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Abstract 

 

We present a technique for the determination of viscoelastic properties of a medium by tracking 

motion of an embedded probe particle by using molecular dynamics simulations.  The approach 

involves analysis of the simulated particle motion by continuum theory; it is shown to work in 

both passive and active modes.  We demonstrate that for passive rheology, an analysis based on 

the generalized Stokes-Einstein relationship (GSER) is not adequate to obtain the values of the 

viscoelastic moduli over the frequency range studied.  For both passive and active modes, it is 

necessary to account for the medium and particle inertia when analyzing the particle motion.  For 

a polymer melt system consisting of short chains, the values calculated from the proposed 

approach are in good quantitative agreement with previous literature results that were obtained 

using completely different simulation approaches.  The proposed particle rheology simulation 

technique is general and could provide insight into the characterization of the mechanical 

properties in biological systems such as cellular environments and polymeric systems such as 

thin films and nanocomposites that exhibit spatial variation of properties over the nanoscale.   
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I. INTRODUCTION 

Over the last two decades, particle microrheology has become established as an 

experimental technique for quantifying the relationship between particle motion in a complex 

medium and its microscale viscoelastic properties [1-3].  Going further down in length scale, the 

motion of nanoparticles in a viscoelastic medium plays an important role in many biological and 

physical processes.  For example, diffusion of nanoparticles in sputum of cystic fibrosis patients 

[4] or in a living cancer cell [5] has been studied to develop nanoparticle-based drug delivery 

approaches, while nanoparticle diffusion towards human lung fibroblast cells in a cell culture is 

of interest [6] for the possible adverse effects of nanoparticle uptake by these cells.  

Straightforward extension of the bead microrheology approach for quantification of particle 

motion and viscoelastic properties at the nanoscale faces several challenges resulting from (1) 

the strong influence of the specific chemical interactions on the system behavior at these length 

scales, (2) the important role played by slip at the particle-medium interface, (3) the presence of 

structural heterogeneities in the system, as well as (4) the need to account for the expansion of 

the time scale i.e. frequency range that is necessary for nanoscale applications.   

Molecular dynamics (MD) simulations possess the unique ability to account for these 

detailed chemical interactions as well as the structural heterogeneities in the system at the 

nanoscale.  Previously molecular simulations in conjunction with Green-Kubo or non-

equilibrium MD (NEMD) techniques have been used to determine the overall viscoelastic 

properties of the bulk polymer melt [7-9].  A technique for determining the local elastic modulus 

tensor from the second derivative of free energy with respect to strain has also been applied to 

polymeric systems [10].  However, these techniques do not allow for a systematic analysis of 
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particle motion in a viscoelastic medium and subsequent extraction of nanoscale viscoelastic 

properties.  In this paper, we propose a molecular simulation approach analogous to the 

experimental particle microrheology technique for the determination of local viscoelastic 

properties at the nanoscale by analysis of particle motion in the medium of interest.  This 

approach builds on our previous work which showed that molecular simulation results can be 

quantitatively analyzed using continuum mechanics expressions for a wide range of transport 

problems such as simple shear flow, oscillatory shear flow and thermal conduction [11, 12] as 

well as particle translation and rotation in a solvent medium [13, 14].  An important contribution 

of this work is the demonstration that both particle and medium inertia play a crucial role in 

governing system behavior at the time scales (frequency range) of interest in nanoscopic 

systems.  We combine molecular simulations with a recent theoretical framework [15-17] to 

present a quantitative approach to account for these inertial effects in the system. Using this 

formalism, we demonstrate that the particle motion in a model polymer melt system can be 

analyzed to obtain the viscoelastic properties using both active and passive particle rheology 

approaches.  The passive rheology formalism presented here can be used for analyzing the 

nanoparticle motion in biological systems [4-6] which is of interest for health science 

applications.  On the other hand, the local viscoelastic properties obtained from the active 

particle rheology simulations can be used for characterizing spatial gradients in properties of 

heterogeneous systems such as polymer thin films and nanocomposites which is a difficult task 

experimentally [18].   
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II. MOLECULAR MODEL AND SIMULATION METHOD 

