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We study a quantum thermal engine model for which the heat transfer law is determined by Ein-
stein’s theory of radiation. The working substance of the quantum engine is assumed to be a two-level
quantum system ofwhich the constituent particles obeyMaxwell-Boltzmann(M.B.), Fermi-Dirac(F.D.)
or Bose-einstein(B.E.) distributions respectively at equilibrium. The thermal efficiency and its bounds
at maximum power of these models are derived and discussed in the long and short thermal contact
time limits. The similarity and difference between these models are discussed. We also compare the
efficiency bounds of this quantum thermal engine to those of its classical counterpart.
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INTRODUCTION

The Carnot engine plays a crucial role in the founda-
tions of thermodynamics. However, it can not be real-
ized in practice since its output power is infinitesimally
small due to its reversibility. Real thermal engines can
not work as slowly as Carnot engines to preserve equi-
librium andmust lose energy during the working cycles
due to various reasons. This makes the efficiency of real
thermal engines below that of an ideal Carnot engine.
To optimize the thermal engines in the real world, a lof
of “realistic” models have been established and studied
in the literature[1–8]. One of the most practical problem
associated with the optimization of real heat engines is
its efficiency at maximum power. This problem was
firstly studied by Curzon and Ahlborn in 1975[1]. For
Carnot-like heat engines, the authors assumed that the
temperature differences between the heat reservoirs and
working substance are finite and fixed, thus the two heat
transferring processes are not reversible anymore, while
the adiabatic expansion and compression processes are
still reversible. Under these assumptions, they derived

the well-known CA efficiency ηCA = 1−
√

Tc/Th, where
Th and Tc are the temperatures of the hot and cold heat
reservoirs with which the working substance is in con-
tact. Though the CA formula has a good agreement
with measured efficiencies of some thermal plants, this
model still has some intrinsic drawbacks. On one hand,
it gives neither an exact nor constraint result for the ef-
ficiency as pointed out by Ref.[4]. On the other hand,
in real world situations the temperature differences be-
tween the working medium and heat reservoirs are not
constant and the heat transferring process could be gov-
erned by some more general physical laws which can
incorporate temperature changing during heat transfer-

ring processes.

In our previous work on classical engines[8], we have
seen that the heat transfer law plays a crucial role on
the efficiency at maximum power problem. For Carnot
engines, the time periods for which the adiabatic expan-
sion and compression processes last are usually negligi-
bly short, while those of the two isothermal heat trans-
ferring processes are infinitely long, therefore Carnot en-
gines have zero output power. In real world situations,
the isothermal heat transferring processesmust last for a
finite period of time and obey specific heat transferring
laws. In Ref.[8], we studied a thermal engine model for
which Newton’s cooling law is obeyed during the heat
transferring processes, and derived the upper and lower
bounds for the efficiency at maximum power in the long
and short contact time limits respectively. By consid-
ering the heat transferring processes during which the
temperature of the working medium is close to or far
from isothermal, and adjusting the ratio between the
heat capacities of the heating and cooling stages, the
model can simulate different types of engines including
but not limited to Carnot engines.

The studies of classical thermal engines can be gener-
alized to their quantum counterparts. Recently, differ-
ent models of quantum thermal engines are extensively
studied in the literature[9–13]. The efficiency of a quan-
tum thermal engine at maximum power has also been
studied in Ref.[14], where the quantum thermal engine
is based on the model discussed in Ref.[15], in which the
quantum thermal engine is composed of particles con-
fined in a one-dimensional (1D) infinite potential well,
and the wall of the well can expand to perform work.
The derived efficiency at maximum power is a univer-
sal number.

Following the same spirit, we try to generalize our
previous work to the quantum world. For simplicity
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and without losing generality, the working substance
in our model of thermal engines is a two-level quan-
tum system[15], which can be chosen as the lowest two
levels of a 1D infinite quantum well or a 1D harmonic
oscillator. Unlike the discussion in Ref.[15], the tem-
perature rather than average energy is used to describe
the thermal equilibrium state as in Ref.[9]. What is im-
portant here is that the heat transferring process be-
tween the working substance and the heat reservoir is
described by Einstein’s theory of radiation. This can
be thought as the quantum version of the model dis-
cussed in Ref.[8] in some way. For simplicity, we denote
this kind of quantum thermal engine by “quantum Ein-
stein engine”. The constituent particles of the working
substance are assumed to obey three well known distri-
bution laws, the M.B.(Maxwell-Boltzmann), F.D.(Fermi-
Dirac) and B.E.(Bose-Einstein) distributions. We are in-
terested in the efficiency and its bounds at maximum
power. This model might have an application in the
field of quantum heat engines working with trapped
ions or spin systems[16].
The organization of the paper is as follows. We first

