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Cellular networks may be found in a variety of natural contexts, from soap foams to biological
tissues to grain boundaries in a polycrystal, and the characterization of these structures is therefore
a subject of interest to a range of disciplines. An approach to describe the topology of a cellular
network in two and three dimensions is presented. This allows for the quantification of a variety
of features of the cellular network, including a quantification of topological disorder and a robust
measure of the statistical similarity or difference of a set of structures. The results of this analysis
are presented for numerous simulated systems including the Poisson–Voronoi and the steady-state
grain growth structures in two and three dimensions.
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I. INTRODUCTION

Disordered structures that appear in a wide range of
physical and biological systems often share characteristic
geometric and structural features that allow them to be
characterized as cellular networks. A cellular network in
three dimensions consists of three-dimensional (3d) cells
that meet at faces, two-dimensional (2d) faces that meet
at edges, and one-dimensional (1d) edges that meet at
vertices. This paper considers the common case where
two cells meet at a face, three faces meet at an edge,
and four edges meet at a vertex (for the analogous stable
cellular network in two dimensions, two 2d cells meet at
an edge and three 1d edges meet at a vertex). This type
of cellular structure has been observed in the context of
leaf areoles [1], epithelial cells [2, 3], crack patterns [4],
patterned ground [5], Martian terrain [6], polycrystalline
materials [7, 8] and foams [9, 10].
Although much work has been done to identify a unify-

ing set of principles to explain the structure and behavior
of cellular networks, many fundaments questions remain
unresolved. Comparisons of different cellular networks
are often practically restricted to scalar quantities such
as the average cell size. While more detailed analyses
of cellular networks have been performed (e.g., distribu-
tion of cell sizes or number of faces per cell), these do
not fully characterize the cellular network–the remaining
degrees of freedom still allow for considerable variations
in network structure. This raises a question nearly as
fundamental as the notion of a cellular network itself,
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namely, “how can we rigorously identify the similarities
or differences among a set of networks?”
The purpose of this study is to develop a statistical de-

scription of the topology of cellular networks. For speci-
ficity, we occasionally use language appropriate to the
study of a grain boundary network in a single phase, poly-
crystalline material. Apart from the importance of grain
boundary network structure for intergranular [11, 12] and
transgranular [13, 14] processes, the grain boundary net-
work topology is of special interest because of its sensi-
tivity to variations in interface thermodynamics and to a
plethora of deformation mechanisms. Improved charac-
terization of grain boundary network topology would be
useful in a variety of practical materials science contexts,
from the quantification of microstructure variability for
given processing conditions to measurements of the frac-
tion of recrystallized material during an anneal.
The most widespread notion relating to grain bound-

ary network topology in the literature is that of nearest
neighbors, i.e., the set of grains that share a face with a
central grain. The nearest neighbors are a natural sub-
ject of study since they have been observed to strongly
influence the morphology and evolution of the central
grain in 2d. This is evidenced by the Aboav–Weaire
“law” [15, 16] that relates the number of edges of a grain
to the average number of edges of its nearest neighbors,
Lewis’ “law” [17] that relates the area of a grain to the
number of its nearest neighbors, and the mathematically
exact von Neumann–Mullins law [18, 19] that relates the
rate of change of area of a grain to the number of its
nearest neighbors. Concentrating on the nearest neigh-
bors limits the available topological information about
the microstructure though, since everything about the
microstructure beyond the nearest neighbors is ignored.
Additionally, these “laws” only hold strictly in two di-
mensions, while most physically and biologically inter-
esting network structures occur in three dimensions.
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Similar approaches have been used to study of jammed
packings of hard spheres. For instance, the ’granocentric’
model [20, 21] numerically predicts the distributions of
the number of neighbors, the number of contacts, and
the local packing fraction around a sphere in a poly-
disperse sphere packing by considering the solid angle
subtended by the neighboring particles. These results
may be mapped to the study of cellular networks by con-
structing a tessellation of the space from the locations
of the spheres, and offer the opportunity to study the
effect of local disorder on the validity of Lewis’ “law”
[22, 23]. Nevertheless, there does not appear to be a way
to map an arbitrary cellular network to an equivalent
sphere packing, meaning that the physical motivation for
the granocentric model may not apply to the systems in-
vestigated here.