The simulation system consists of a bulk polymer melt (coarse-grained chains with 

number of beads, N = 20) with a probe particle embedded in it.  There are two kinds of beads in 

the system - beads comprising the probe particle and those constituting the polymer melt.  A 

purely repulsive Lennard-Jones (LJ) potential, i.e., the Weeks-Chandler-Andersen (WCA) 

interaction potential [19], is commonly used in rheology simulations.  Our preliminary 

simulations indicated that usage of WCA interactions between the probe particle and the polymer 

melt lead to a large degree of slip at the particle surface which results in underestimation of 

viscoelastic moduli as determined from simulations.  In our system, the beads of the probe 

particle interact with the beads of polymer chains via the full LJ potential with well depth 

2.0ε = , and which is truncated at a distance of 2.3cr σ=  (where σ  is the molecular diameter); 

this was shown to effectively eliminate slip at the particle surface.  All other atoms in the system 

interact via the WCA potential with 1/62cr σ=  and 1.0ε = .  All physical quantities are presented 

in reduced LJ units in the rest of the paper.  A coarse-grained bead-spring model of the polymer 

chains is used where the chain beads are connected using the finitely extensible nonlinearly 

elastic (FENE) springs [20], ( )
2

21 ln 1
2FENE

rU r KQ
Q

⎡ ⎤⎛ ⎞
= − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 with spring constant 30.0K =  

and the maximum allowable extension of the spring, 1.5Q = .  Along with the WCA potential, 

this FENE model will prevent unphysical bond crossing between the chains.  The probe particle 

is constructed by carving out a spherical region of nominal radius 2.5 from a face centered cubic 

lattice structure with lattice spacing 1.42.  The integrity of the probe particle is maintained by 

connecting the neighboring constituent beads by stiff harmonic springs with a spring constant of 
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500.  The MD simulations are carried out in a periodic cubic simulation box of edge length 

150L =  using the LAMMPS package [21].  The system density is kept at 0.85ρ =  and the 

temperature is maintained at 1.0T =  by using a Nosé-Hoover thermostat [22].  With this basic 

setup, both passive and active rheology simulations were carried out; a description of the 

analysis methodology for each follows along with the results.   

III. ANALYSIS METHODOLOGY 

In the standard experimental procedure for one-particle microrheology [1, 23], the 

dynamic modulus ( )*G ω  of the medium is estimated from the particle’s motion, which is 

assumed to obey the generalized Langevin equation (GLE)    

( ) ( ) ( ) ( ) ( )
2

B2 ,
tb b

eff ex

d t d t
m t t dt t t

dt dt
ζ

−∞

′
′ ′= − − + +

′∫
r r

f f
                                     

(1)
 

where ( )b tr is the particle position, effm  is an appropriate particle mass, ( )tζ  is the time-

dependent friction, ( )ex tf  is any external force and ( )B tf  is the Brownian random force on the 

particle. In the passive microrheology method, only Brownian motion is considered in the 

absence of external forces ( ( ) 0ex t =f ).  By using the fluctuation-dissipation theorem that relates 

the auto-correlation of ( )B tf  with ( )tζ , and the generalized Stokes relation connecting the 

friction coefficient ζ with the dynamic modulus G* in the frequency domain (taking account of 

medium inertia [15-17]), the GLE is transformed by a two-sided Fourier transform into [15] 

                           
( ) ( ) ( )

*
2 * *6

6 eff

RG
R G i m Z

i
π ω

π ρ ω ω ω
ω

+ + = ,                                    (2)  
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where ρ  is the medium density, R  is the particle radius, and continuum mechanics suggests that 

the appropriate mass to use is the effective mass of the particle, i.e., 32
3eff barem m Rπ ρ= + , which 

consists of the bare particle mass ( barem ) plus the added mass from the medium.  Eq. (2) is 

applicable for both passive and active rheology approaches, the only difference being that ( )*Z ω , 

i.e. the friction on the particle traversing the viscoelastic medium, takes different forms in the 

two approaches.  The first term on the left side of Eq. (2) is the generalized Stokes law for drag.  