study the quantum thermal engine of which the con-
stituent particles of the working substance obey theM.B.
distribution. This will shed light on our successive stud-
ies on the other two models. For this model, we derive
the heat transferring law based on Einstein’s theory of
radiation, and give the formulas of the heat and entropy
transfers. As in Ref.[8], we study the efficiency at maxi-
mumpower and its bounds in the long and short contact
time limits. We also study quantum engines for which
F.D. and B.E. distributions are applied.

QUANTUM EINSTEIN ENGINE ASSOCIATEDWITH
M.B. DISTRIBUTION

General results for heat and entropy transfers

The working substance of our quantum thermal en-
gine is assumed to be a two-level quantum system with
energy levels E1 (low) and E2 (high). The energy differ-
ence of the two levels is E2 − E1 = hν, where h is the
Planck’s constant. The particle numbers at low and high
energy levels are N1 and N2 respectively, and the fixed
total particle number is given by N0 = N1 + N2. For
simplicity, we first consider the case that the constituent
particles of the quantum system satisfy M.B. distribu-
tion at equilibrium states. Assume the initial tempera-
ture of the system is T1, then the initial particle distribu-
tions are

N1 = N0
1

1 + exp (−β1hν)
, N2 = N0

1

1 + exp (β1hν)
, (1)

where β1 = 1/kBT1 and kB is the Boltzmann constant.
In our model of quantum thermal engine, the heat reser-

voir can be thought of as a black-body source with tem-
perature T2. When the working substance or the two-
level quantum system is “in contact with” a black-body
source, the heat is transferred by the photon emission
and absorbtion. This heat transferring process is de-
scribed by Einstein’s theory of radiation[17]

dN2

dt
= −dN1

dt
= BN0uν − 2BN2uν −AN2 = −aN2 + b, (2)

where a = 2Buν + A, b = BN0uν . A and B are the
famous Einstein’s coefficients, and uν is the spectral en-
ergy density of the black-body source. The solution of
Eq.(2) is given by

N2(t) =
b

a
− [

b

a
−N2(0)] exp (−at) (3)

Introducing the distribution function f(β) = 1/(1 +
exp (βhν)) for level E2, then we have

N2(0) = N0f(β1), N2(t → ∞) =
b

a
= N0f(β2). (4)

At time t, we have N2(t) = f(β(t))N0 where

f(β(t)) = f(β2)− [f(β2)− f(β1)] exp (−at). (5)

Similarly, for level E1, we haveN1(t) = (1− f(β(t)))N0.
We are interested in the situation with βhν ≪ 1, which
is true if the size of the quantum well is not too small or
the spring constant of the harmonic oscillator is not too
large at high temperature. To the leading order of βhν
we get

f(β) ≈ 1

2
− 1

4
βhν, a = A coth (β2hν/2) ≈

2A

β2hν
. (6)

Therefore, Eq.(5) leads to the changing of inverse tem-
perature

β(t) = β2 − (β2 − β1) exp [−
2At

hνβ2
]. (7)

It is interesting to notice that the time constant 1/a de-
pends on the temperature of the heat reservoir. If tem-
perature is higher, less time is needed for the work-
ing substance to reach equilibrium with the heat reser-
voir, this phenomenon is counterintuitive as shown by
Figure.1. Note that in general Einstein’s coefficient A ∝
ν2[18], then the inverse time constant a is in fact propor-
tional to ν. Therefore the higher the energy difference
hν, the longer the time is needed for the system to reach
the equilibrium state.
In terms of the distribution function f(β), the quan-

tum entropy of the two-level system can be expressed
as

S = −k[f(β) ln f(β) + (1− f(β)) ln (1− f(β))]. (8)
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FIG. 1: (Color online) Temperature of the working substance
during the heat transferring process as a function of time. The
blue solid (red dashed) line indicates the temperature chang-
ing of the working substance for the situation that the tem-
perature (T2) of the heat reservoir is 400K (1000K). For both
situations, the initial temperature of the working substance is
300K. The unit is chosen such that A = 1 and hν/k = 1.