Closely related to these local approaches is the concept
of a shell distance, where the distance between two cells
is the minimum number of faces that must be crossed
to go from the interior of one cell to the interior of the
other. The set of cells at shell distance one is the set
of nearest neighbors, and the sets of cells at further shell
distances identify analogous portions of the cellular struc-
ture. Shell distance usually appears in the literature in
the context of relating the number of edges of a central
cell to the average number of edges of the cells at some
shell distance [24–26], or of predicting the probability of
a pair of cells with given numbers of sides occurring at
some relative shell distance [27, 28]. The analysis of a
cellular structure by shell distance is not suitable for our
purposes though, since the shell distance does not distin-
guish between the different cells in a given shell.

The bond distance is complementary to the shell dis-
tance, and appeared nearly contemporaneously in the lit-
erature [29, 30]. Specifically, the bond distance between
two cells is the minimum number of edges that must be
followed on a continuous path from the boundary of one
cell to the boundary of the other. This gives a more de-
tailed measure of the cellular network topology than the
shell distance. Nonetheless, the use of the bond distance
has not been widely employed in the literature, appearing
only in the context of counting the number of cells at a
given bond distance [29] and of predicting the probability
of a pair of cells with given numbers of sides occurring at
some relative bond distance [30]. Moreover, since bond
distances alone do not give sufficient information to re-
construct the cellular structure, analyses of the cellular
network topology using bond distance are incomplete.

There is a considerable literature in the materials sci-
ence community on the topological properties of a mi-
crostructure as a whole. Such approaches generally be-
gin with a binary classification of grain boundaries based
upon a property; e.g., as susceptible/resistant to corro-
sion. The analysis of the microstructure proceeds by
considering clusters of susceptible boundaries, with the
expectation that the material response changes dramat-
ically when the maximum cluster size is comparable to
the sample dimensions. More explicitly, this percolation

theory approach [31–34] asks a question like “is there a
percolating cluster of contiguous boundaries that are sus-
ceptible to corrosion?” A recent and related development
is the use of homology [35, 36] to analyze more subtle
topological features of the grain boundary clusters.
In this paper, we develop a characterization of cellu-

lar networks that is complete from the standpoint of the
network as a topological entity. That is, our description
allows an exact reconstruction of the cellular network, up
to a geometric deformation. We assume that the cellular
structures are statistically homogeneous (see below) in
order to be amenable to statistical analysis. Finally, for
a characterization method to be practical, it must must
be efficiently computable, particularly if the intention is
to apply this to large, statistically representative sections
of cellular networks. To our knowledge, there are cur-
rently no characterization methods of this type, though
the availability of one would significantly enhance our
ability to rigorously and quantitatively describe cellular
networks and the differences between networks formed
via different processes.

II. TWO-DIMENSIONAL SWATCHES

We describe the cellular network topology by means of
an object we call a swatch. The World English Dictio-

nary defines a swatch as 1. a sample of cloth; 2. a num-
ber of such samples, usually fastened together in book
form [37]. This paper defines a swatch as a collection of
strings, or labels for the vertices, that describes a portion
of the cellular network around a given vertex. Similarly,
a cloth is a suitable collection of swatches that describes
the topology of the overall network.
More formally, a swatch of a 2d cellular structure is a

set of strings or labels for the vertices around some cen-
tral vertex, and a set of relations indicating when more
than one string is assigned to the same vertex. This
description is complete in the sense that the topology
of the cellular network may be reconstructed from the
swatch by applying the relations to a reference structure,
as described in Appendix A. A swatch of a 3d cellular
structure is nearly the same, though the reference struc-
ture used for the reconstruction is more complicated, as
described in Appendix B.
Similar to the analysis of a cellular structure by bond

or shell distance, a swatch begins from a central loca-
tion and gradually extends into the surrounding network.
Specifically, a swatch is centered on a vertex known as
the root. A string encodes one of the shortest paths from
the root to a given vertex along the edges of the cellular
network. This encoding is performed by using the indi-
vidual letters (i.e., characters) of the string to indicate
the direction followed at every vertex along the path. In
two dimensions, our encoding scheme assumes that every
vertex is connected to exactly three edges.
The construction of a swatch begins with the selection

of a root and of the orientation of the normal to the plane
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(a) Standard orientation (b) Inverted orientation

FIG. 1. Sections of the 2d cellular structure described by the swatches in (a) Table Ia and (b) Table Ib, respectively. The
swatch assigns strings to the vertices around a root, indicated by the black dots in the center of the figures. The vertex labeled
A0 in (a) is the root of the region in (b); i.e., the roots of the two swatches are separated by two edges. Additionally, the
labeling convention is inverted in (b) relative to (a), corresponding to a switch of the normal vector for the 2d network from
out-of-the-page to into-the-page.
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(a) Swatch of Fig. 1a
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(b) Swatch of Fig. 1b

TABLE I. Swatches describing the sections of a 2d cellular structure shown in (a) Fig. 1a and (b) Fig. 1b, respectively. The
construction is to radius four. The relations between strings, indicated by the equalities, completely specify the swatch and the
local topology.

containing the 2d cellular network. For the moment, let
the three edges connected to the root lead to three dis-
tinct vertices, and let the normal to the plane be oriented
out of the page. We label the three vertices connected
to the root with the strings A, B and C, arbitrarily se-
lecting the vertex labeled A and assigning the remaining
labels in a counter-clockwise manner consistent with the
orientation of the normal.