The value of 6 for the coefficient assumes that the “no-slip” boundary conditions hold at the 

particle surface as discussed above.  The second term is the Basset force [24], arising from 

medium inertia, which is a frictional force from the radiational dissipation of particle energy by 

elastic waves [17, 25].  The third term is the effective inertial force of the particle.  The actual 

application of this formalism to passive and active particle rheology is described in what follows.   

A. Passive rheology 

  For passive particle rheology, the quantity ( )*Z ω  is given by

( ) ( )
( ) [ ]

* * B
2 2

6:passive

b eq

k TZ Z
i r

ω ω
ω ω

≡ =
Δ

.  In this expression [ ]2
b eq

r ωΔ  is the one-sided Fourier 

(or Laplace) transform of the mean-squared displacement (MSD) of the particle

( ) ( ) ( ) 22 0b b beq eq
r t t⎡ ⎤Δ = −⎣ ⎦r r , and Bk  is the Boltzmann constant.  By solving Eq. (2) for

*G , we obtain the inertial generalized Stokes-Einstein relation (IGSER) that relates the 

dynamic modulus of the medium with the particle’s MSD in the medium 
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( ) ( ) ( )2* *2 2
* 2

3

2 .
6 6 2 3

eff
eff

mi Z ZRG m
R R R i

ωω ω ωω ρω ρ ρ
π π π ω

⎛ ⎞⎛ ⎞⎜ ⎟= + + + − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
                       (3) 

The conventional inertia-less GSER: ( ) ( )*
*

6
i Z

G
R

ω ω
ω

π
=  is recovered by putting , 0effm ρ →  in 

the IGSER, Eq. (3).   

In analogy with experiments, our passive particle rheology simulation approach consists 

of determining the viscoelastic properties of the model polymer melt by tracking the thermal 

motion of the probe particle embedded in it.  Often, a local power-law is assumed to estimate the 

Laplace transform of MSD [23], and the approximate algebraic (inertia-less) GSER is used for 

data analysis [26].  This scheme is convenient, but the approximation is poor when the slope of 

the MSD varies rapidly and the power-law assumption is an oversimplification [23, 27].  Instead, 

we developed a more accurate method in which we fit and extrapolate the MSD data by using an 

appropriately smooth function that (i) is defined at all times 0 t≤ <∞ , (ii) shows  ballistic 

behavior ( )2 2
b eq

r t CtΔ =  at the shortest-time regime, (iii) describes diffusive behavior 

( )2 6b eq
r t DtΔ =  at the longest-time regime, and (iv) is capable of being analytically Laplace 

transformed.  There are several merits of choosing such a function: a truncation error resulting 

from a finite time window can be avoided; the MSD’s behavior at the extrapolated ranges is 

physically natural; it avoids aliasing; and it saves calculation costs. We introduce a function 

( )(1) 1 1
ttf t e τ

τ
−⎛ ⎞= − +⎜ ⎟

⎝ ⎠
 that shows ballistic behavior at t << τ and gives a plateau at t >>τ , and 

superpose a continuous spectrum of this function weighted with a power-law spectrum 
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( ) ( ) ( )1
1

j
n

j j j
j

h g H Hατ τ τ τ τ τ −
=

= − −∑  [28], where ( )H τ  is a unit step function, { }jτ  is a series 

of discrete relaxation times ( )1j jτ τ −>
,
 and n  is the number of modes of the spectrum. Usually 

one mode is sufficient to fit data for approximately two decades of time. By adding a second 

function ( )(0) 1
t tf t e λ

λ
−

= − +  that yields diffusive behavior at t λ>> , our fitting function is  

                                                ( ) ( ) ( ) ( )2 (1) (0)
0

0

.b eq

h
r t f t d g f t

τ
τ

τ

∞

Δ = +∫                                       (4)     

We assume nτ λ=  without loss of generality. Our weights { jg } of the spectrum for all 1j >  are 

determined from 1g  by enforcing a continuum condition for the weighting.  Therefore the total 

number of free adjustable parameters { }1 0 1 0 1,... , ,..., , , ,n n g gα α τ τ λ−  is 2 3n+ .  The diffusion 

coefficient D  in the longest-time regime is obtained from Eq. (4) as 0

6
gD
λ

= , indicating that 

0g  is derived from λ  once D  is measured from the MSD data.  Furthermore, 1g  can be 

derived from other parameters once the coefficient C of the ballistic motion is known from the 

data, because 1

2 21
1 01

2
1 12 2 2

j j

k k

jn
j j

k
j k j

ggC
α α

α α τ τ
τ

α λ
+

− −−
−−

= =

−⎛ ⎞
= +⎜ ⎟ −⎝ ⎠

∑ ∏  as derived from Eq. (4).   