Plug in the expression of f(β), and expand Eq.(8) in se-
ries of βhν

S = k ln 2− 1

8
k(βhν)2 +O(βhν)4. (9)

For a heat transferring process between the initial state
with inverse temperature β0 and the final state with in-
verse temperature β(t) at time t, the heat and entropy
transfers are given by

∆Q(t) = (N2(t)−N20)hν = N0hν(f(β(t)) − f(β0))

=
1

4
N0h

2ν2(β0 − β(t)) +O
(

(βhν)3
)

,

∆S(t) =
1

8
k(hν)2(β2

0 − β2(t)) +O
(

(βhν)4
)

, (10)

where N20 and N2(t) are the particle numbers of initial
and final state respectively. In the derivation of ∆Q(t),
we have used the fact dN2 = −dN1. Here the entropy
transfer reflect the change in the entropy of the inter-
nal distribution of the quantum engine. Generically, the
energy levels of the quantum working substance dur-
ing the heating and cooling stages are different since the
engine must expand to perform work between the two
stages. We assume that the frequencies associated with
the heating and cooling stages are νh and νc respectively,
and the initial and final inverse temperatures are βh0,
βh(t) and βc0, βc(t) respectively. Therefore, to the lead-
ing order of βhν the heat and entropy transfers during

the heating stage are given by

∆Qh(t) =
1

4
N0h

2ν2h(βh0 − βh(t)),

∆Sh(t) =
1

8
kh2ν2h(β

2
h0 − βh(t)

2). (11)

Similarly, during the cooling stage we have

∆Qc(t) =
1

4
N0h

2ν2c (βc0 − βc(t)),

∆Sc(t) =
1

8
kh2ν2c [β

2
c0 − β2

c (t)]. (12)

We assume the time duration that the heating and cool-
ing stages last are τh and τc respectively. When the quan-
tum engine finishes a full thermodynamical cycle, the
working medium returns back to its initial state and we
have∆Sh(τh)+∆Sc(τc) = 0. The power output and the
efficiency of the thermal engine are given by

P =
∆Qh(τh) + ∆Qc(τc)

τh + τc
,

η = 1 +
∆Qc(τc)

∆Qh(τh)
. (13)

Here we adopt the convention that Q > 0(< 0) means
absorbing(releasing) heat. As mentioned before, the
working substance of the quantum engine under con-
sidering is composed by particles at the two lowest lev-
els of a 1D infinite quantum well or 1D harmonic os-
cillator. The cycles of the quantum engine are as fol-
lows. 1)The system absorbs heat Qh from the hot reser-
voir during the time period τh. 2)The system expands to
perform work. In case of 1D infinite quantum well, the
width of the well expands from L0 to L1. In case of 1D
harmonic oscillator, the“width” of the harmonic poten-
tial expands while its spring constant “shrinks” from k0
to k1 in its parameter space. 3)The system releases heat
Qc at the cold reservoir during the time period τc. 4)The
system returns to its original size and temperature and
the working medium returns to its original state.

Efficiency and its bounds in the long contact time limit

When the contact time is long enough, the working
substance can exchange heat sufficiently with the reser-
voirs. In this limit, τh,c/(βhνh,cA) is large, and we as-
sume the final inverse temperatures for the two stages
are βh = βh(τh) and βc = βc(τc). Hence the heat trans-
fers during the two stages are

∆Qh =
1

4
N0h

2ν2hx, ∆Qc = −1

4
N0h

2ν2c y, (14)

where x = βh0 − βh and y = βc − βc0. To the leading
order of βhν, the constraint ∆Sh +∆Sc = 0 gives

ν2h(2βh + x)x − ν2c (2βc − y)y = 0, (15)
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of which the solution is given by

x =

√

β2
h +

1

γ2
(2βc − y)y − βh, (16)

where γ = νh/νc. Substitute Eq.(16) to the expression of
the output power

P =
1

4
N0h

2 ν
2
hx− ν2c y

τh + τc
(17)

and let ∂P/∂y = 0, the only meaningful solution for y is
found to be

y =
βc(1 + γ2)−

√

β2
c (1 + γ2) + β2

hγ
2(1 + γ2)

1 + γ2
(18)

Plug y into Eq.(13) we obtain the thermal efficiency at
maximum power

ηm = 1− 1

γ2

y

x
(19)