Rather than simply a labeling scheme, a swatch is ac-
tually a table composed of the assigned strings, with sep-
arate columns for strings containing different numbers of
letters. For instance, the swatch of the cellular network
in Fig. 1a is given by Table Ia. The root is always labeled

by the null string; this means that there is one entry with
no letters in the column to the left. The three strings A,
B and C are arranged alphabetically in the column for
strings of length one.

The radius of a swatch is the length of the longest
currently assigned string, or equivalently the number of
edges in one of the shortest paths from the root to the fur-
thest labeled vertex (here, distance refers to the number
of vertex to vertex steps rather than to a metric distance).
We expand the area described by our swatch by contin-
uing the construction to radius two. Notice that while
there is a choice of three directions away from the root,
a prohibition on retracing any edge means that there is a



4

choice of two directions at every subsequent vertex. This
difference from the root is emphasized by the use of the
letters 0 and 1 to indicate the left and right directions,
respectively, relative to the most recently traversed edge.
That is, the vertex reached by turning left at the end
of the path to vertex A is labeled A0, and the vertex
reached by turning right is labeled A1. The situation
is similar for the paths emanating from vertices B and
C, and the six distinct vertices of this type are labeled
and entered in alphabetical order into the column of the
table for strings of length two. This procedure may be
repeated to continue expanding the swatch.

The most important components of a swatch are the
relations between strings, which start appearing for the
region in Fig. 1a when the swatch is of radius three. The
procedure begins the same as above, with the vertex A0
leading to A00 and A01 and the vertex A1 leading to A10
and A11. Turning left from B0 would assign the string
B00 to the vertex already labeled C1 though. Since the
lengths of the strings B00 and C1 do not differ by more
than one, the equivalence of these paths is indicated by
equating B00 with C1 in Table Ia. B00 is not used as
the basis for any longer strings since all vertices reached
through B00 may be reached by shorter paths through
C1. After recording this relation, the procedure contin-
ues as before with strings B01 and B10, until we observe
that a right turn from B1 would assign the string B11
to the vertex already labeled A00. Since the lengths of
the strings B11 and A00 do not differ by more than one,
B11 is equated with A00 in Table Ia and B11 is not used
as the basis for any longer strings. The remaining strings
of length three are assigned in a similar fashion.

The restriction that relations occur between strings
with lengths differing by at most one is due to the fact
that this is already sufficient to identify the endpoints of
the three edges around a given vertex. Consider Table
Ia in isolation, without knowledge of Fig. 1a. From the
construction given above, A0 must be connected to the
three vertices A, A00 and A01 since these strings cor-
respond to adding or subtracting an edge from the end
of the path to A0. Similarly, B0 must be connected to
the three vertices B, C1 and B01, where the relation
C1 = B00 is used to obtain the string for the vertex that
would have been labeled B00. The A00 vertex case is
more subtle. This vertex is connected to A0 and A001
for the same reasons as before, but the string A000 does
not appear anywhere in the table. A relation involving
the string A000 is not necessary though, since the string
A00 is equivalent to the string B11 and subtracting an
edge from the end of the path to B11 leads to vertex
B1. Therefore, the information in the swatch is already
sufficient to determine that A00 is connected to A0, B1
and A001 without including a relation directly between
the strings A000 and B1.

Occasionally, there may be three paths from the root to
a given vertex, with the lengths of the paths differing by
at most one. In this situation all three strings are written
on the same line of the table describing the swatch, and

FIG. 2. Conventions for the labeling of vertices in 2d. The
top and bottom rows correspond to the normal to the struc-
ture being oriented out of and into the page, respectively.
Within a given row, the first figure indicates the labeling con-
ventions around the root, while the second and third figures
indicate the labeling conventions after a left or a right turn,
respectively.