B. Active rheology 

As for active particle rheology, we again follow the approach of extracting medium 

transport properties by quantitative analysis of MD simulation results by continuum theory 

expressions.  We performed active particle rheology simulation by subjecting the probe particle 

that is embedded in the polymer melt to an external force, similar to the experimental procedure 
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used by Ou-Yang and co-workers [29, 30].  The probe particle was held at a location using a 

harmonic trap with spring constant tensor eH ( e, 10xxH = , e, e,, 1000yy zzH H = , e, 0H =ij  for i ≠ j) 

and also subjected to an oscillatory force along the x direction, i.e., 

( ) { } ( )i t
ex x e bt e e tωℜ Α= −ef H .r , where xe is the unit vector along the x-axis, A is the amplitude, 

and eH  is as described above.  This external oscillatory force leads to an oscillatory motion of 

the particle; the ensemble-averaged x-component of the particle’s deviation from the center of 

the oscillation can be expressed as: ( ) ( ) ( ){ }0
i t

b eq
x t x e e ω δ ωω ℜ ⎡ − ⎤⎣ ⎦= , where ( )0x ω  is the 

amplitude and ( )δ ω  is the phase lag between the applied force and the particle displacement. 

By substituting this expression of ( )b eq
x t  into the x-component of the ensemble-averaged GLE, 

i.e., Eq. (1) with ( )ex tf  given above, and with the help of the generalized Stokes law, we obtain 

Eq. (2), but in this case ( )*Z ω is now set to ( ) ( ) ( )
( )* *

e,xx
0

1: i
active

AZ Z e H
i x

δ ωω ω
ω ω
⎛ ⎞

≡ = −⎜ ⎟⎜ ⎟
⎝ ⎠

.  

Therefore G* can be estimated from the particle motion measured through ( )0x Aω and ( )δ ω  

by using the same equation as for passive rheology, i.e. Eq. (3). 

IV. RESULTS 

A. Passive rheology 

The motion of the probe particle in the absence of an external force was tracked in passive 

rheology.  Specifically, equilibrium MD simulations were carried out on the system for the 
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duration of 130 million time steps with time step 0.003.  Simulations were carried out on ten 

different replicas of the system and the average MSD ( )2
b eq

r tΔ  of the center of mass of the  

 

 

 

  

probe particle was determined from these.  Figure 1 shows the MSD of a particle embedded in a 

polymer melt with N = 20.  The hydrodynamic radius of the particle is estimated to be 

2.82HR =  from the first peak of the radial distribution function of the monomer beads around 

the center of mass of the nanoparticle [14].  The bare particle mass and (apparent) density of the 

nanoparticle are 87.0barem =  and 0.93bρ = , respectively.  We use continuum expressions to 

analyze the MD simulation results; this tacitly assumes that the nanoparticle sees the polymer 

FIG. 1. (Color online) The equilibrium averaged mean squared displacement of the simulated 

particle.  Solid line shows fit to MSD data obtained by setting the adjustable parameters in Eq. (4) 

to 1 2 3 44, 1.34, 0.42, 0.99, 0.6,n α α α α= = = = = 0 1 20.13, 7.8, 105,τ τ τ= = = 4
3 47100, 10 ,τ τ λ= = =  

and 1 0.0125g = . 
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melt as a continuum, even though our nanoparticle is only 30% larger than the polymer chains, 

whose radius of gyration, gR is 2.16 .  We note that it has recently been pointed out [31] that 

particle motion in unentangled polymer melts conforms with Stokes-Einstein diffusion, provided 

the particle size is about 1.5 times the polymer chain size.   

Also seen from the figure, four modes are sufficient to fit the data for the whole range.  