= 1− γ2(1− ηc)− 1 +
√

(1 + γ2)[1 + γ2(1− ηc)2]

(2− ηc)γ2
,

where ηc = 1 − Tc

Th
is the Carnot efficiency. If we let

γ approach 0 and ∞ respectively, we obtain the upper
and lower bounds of ηm as

ηc
2

≤ ηm ≤ ηc
2− ηc

. (20)

Interestingly, these bounds agree exactly with those
given in Ref.[4] for classical thermal engines in the
long contact time limit. However, the situation is a
little different for our model of quantum thermal en-
gine. The quantum engine, either quantum-well type or
harmonic-oscillator type, must expand to perform work
after absorbing heat at hot reservoir. Hence its size must
increase afterwards. For a quantum-well type engine,
its width Lwill increase, while for a harmonic-oscillator
type engine, its spring constant k will decrease. Since
the frequency is anti-proportional to L2 or proportional

to
√
k, then γ = νh/νc must be larger than 1, or the lower

limit of γ is 1 rather than 0. Nowwe have tighter bounds
for ηm

2−
√

4− 4ηc + 2η2c
2− ηc

≤ ηm ≤ ηc
2− ηc

. (21)

The efficiency ηm can be expanded in series of ηc as

ηm =
1

2
ηc +

γ2

4(1 + γ2)
η2c +O(η3c ). (22)

The coefficient of the second-order term lies between 1/8
and 1/4.

Efficiency and its bounds in the short contact time limit

In the short time limit such that τ ≪ 1/a, the inverse
temperature can be approximated to the second order of
aτ as

β(τ) ≈ β1 + (β2 − β1)aτ + (β1 − β2)
1

2
a2τ2. (23)

Implementing this approximation, the entropy transfers
during the two stages are given by

∆Sh = ν2h[−2βh0(βh − βh0)ahτh

−(βh0 − βh)(2βh0 − βh)a
2
hτ

2
h ],

∆Sc = ν2c [−2βc0(βc − βc0)acτc

−(βc0 − βc)(2βc0 − βc)a
2
cτ

2
c ]. (24)

Using the same convention as in the last subsection, the
constraint∆Sh+∆Sc = 0 gives an equation for x and y.
Since ah,cτh,c is an infinitesimal quantity, we match both
sides of the equation order by order of ah,cτh,c. To the
first and second order, we get

γ2(βh + x)x
Ah

βhνh
τh = (βc − y)y

Ac

βcνc
τc,

γ2x(βh + 2x)a2hτ
2
h = (βc − 2y)ya2cτ

2
c , (25)

from which one can deduce

βh + 2x

x(βh + x)2
= γ2 βc − 2y

y(βc − y)2
. (26)

The key step here is to simplify the above equation and
get a relatively simple relation between x and y as in
Ref.[8], hence we can avoid messing up the physics
by the mathematical complexity. We assume that the
temperature difference is small relative to the tempera-
ture of the heat reservoir at each heat transferring stage.
Thus, x is small relative to βh and y small to βc. Expand-
ing both sides of Eq.(26) to the third order of x and y, we
can derive a very simple relation between x and y

y

x
= γ2βh

βc

. (27)

The heat transfers during the two heating and cooling
stages are given by

∆Qh =
1

4
N0h

2ν2hxahτh, ∆Qc = −1

4
N0h

2ν2c yacτc,(28)

from which the output power is given by

P =
1

4
N0h

2 ν
2
hxahτh − ν2c yacτc

τh + τc
. (29)

Taking into account that the spontaneous emission coef-
ficient A satisfies A ∝ ν2, except a constant the output
power is evaluated as

P ∝ (βc − γ2xβh/βc − βh − x)x

βc − γ2xβh/βc + γ(βh + x)β2
c /β

2
h

. (30)
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Solve the equation ∂P/∂x = 0, and plug the only mean-
ingful solution for x into the expression of the efficiency
at maximum power

ηm = 1− βh + x

βc − γ2xβh/βc

. (31)

In series of ηc, ηm can be expanded as

ηm =
ηc
2

+
γ(2γ2 + γ + 1)

8(1 + γ + γ2 + γ3)
η2c +O(η3c ). (32)

Taking γ = 0,∞, the bounds of ηm are derived as

ηc
2

≤ ηm ≤ ηc
2− ηc

. (33)

Interestingly, we obtain the same rough bounds of ηm as
in the long time contact limit. Again noting that γ can
not be smaller than 1, the finer bounds of ηm are found
to be

1−
√

1− ηc ≤ ηm ≤ ηc
2− ηc

. (34)

The coefficient of the second-order term of ηm also lies
between 1/8 and 1/4.