are indicative of a set of three transitive relations. This
is the maximum number of strings that may be assigned
to any vertex, since a vertex in a 2d cellular structure is
connected to exactly three edges.
This completes the construction of a swatch associated

with a particular root and choice of labeling of the neigh-
boring vertices, apart from the effect of the orientation of
the normal to the cellular network. Orienting the normal
out of the page is considered to cause the strings A, B
and C to be assigned in a counter-clockwise fashion and
the letters 0 and 1 to correspond to the left and right di-
rections, respectively. This set of conventions is reflected
in the diagrams at the top of Fig. 2. Orienting the nor-
mal into the page reverses the conventions, causing the
strings of length one to be assigned in a clockwise fashion
and the letters 1 and 0 to correspond to the left and right
directions, respectively. This is reflected in the set of dia-
grams at the bottom of Fig. 2; Fig. 1b and Table Ib show
an example of a swatch constructed using these alterna-
tive settings. The two choices of normal orientation and
three choices of the vertex labeled A allow six swatches
to be constructed per root, all describing the same re-
gion of the cellular network and therefore regarded as
equivalent. Practically speaking, we use a partial order-
ing of swatches to assign only the minimal swatch to a
given root. This is not essential, but provides consider-
able computational benefits.
The reconstruction of the original 2d network from a

swatch table is described, in detail, in Appendix A.

III. THREE-DIMENSIONAL SWATCHES

Although the construction of a swatch and the recon-
struction of the cellular network topology in 3d is very
similar to that in the 2d case, some complications arise.
In particular, our encoding of a path by a string in 2d
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FIG. 3. The 3d region described by the swatch in Table II.
The swatch assigns strings to the vertices around a root at
the center of the four indicated cells.

relied on the sense of left and right that naturally occurs
in the plane. A sensible definition of direction in 3d is
more subtle, and is a central subject of this section.
As in the 2d case, a 3d swatch begins from a central

vertex or root and gradually extends into the surround-
ing network. The strings assigned to the surrounding
vertices encode the shortest paths from the root to the
vertices along the edges of the cellular network. As be-
fore, the individual letters of the string indicate the di-
rection followed at every vertex along the path. Our en-
coding scheme assumes that every vertex is connected
to exactly four edges and every edge is connected to ex-
actly three faces–conditions that are satisfied for the 3d
cellular structures of interest.
The construction of a swatch begins with the selection

of a root and an orientation for the space. For the mo-
ment, let the four edges connected to the root lead to
four distinct vertices and the orientation of the space be
positive. We label the four vertices connected to the root
with the strings A, B, C and D, arbitrarily selecting the
vertex labeled A. A positively oriented space corresponds
to B, C and D being assigned to the remaining three ver-
tices connected to the root in a clockwise fashion around
the edge extending from the root to A, with the vertex B
selected arbitrarily. The result is consistent with Fig. 3
for which a corresponding swatch is given by Table II.
The root is always labeled by the null string and the four
strings A, B, C and D are arranged alphabetically in the
column for strings of length one.
When continuing the construction of the swatch to ra-

dius two, the prohibition on retracing an edge restricts us
to a choice of three directions at every vertex apart from
the root. We assign these three directions the letters 0, 1
and 2. A positively oriented space corresponds to these
letters being assigned in a clockwise fashion to the three
edges directed away from the end of the most recently
traversed edge, from the perspective of an observer ori-
ented along that edge. Still, this does not specify the
setting of the letters; i.e., the choice of a direction to be
labeled 0.

0 1 2 3

A
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C

D

A0 = B1

A1

A2

B0

B2

C0 = D1

C1

C2

D0

D2

A01

A02

A10

A11 = C11

A12 = A21

A20

A22 = D00

B00 = C22

B01

B02 = B20

B21

B22 = D22

C01

C02

C10

C12 = C21

C20

D01

D02 = D20

D21

TABLE II. The swatch describing the 3d region in Fig. 3
constructed to radius three. The relations between strings,
indicated by the equalities, completely specify the swatch and
the local topology.

This ambiguity may be resolved by observing that the
set of edges bounding a given face is independent of the
orientation of the edges themselves. That is, the setting
of the letters 0, 1 and 2 may be consistently assigned on
the basis of the connectivity of faces to the edges in ques-
tion. A set of conventions established along these lines is
provided in Fig. 4. The three diagrams on the top right
indicate that, for a general vertex, the single edge con-
nected by a face to the two most recently traversed edges
is to be labeled by the same letter as the most recently
traversed edge. The advantage of this convention is that
a set of consecutive and identical letters indicates a path
around the same face. Since this convention may only be
used after two edges have been traversed, the diagram
on the top left is provided to establish the settings in
the region around the root. Finally, the diagrams on the
bottom row establish an equivalent set of conventions for
a negatively oriented space.