The fitting result is shown in Fig. 1.  From the mean value of 
( )2

b eq
r t

t

Δ
 for ( )410t λ> =  the 

diffusion coefficient is estimated as 0.0011D=  (see inset of Fig. 1).  At very short times (t < 

0.01), the slope of the logarithmic MSD approaches 2.0 (it is between 1.99 and 2.00 for t < 0.01), 

as is expected for the ballistic regime.  Using these short time MSD data, the ballistic coefficient 

is estimated from the mean value of  
( )2

2

b eq
r t

t

Δ
 for 0.01t <  as 0.0346C = .  Combining this 

result with the IGSER prediction of ( )2
b eq

r tΔ ≈ 2Ct in the ballistic regime, where 3 B

observed

k TC
m

= , 

the mass of the particle is estimated to be 86.7observedm =  from the fit of the ballistic regime.  

This value of particle mass is very close to the bare particle mass value of 87barem = , rather than 

the effective particle mass value which can be estimated to be: 32 126.6
3bare Hm Rπ ρ+ =  (or

32 114.5
3barem Rπ ρ+ = ).  This observation can be quantitatively rationalized as follows: if one 

assumes that the difference between the effective and bare mass of the particle (i.e. the added 

mass) is contained in a shell of thickness sL around the moving particle, then the value of sL  can 

be estimated as  
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 ( )( )33 32 4
3 3particle particle s particleR R L Rπ π= + −  

This suggests that 
1
33 1 ~ 0.1447 ~ 0.41

2s particle particleL R R σ
⎡ ⎤
⎛ ⎞⎢ ⎥= −⎜ ⎟⎢ ⎥⎝ ⎠
⎣ ⎦

 (using 2.82particleR σ= ).   

We believe that the value of sL so calculated is the smallest length scale involved in the 

continuum approximation.  Since the value of sL  as estimated above is even smaller than the 

size of the medium beads, the assumptions underlying this length scale and hence the added mass 

concept of continuum theory, break down for the discrete nanoscale systems as illustrated by the 

analysis of the MSD data in the ballistic regime here.  The value of particle mass that is 

calculated from the MSD data in the ballistic regime 86.7observedm =  is used in our analysis for 

the calculation of ( )*G ω .   

In Fig. 2, the dynamic moduli of the polymer melt estimated from the bead’s MSD via 

the IGSER and GSER are compared with literature values for ( )*G ω  that were obtained from 

NEMD [7, 9] and equilibrium MD using the Green-Kubo relation [8].  The dynamic modulus 

derived from the IGSER agrees with the results from NEMD up to 1ω < , whereas that from the 

inertia-less GSER cannot capture the high frequency behavior of ( )*G ω  mainly due to the 

absence of medium inertia ( ( )'G ω  even becomes negative in this case).  In the terminal zone, 

( )*G ω  estimated from both IGSER and GSER agrees with the results of NEMD [9] rather than 

with the results from the Green-Kubo approach [8], probably because of larger statistical errors 

from shorter simulation times in the latter method.   
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It is important to determine the frequency range over which IGSER can be applied for a 

given simulation system. Two characteristic length-scales are important in viscoelastic materials: 

the penetration-depth ( )
*

*

2G

G Gω ρ
Δ =

′+
 and the wave-length ( )

*

*

2G

G Gω ρ
Λ =

′−
 

[17] of the shear wave, both of which are typically decreasing functions of ω .  In the low-

frequency regime ( 0.001ω < ) where the penetration-depth Δ  is comparable to the distance 

2L R−  between the surfaces of the particle and its image in the simulations, the elastic wave 

does not decay before reaching the particle’s periodic image in the neighboring box.  This leads 

to unreliable results for the MSD of the particle thus giving a poor estimate of the bulk rheology 

of the medium (the simulation setup acts more like two- or multi-particle microrheology in that 

FIG. 2.  (Color online) Comparison of G′  and G′′  derived from the MSD data presented in 

Fig. 1 (solid lines include inertial effects while dashed lines do not) with literature data 

(symbols).  Inset: The penetration depth ( Δ), and the wavelength ( Λ) of the elastic wave 

propagating in the medium as a function of frequency.  
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case).  In our simulations, L = 150, so data are reliable only when 0.001ω >  (see inset Fig. 2).  