QUANTUM EINSTEIN ENGINE ASSOCIATEDWITH
THE F.D. DISTRIBUTION

In this section, we consider the case that the con-
stituent particles of the working substance obey the F.D
distribution. In fact wewill see that this situationwill re-
duce to that associated with the M.B. distribution even
when βE1,2 ≪ 1 (If βE1,2 ≫ 1, both F.D. and B.E. distri-
butions reduce to M.B. distribution). Here we still adopt
the same convention for the parameters as in the last sec-
tion. For each level of the quantum system, the particle
numbers of the initial state are given by

N1(0) =
N0

1 + eβ1E1+1
eβ1E2+1

, N2(0) =
N0

1 + eβ1E2+1
eβ1E1+1

, (35)

Similar to what we have done in the last section, the
distribution function fF(β) = 1/(1 + eβE2+1

eβE1+1
) is in-

troduced. Thus the initial number distributions are
N1(0) = N0(1 − fF(β1)) and N2(0) = N0f

F(β1). When
the quantum system is in contact with the hot (cold)
reservoir, the heating (cooling) process is described by
Einstein’s theory of radiation Eq.(2). Solve this equa-
tion, we get N1(t) = N0(1 − fF(β(t))) and N2(t) =
N0f

F(β(t)) in which fF(β(t)) is also expressed by Eq.(5)
with β(0) = β1 and β(∞) = β2. Hence the heat ab-
sorbed by the working substance at time t is ∆Q(t) =

N0hν
(

fF(β(t)) − fF(β(0))
)

. To the leading order of βhν
we have

fF(β) ≈ 1

2
− 1

8
βhν,

aF =
eβ2E2 + eβ2E1 + 2

eβ2E2 − eβ2E1

≈ 4A

β2hν
. (36)

The quantum entropy of the working substance is ap-
proximated by

SF ≈ ln 2− 1

32
β2h2ν2. (37)

One can see that the expressions of fF(β), aF and SF dif-
fer from their maxwellian counterparts only in the coef-
ficients of the leading order of βhν. If we go on carrying
the calculations as before, it is not difficult to find that
the results are the same as those associated with M.B.
distribution. In other word, the quantum Einstein en-
gine with fermionic working substance has no signifi-
cant difference from that with the maxwellian working
substance if βE1,2 ≪ 1.

QUANTUM EINSTEIN ENGINE ASSOCIATEDWITH
THE B.E. DISTRIBUTION

General results for heat and entropy transfers

Now we consider the the quantum Einstein engine of
which the working substance obeys the B.E. distribu-
tion. The discussions follow quite similar steps as the
previous section. The initial particle distributions of the
two-level quantum systems are

N1(0) =
N0

1 + eβ1E1−1
eβ1E2−1

, N2(0) =
N0

1 + eβ1E2−1
eβ1E1−1

, (38)

The heating (cooling) process is again governed by Ein-
stein’s theory of radiation. Introducing the distribution

function fB(β) = 1/(1 + eβE2−1
eβE1−1

), then at time t the par-

ticle distributions become N1(t) = N0(1− fB(β(t))) and
N2(t) = N0f

B(β(t)) with β(0) = β1 and β(∞) = β2.
The heat transfer is given by ∆Q(t) = N0hν

(

fB(β(t)) −
fB(β(0))

)

. Similarly, to the leading order of βhν we have

fB(β) ≈ E1

E1 + E2
− 1

2

hνβE1E2

(E1 + E2)2
,

aB =
eβ2E2 + eβ2E1 − 2

eβ2E2 − eβ2E1

≈ A(E1 + E2)

hν
. (39)

The quantum entropy transfer is further approximated
by
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SB
≈ −

[ E1

E1 + E2
ln

E1

E1 + E2
+

E2

E1 + E2
ln

E2

E1 +E2

]

−

E1E2 ln
E2

E1

hν

2(E1 + E2)2
β−

E1E2hν
(

3(E2
2 − E2

1) + 2(E2
1 − 4E1E2 + E2

2) ln
E1

E2

)

24(E1 + E2)3
β2.