With a set of conventions to establish a consistent la-
beling of the edges directed away from a vertex, the con-
struction of the swatch to radius two proceeds as for the
2d case. The three vertices arrived at by passing through
vertex A are labeled A0, A1 and A2, and the three strings
are entered alphabetically into the column of Table II for
strings of length two. Similarly, vertex B leads to vertex
B0, but the vertex that would be labeled B1 is already
assigned the string A0. Since the lengths of the strings
B1 and A0 do not differ by more than one, the equiv-
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FIG. 4. Conventions for the labeling of vertices in 3d. The
top and bottom rows correspond to positive and negative ori-
entations of the space, respectively. Within a given row, the
first figure indicates the labeling conventions around the root,
while the remaining three figures indicate the labeling conven-
tions after a turn of 0, 1 or 2, respectively.

alence of the associated paths is indicated by equating
B1 with A0 in the third column of the table, and B1 is
not used as the basis for any longer strings. The proce-
dure continues as before with the strings B2, C0, C1, C2
and D0, until we observe that the vertex that would be
labeled D1 is already assigned the string C0. This equiv-
alence is indicated by equating D1 with C0 in the third
column of the table, and D1 is not used as the basis for
any longer strings. Finally, the string D2 is assigned and
the construction to radius two is complete. This proce-
dure may be repeated to continue expanding the swatch.
As in the 2d case, a 3d swatch that includes all re-

lations between strings with lengths differing by at most
one is sufficient to identify the endpoints of the four edges
around a given vertex. The appearance of only relations
between strings of the same length in the swatch for the
region in Fig. 3 is therefore notable. This is because this
portion of this cellular structure is composed of four iden-
tical truncated octahedra with all of their faces bounded
by an even number of edges. This feature of the faces
constrains the lengths of paths with the same endpoint
to always differ by a multiple of two, limiting the types
of relations that appear in this particular swatch. This
is a special, rather than general, case.
Occasionally, there may be three or four paths from

the root to a given vertex, with the lengths of each dif-
fering by at most one. In this situation, the three or four
strings are written on the same line of the swatch, and
are regarded as indicating sets of three or six transitive
relations, respectively. The maximum number of strings
that may be assigned to any vertex is four, since a ver-
tex in a 4d cellular structure is connected to exactly four
edges.
This completes the construction of a 3d swatch asso-

ciated with a particular choice of a root and labeling of
neighboring vertices to any desired radius (apart from
the effect of the orientation of the space). Orienting the
space negatively changes the handedness of the vertices

labeled A, B, C and D, and causes the letters 0, 1 and
2 to be assigned in a counterclockwise fashion from the
perspective of an observer oriented along the most re-
cently traversed edge. This set of conventions is indi-
cated by the diagrams on the bottom row of Fig. 4. The
two choices of space orientation and the twelve choices of
vertices labeled A and B allow twenty-four swatches to
be constructed per root, all describing the same region of
the cellular network. All of the variants are considered
equivalent, and the same partial ordering may be used in
2d and 3d to assign the minimal swatch to a given root.
Notice that despite the differences in the structure of

2d and 3d cellular networks, the resulting swatches (e.g.,
Tables I and II) show considerable similarities. This al-
lows many procedures and calculations to be performed
on a swatch independent of the dimensionality of the
space in which the cellular network is embedded; this
will be of considerable importance in Sections IV and V.
The reconstruction of the original 3d network from a

swatch table is described, in detail, in Appendix B.

IV. ENTROPY

As indicated above, a swatch completely describes the
topology of a cellular network in a region around the root,
with the extent of the region described by the swatch ra-
dius. Nevertheless, a swatch is not entirely suitable for a
direct description of the topology of the cellular network
as a whole. Suppose that the cellular structure is statis-
tically homogenous, i.e., any statistical feature measured
within some bounded region converges to a definite limit
as the area or volume of the region increases–independent
of the location of the region in the cellular structure. This
property of statistical homogeneity is not respected by
the choice of a root at the swatch center.
We address this deficiency by constructing a swatch at

every vertex of the cellular structure simultaneously. The
resulting ensemble of swatches does not single out any
particular vertex–respecting the assumption of statistical
homogeneity. Intuitively, the procedure covers the entire
cellular structure with small overlapping regions, with
the topology of the cellular network in a given region
described by the corresponding swatch. Provided that
enough information is given to match the overlapping
regions, this ensemble gives a complete description of the
topology of the cellular structure.
We begin our statistical analysis by focusing on the re-