On the other end of the frequency range, with increasingω , the Basset force becomes gradually 

effective, and becomes dominant when Λ becomes smaller than the particle size (see inset of 

Fig.2).  At the ultra-high frequencies where the third term of Eq. (2) is dominant, the particle 

motion is ballistic ( )2 23 B
b eq

observed

k Tr t t
m

Δ = , which is independent of the medium viscoelasticity.  

Although this contribution can be subtracted out in theory, the signal-to-noise ratio becomes too 

poor to extract *( )G ω  for these frequencies.  More importantly, for 3ω > , the wavelength Λ 

becomes smaller than the size of the medium bead σ  (=1), and the continuum treatment on 

which our analysis is based is expected to break down at these conditions.  In fact, one could 

argue that *( )G ω  as defined by the macroscopic stress ceases to be meaningful at these 

frequencies, whereas the microscopic Green-Kubo expression might hold.   

B. Active rheology 

For active rheology, the probe particle was put in a harmonic trap and its motion under 

the influence of an external oscillatory force was tracked using MD simulations.  We performed 

simulations at different values of frequency spanning the range 0.002 0.1ω≤ ≤ ; based on 

arguments presented for the passive rheology case, we expect the G′and G′′ values to be reliable 

in this range.  The amplitude A of the external force was adjusted in each of these cases to 

maintain the particle displacement amplitude ( )0x ω  between 1.2 and 1.4.  This range is chosen 

so that the displacement amplitude is smaller than the particle size, yet sufficiently large to 

obtain a good signal.  The simulations consisted of an equilibration stage of at least 20 (40) 

periods followed by a production stage, where the particle was tracked, of at least 30 (60) periods 
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for frequencies lower (higher) than 0.01.  The absence of higher harmonics was verified by 

taking the Fourier transform of these data and checking for the occurrence of only a single peak.  

Values of ,G G′ ′′  were then obtained from Eq. (3).  Here we note that a naïve application of Eq. 

(3) will entail using effective mass of the particle, effm , however, in light of the results for 

passive rheology described above, we used the observed particle mass, observedm  (~ barem ) in these 

calculations.  

 

 

 

Figure 3 shows that the ( )G ω′′  values calculated from active rheology simulations show 

good quantitative agreement with previous literature data over the entire frequency range 

studied.  Our ( )G ω′  values calculated by accounting for inertia agree with the literature data for

0.01ω > .  At frequencies lower than 0.01, similar to the passive particle rheology case, our 

FIG. 3.  (Color online) Comparison of 'G  and "G  from active particle rheology simulations 

(solid lines include inertial effects while dashed lines do not) with literature data (symbols).  

Inset: The phase shift and the amplitude of the particle displacement.  
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values tend to agree with the NEMD results of Vladkov et al. [9], although the value at the 

lowest frequency shows a small deviation from the literature result, perhaps because of the low 

signal to noise ratio due to the usage of a smaller number of oscillation periods for averaging at 

the lower frequencies.   

V. CONCLUSIONS 

             In summary, we have presented a particle rheology technique in both active and passive 

modes that combines molecular simulations with continuum theory to yield viscoelastic 

properties of a medium by analysis of probe particle motion in it.  The analysis is facilitated by 

elimination of slip at the particle-medium interface.  More importantly, we have shown that for 

the frequency range of interest to nanoscale systems, both medium and particle inertia play a 

crucial role in governing probe-particle motion in the complex medium.  We have also carried 

out a detailed analysis of the wave propagation in the medium to determine the frequency range 

over which reliable results can be obtained from the analysis presented here; these predictions 

were verified by the actual simulation values.  Although the particle rheology approach is being 

increasingly applied in experimental work, apparently, this is the first implementation of particle 

rheology approach in molecular simulations for the calculation of viscoelastic properties of a 

complex fluid.  The molecular simulation approach presented here can be used for analyzing 

particle motion in complex viscoelastic media such as biological systems, where specific 

chemical interactions significantly influence the system behavior.  The technique can also be 

readily extended for mechanical characterization of nanoscale heterogeneities in systems (e.g. 

polymer thin films, polymer nanocomposites) that exhibit spatial variation of properties over 

nanoscopic length scales.   
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