(40)

In what follows, we will ignore the superscript “B” for
simplicity. For the heating stage, we use Eh0 and Eh to
denote the initial (low) and final (high) energy levels,
βh0 and βh(t) to denote the initial and final inverse tem-
peratures. Define the frequency νh by Eh − Eh0 = hνh,
then the heat and entropy transfers during the heating
and cooling stages are given by

∆Qh(t) =
1

2
N0h

2ν2hXh

(

βh0 − βh(t)
)

,

∆Sh(t) = Yh1

(

βh0 − βh(t)
)

+ Yh2

(

β2
h0 − β2

h(t)
)

,(41)

∆Qc(t) =
1

2
N0h

2ν2cXc

(

βc0 − βc(t)
)

, (42)

∆Sc(t) = Yc1

(

βc0 − βc(t)
)

+ Yc2

(

β2
c0 − β2

c (t)
)

, (43)

where

Xh =
Eh0Eh

(Eh0 +Eh)2
, Yh1 =

EhEh0 ln
Eh

Eh0

hνh

2(Eh + Eh0)2
,

Yh2 =
Eh0Ehhνh

(

3(E2
h
− E2

h0) + 2(E2
h0 − 4Eh0Eh +E2

h
) ln Eh0

Eh

)

24(Eh0 + Eh)3
,

Xc =
Ec0Ec

(Ec0 + Ec)2
, Yc1 =

EcEc0 ln
Ec

Ec0
hνc

2(Ec + Ec0)2
,

Yc2 =
Ec0Echνc

(

3(E2
c − E2

c0) + 2(E2
c0 − 4Ec0Eh +E2

c ) ln
Ec0

Ec

)

24(Ec0 +Ec)3
.

Efficiency and its bounds in the long contact time limit

From now on, the discussions are simply parallel to
what we have done in the last section. We briefly outline
our results here. In this limit, τh,c → ∞. As previously
did, we assume βh(τh) = βh, βc(τc) = βc, βh0 − βh = x
and βc0 − βc = −y. From∆Sh +∆Sc = 0we have

Yh1x+ Yh2(2βh + x)x − Yc1y − Yc2(2βc − y)y = 0. (44)

Solve this equation, we have

x =

√

β′2
h +

1

γ2
1

(2β′

c − y)y − β′

h, (45)

β′

h = βh +
Yh1

2Yh2
, β′

c = βc +
Yc1

2Yc2
, γ2

1 =
Yh2

Yc2
. (46)

The power of this heat engine is given by

P =
1

2
N0h

2Xhν
2
hx−Xcν

2
c y

τh + τc
. (47)

It is maximized when ∂P/∂y = 0. Let γ2
2 = Xh

Xc

ν2

h

ν2
c
, then

we have ∂x
∂y

− 1
γ2

2

= 0. Using Eq.(45), the only meaningful

solution for y is

y =
β′

c(γ
2
1 + γ4

2)−
√

(β′2
c γ2

1 + β′2
h γ4

1)(γ
2
1 + γ4

2)

γ2
1 + γ4

2

. (48)

The efficiency of the thermal engine at maxim power is

ηm = 1− Xcν
2
c

Xhν2h

y

x
= 1− 1

γ2
2

y

x
. (49)

Plugging Eqs.(45) and (48) we have

ηm = 1−
γ2
1

γ2
2

γ2
2(1− η′

c)− 1 + 1
γ1

√

(

1 + γ2
1(1− η′

c)2
)

(γ2
1 + γ4

2)

γ2
2 + γ2

1(1− η′

c)
,

(50)

where η′c = 1 − β′

h

β′

c
can be thought of as the corrected

Carnot efficiency. If we chose suitable Eh,c and Eh0,c0

such that γ1 = γ2 = γ′, Eq.(50) “recovers” the result (19)
except that ηc is replacedby η′c and γ by γ′. By inspecting
the numerators and denominators of γ1 and γ2, one can
find that they are of the same order of Eh,c and Eh0,c0

respectively. Hence it is reasonable to assume that they
are of the same order when approaching 0 or ∞. There-
fore we get a rough estimation of the upper and lower
bounds

η′c
2

≤ ηm ≤ η′c
2− η′c

. (51)

Following the same reasoning as before, the tighter
bounds of ηm are given by

2−
√

4− 4η′c + 2η′2c
2− η′c

≤ ηm ≤ η′c
2− η′c

. (52)

Despite the similarity between the results associated
with the B.E. distribution and those associated with the
M.B. and F.D. distributions, there is also qualitative dif-
ference between them. Obviously the latter only depend
on the difference of energy levels, or νh,c. However, the
former has an explicit dependence on the choice of ini-
tial (low) energy level Eh0,c0.