lations between strings that arise in a swatch table. Let
the length of a relation be the sum of the lengths of the
equivalent strings; e.g., C1 = B00 is a relation of length
five. Two swatches are k-equivalent when all of the rela-
tions up to length k are identical (i.e., the two swatches
describe identical regions within a radius of roughly k/2).
A k-equivalence class is the set of all swatches that are
k-equivalent. Let I(k) be the number of k-equivalence
classes as a function of k (i.e., the number of distinct
allowed configurations within a radius of roughly k/2).
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Although the specific form of this function is not known,
I(k) is finite for all finite k.
Construct a swatch around a randomly chosen root of

cellular structure X . The probability that this swatch
belongs to the ith k-equivalence class is indicated by xk

i
,

subject to the normalization condition
∑I(k)

i
xk
i
= 1 for

every k. That is, xk
i
is the probability of observing the

ith allowed configuration of cells in a region with a ra-
dius of roughly k/2 (where the radius is defined as for a
swatch), centered on a vertex chosen at random from X .
Hence, the set of probabilities xk

i for all i and k give a
description of the statistical topology of the cellular net-
work; we refer to this as the cloth of X . Although there
is no strict upper bound on the value of k, this is practi-
cally restricted either by the size of the cellular structure
or by the available computational resources.
With the topology of the cellular network encoded by

a discrete probability distribution, a variety of statisti-
cal techniques may be used to characterize the cellular
structure. For example, the Shannon entropy [38] allows
the k-entropy of X to be calculated as

Hk(x) = −

I(k)
∑

i

xk

i lnx
k

i . (1)

This quantity indicates the disorder of the structure at a
length scale of about k edges.
We now examine the properties of the k-entropy by

reference to five 2d structures, each containing N cells
on the unit square with periodic boundary conditions:

1. The hexagonal structure is an array of hexagonal
cells; i.e., the Voronoi tessellation of a triangular
lattice.

2. The perturbed structure begins from the triangular
lattice. Every point of the lattice is displaced in
a random direction by a distance sampled from a
normal distribution with a standard deviation of
one-fifth the lattice spacing. A cellular structure is
generated by taking the Voronoi tessellation of the
result.

3. The evolved structure is the statistical steady-
state resulting from normal grain growth (curva-
ture flow) in an isotropic polycrystalline material
following the procedure of Ref. [39].

4. The Poisson structure is the Voronoi tessellation of
randomly (Poisson) distributed points.

5. The flip structure begins from the hexagonal struc-
ture. An edge is randomly selected and flipped,
making the cells initially at the endpoints of the
edge neighbors. This operation is not performed if
it would result in a cell with fewer than three edges
or a cell that shares an edge with itself. Attempting
100N edge flips is found to be more than sufficient
to stabilize the statistical features of the result.

Representative areas of the reference structures appear
in Fig. 5, ordered by increasing topological (Shannon)
entropy. While not necessarily indicative of any actual
physical systems, the reference structures are intended
to be reproducible and to display a variety of cellular
network topologies.

We first restrict our analysis of the k-entropy to a
single type of cellular structure, namely, the evolved
structure. Consider the dependence of the k-entropy
on the number of cells N in the system. Fig. 6 shows
the k-entropy curves for evolved cellular structures with
N = 102, 103, 104, and 105. The most striking features
of this plot are that the curves are indistinguishable at
small k and saturate for large k. The strong dependence
of the saturation value on N clearly shows that this is a
finite-size effect.

A 2d cellular structure with N cells contains 2N ver-
tices. Since the number of available k-equivalence classes
increases with k and the number of vertices in the sys-
tem is a constant, the number of k-equivalence classes will
eventually exceed the number of vertices. Suppose that
there is a value of k above which this property holds and
every swatch is in a distinct k-equivalence class. That
is, xk

i
= 1

2N or xk
i
= 0 when the ith equivalence class is

occupied or unoccupied, respectively, for all i. Referring
to Eq. (1) indicates that the value of the k-entropy would
be log(2N) in this situation. Inserting the values of N
used in Fig. 6 gives 5.30, 7.60, 9.90 and 12.21 for the
corresponding saturation values of the k-entropy, numer-
ically identical to those observed. Hence, this is likely
the source of the finite-size effect visible in the k-entropy
for large values of k.

Meanwhile, the k-entropy goes to zero for small k in
Fig. 6. This is a result of there being only a few k-
equivalence classes available for small values of k, plac-
ing a sharp upper bound on the potential disorder of
the system. For instance, only one k-equivalence class is
available for k = 0 and k = 1 (i.e., the root vertex), and
only two k-equivalence classes are available for k = 2 (i.e.,
three edges or one edge and a two-sided cell connected to
the root). Since Eq. (1) indicates that the k-entropy must
always be less than or equal to log(I(k)), the k-entropy
is always zero for k = 0 and k = 1 and is bounded above
by log(2) for k = 2.

