equation 

overlaps with the blue line representing the sharp-interface limit of the nonlinear phase-field 

model.  

FIG. 5. (Color online) Comparison of the nonlinear phase-field model with Butler-Volmer 

kinetics under different symmetry factors. 

  



  

 

 

FIG. 1.  (Color online) Energy landscape vs reaction coordinate at equilibrium (curve I for 

0=η  ) and during reduction reactions (curve II for 0<η ). 

  



  

 

(a)                                   (b) 

FIG. 2 (Color online) Phase order parameters evolve with time, (a) reduction reaction at 

overpotential η = 0.1V; (b) oxidation reaction at overpotential η = - 0.1V.  

  



  

 

FIG. 3 (Color online) Comparison of interface kinetics from the nonlinear phase field 

equation, Allen-Cahn equation, and the corresponding sharp-interface limits.  

  



  

 

FIG. 4. (Color online) Comparison of the nonlinear phase-field model and Allen-Cahn 

equation with Butler-Volmer kinetics. The red line representing the Butler-Volmer equation 

overlaps with the blue line representing the sharp-interface limit of the nonlinear phase-field 

model.  

  



  

 

FIG. 5. (Color online) Comparison of the nonlinear phase-field model with Butler-Volmer 

kinetics under different symmetry factors. 

 

 

 