Efficiency and its bounds in the short contact time limit

We consider the limit that τ ≪ 1/a and expand the
inverse temperature to the second order of aτ , then the
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entropy transfers during the two stages are given by

∆Sh = −2Yh2(β
′

h + x)xahτh − Yh2(β
′

h + 2x)xa2hτ
2
h ,

∆Sc = 2Yc2(β
′

c − y)yacτc + Yc2(β
′

c − 2y)ya2cτ
2
c . (53)

While the heat transfers are

∆Qh =
1

2
N0h

2ν2hXhxahτh,

∆Qc = −1

2
N0h

2ν2cXcyacτc. (54)

As before we match both sides of ∆Sh +∆Sc = 0 order
by order of aτ , then the first and second orders of aτ
give

γ2
1(β

′

h + x)xahτh = (β′

c − y)yacτc,

γ2
1(β

′

h + 2x)xa2hτ
2
h = (β′

c − 2y)ya2cτ
2
c , (55)

from which we deduce

β′

h + 2x

x(β′

h + x)2
= γ2

1

β′

c − 2y

y(β′

c − y)2
. (56)

Using the same argument as in the last section, one can
find

y

x
= γ2

1

β′

h

β′

c

. (57)

The spontaneous emission coefficientA satisfies A ∝ ν2,
then the output power is evaluated as:

P =
1

2
N0h

2ν2
hXhah

(

β′

c − γ2
1xβ

′

h/β
′

c −
γ2

1

γ2

2

(β′

h + x)
)

x

β′

c − γ2
1xβ

′

h/β
′

c + γ3(β′

h + x)β′

c/β
′

h

, (58)

where γ3 = νh(Eh0+Eh)
νc(Ec0+Ec)

. The power is maximized when

∂P/∂x = 0, which leads to the solution of the efficiency
at maximum power is

ηm =

β′

hγ
2
1 + β′

cγ
2
2γ3 − γ1

√

β′

cβ
′

h
(β′

c+β′

h
γ2

2
)(1+γ3)(β

′

h
γ2

1
+β′

cγ
2

2
γ3)

β′2
c +β′2

h
γ2

1

γ2
2

[

β′

cγ3 − β′

hγ1

√

β′

cβ
′

h
(1+γ3)(β

′

h
γ2

1
+β′

cγ
2

2
γ3)

(β′2
c +β′2

h
γ2

1
)(β′

c+β′

h
γ2

2
)

]

.(59)

If Eh,c and Eh0,c0 are chosen suitably such that γ1 =
γ2 = γ3 = γ′, the efficiency ηm can also be expanded in
series of η′c as

ηm =
η′c
2

+
γ′(2γ′2 + γ′ + 1)

8(1 + γ′ + γ′2 + γ′3)
η′2c +O(η′3c ). (60)

Interestingly, this also “recovers” the result (32) expect
that ηc is replaced by η′c and γ by γ′. Similarly, when γ′

approaches 0, ∞ or 1, ∞, the rough and fine bounds of
ηm are found to be

η′c
2

≤ ηm ≤ η′c
2− η′c

,

1−
√

1− η′c ≤ ηm ≤ η′c
2− η′c

. (61)

CONCLUSIONS

In conclusion, we presented an analysis of the quan-
tum thermal engine of which the heat transferring law
is derived from Einstein’s theory of radiation. We no-
tice that heat transferring laws play a crucial role on the
problems about the efficiency of quantum thermal en-
gines at maximum power. The thermal efficiency and
its bounds at maximum power for quantum Einstein en-
gines are studied in the long and short time limits. To
some extent, this can be thought as the quantum coun-
terpart of the classical thermal engine studied in Ref.[8],
which can simulate some well-known classical thermal
engines. For βhν ≪ 1, We find that the quantum
Einstein engine with fermionic working substance has
no difference from that with maxwellian working sub-
stance, while the one with bosonic working substance
has a qualitative difference.
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