The most significant feature of Fig. 6 though is the
convergence of the k-entropies to a limiting curve with
increasing N . Consider measuring the xk

i of an infinite
cellular structure. Without any sampling error from a fi-
nite population of cells, the values of the xk

i presumably
reflect only the characteristics of the procedure employed
to generate the network, rather than the details of any
particular realization of the structure. With respect to
Fig. 6 specifically, this would give a limiting k-entropy
curve that is characteristic of the evolved structure. Re-
stricting N to a finite value introduces sampling errors
that cause the measured k-entropy curves to deviate from
the limiting curve, most dramatically in the saturation
of the k-entropy for large values of k. This cannot be
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FIG. 5. From left to right, representative areas of the hexagonal, perturbed, evolved, Poisson and flip 2d reference structures,
as described in the text. The corresponding k-entropies increase from left to right.

FIG. 6. (Color online) k-entropies for the 2d evolved structure
with a varying number of cells in the system. As the system
size increases, the k-entropies approach a limiting curve that
is characteristic of the evolved structure. The saturation on
the right occurs from finite-size effects.

FIG. 7. (Color online) k-entropies of the five 2d reference
structures with 105 cells.

avoided, given the restrictions imposed by finite sample
size, but the convergence of the k-entropy curves with
increasing N nevertheless gives an indication of the lim-
iting curve.

Given the notion of a limiting k-entropy curve as a
property of a particular generation procedure/network
type, it is of interest to compare the limiting k-entropy
curves for the different reference structures; this is done

in Fig. 7 for the five reference cellular structures with
N = 105. Apart from the expected behavior at very small
and large k, these curves do not intersect. Hence, they
allow the structures in Fig. 5 to be sorted by topological
entropy; the resultant ordering is consistent with visual
determinations of the relative topological disorder of the
structures.
The hexagonal structure clearly gives a lower bound

to the k-entropy curves (i.e., the k-entropy is zero for
all k), while we conjecture that the flip structure gives a
corresponding upper bound for cellular structures (with-
out two-sided cells). These bounds still allow for con-
siderable variation in the k-entropy curves of the other
cellular structures, particularly with increasing values of
k. The similarity of the k-entropy curves of the evolved
and Poisson structures is significant, particularly since
the Poisson structure is often used as the initial condi-
tion for simulations of normal grain growth and foam
coarsening. Specifically, the implied topological similar-
ity of these cellular structures, relative to the variation
that is conceivably allowed, suggests that there will be a
short initial transient as the Poisson structure develops
into the evolved one.
Properties of the k-entropy may also be investigated

using 3d reference structures. We consider the following
systems, each of which contain close to 9800 cells, set in
the unit cube with periodic boundary conditions:

1. The body-centered cubic (BCC) structure is gener-
ated using the Voronoi tessellation of a BCC lattice.

2. The perturbed structure begins with a BCC lattice.
Each point of the lattice is displaced in a random
direction by a distance sampled from a normal dis-
tribution with a standard deviation of one-fifth the
lattice spacing. A cellular structure is generated
by taking the Voronoi tessellation of the perturbed
lattice.

3. The evolved structure is the statistical steady-state
resulting from normal grain growth (mean curva-
ture flow) of an isotropic polycrystalline material,
following the procedure of Ref. [40].

4. The Poisson structure is the Voronoi tessellation of
randomly (Poisson) distributed points.
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FIG. 8. From left to right, representative volumes of the BCC, perturbed, evolved and Poisson 3d reference structures; the flip
structure is not illustrated for reasons described in the text.

FIG. 9. (Color online) k-entropies of the five 3d reference
structures with roughly 9800 cells.

5. The flip structure begins from the Poisson struc-
ture. A randomly chosen edge is first selected and
replaced with a triangular face; the five adjacent
bodies are changed appropriately. Next, a triangu-
lar face is randomly selected and replaced with an
edge. Neither of these operations are performed if
they will create a face with fewer than three sides,
a cell with fewer than four faces, or a cell that is ad-
jacent to itself. Attempting this procedure 5000N
times is found to be more than sufficient to stabilize
the statistical features of the result.

Representative volumes of the reference structures ap-
pear in Fig. 8, ordered by increasing topological entropy.
While the procedure for generating a flip structure spec-
ifies that certain topological changes should be made,
this is not sufficient to specify the corresponding changes
to the cell geometries. Indeed, there appears to be no
straightforwardway to adjust the geometry of this system
to give something resembling a typical cellular structure.
For this reason we do not illustrate the flip system, even
though topological properties like the k-entropy remain
well-defined.
Figure 9 compares the k-entropies for these five ref-

erence microstructures. Since our 3d system sizes are
severely restricted, we do not consider cases with more

than 9800 cells. Many features of the 2d systems may still
be observed for the 3d analogues though. For instance,
the k-entropy is close to zero for small k in all systems.
This results from the small number of available equiva-
lence classes, just as in 2d, placing a sharp upper bound
on the potential disorder of the system. Furthermore, all
of the curves approach the same saturation value for large
k, as determined by the number of vertices. Since the
number of vertices is not uniquely specified by the num-
ber of cells in 3d, we allow the number of cells to vary
and compare systems with similar numbers of vertices.
Specifically, the five structures we consider have between
58,900 and 59,200 vertices, bounding the k-entropy for
all structures at roughly log(59, 000) ≈ 10.98. This is
the limit observed in Fig. 9.
The 3d BCC structure clearly provides a lower bound

to the k-entropy curves (i.e., the k-entropy is zero for
all k). The flip structure appears to give a correspond-
ing upper bound for k ≤ 5, though the k-entropy dips
below those Poisson and Evolved structures for k ≥ 6.
This illustrates that a system may have long-range or-
der despite being relatively disordered at short distances.
As in 2d, the similarity of the k-entropy curves for the
Poisson and evolved structures suggests that the Poisson
structure may be used as a reasonable initial condition to
generate the evolved structure via normal grain growth.
Perhaps most remarkably, the ordering of reference struc-
tures (with exception of the flip structure for k ≥ 6) is
identical to the ordering of the 2d analogs.
The similarity of k-entropy curves only gives an im-

plicit measure of topological similarity of the correspond-
ing structures though. This encourages the search for a
more direct measure.

V. DISTANCE

In this section, we consider how to quantify the topo-
logical differences between distinct cellular structures.
Let X and Y be two cellular structures and let the prob-
ability that a swatch of X or Y belongs to the ith k-
equivalence class be xk

i
or yk

i
, respectively. (For any par-
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FIG. 10. (Color online) k-distances between distinct real-
izations of the 2d evolved structure. A curve shows the k-
distances between two realizations with the same number of
cells.

ticular k, the xk
i
and yk

i
are discrete probability distri-

butions on the space of k-equivalence classes.) Imagine
drawing a swatch from X or Y with equal probability,
without knowing from which cellular structure the swatch
came. The probability that this swatch belongs to the ith
k-equivalence class is zki = 1

2x
k
i +

1
2y

k
i , the average of the

corresponding probabilities for X and Y . The k-entropy
of the corresponding random variable is Hk(z). By com-
parison, an observer who knows the source of the swatch
would calculate a k-entropy of 1

2H
k(y) + 1

2H
k(x) [41].

The increase in the k-entropy from not knowing whether
the swatch came fromX or Y may therefore be expressed
as

Dk

JS(x, y) = Hk(z)−
1

2
Hk(y)−

1

2
Hk(x)

=
1

2

∑

i

yki log
yki
zk
i

+
1

2

∑

i

xk

i log
xk
i

zk
i

. (2)

This quantity is frequently referred to as the Jensen–
Shannon divergence [42] and is a standard measure of the
similarity of discrete probability distributions. Although
the Jensen–Shannon divergence does not satisfy the re-
quirements of a metric, the square root of the Jensen–
Shannon divergence does [41, 43]. That is, the function

dkJS(x, y) =

√

√

√

√

1

2 log 2

(

∑

i

yk
i
log

yk
i

zk
i

+
∑

i

xk
i
log

xk
i

zk
i

)

(3)
is a metric that measures the statistical difference be-
tween the cellular network topologies of X and Y . For
the purposes of this paper, dk

JS
(x, y) will be referred to

simply as the k-distance. The k-distance has a minimum
of zero when xk

i = yki for every i, and has a maximum
of one when at least one of xk

i
and yk

i
is zero for every i

(i.e., when the probability distributions are disjoint).
As with the k-entropy, we initially restrict our atten-

tion to cellular structures with a single generation proce-
dure and investigate the dependence of the k-distance on

FIG. 11. (Color online) k-distances between a 2d evolved and
2d Poisson structure.

the number of cells N . Figure 10 shows four k-distance
curves between two distinct realizations of the 2d evolved
structure with the same but variable number of cells. No-
tably, as the total number of cells in the system goes to
infinity, the k-distance appears to go to zero. Indeed, if
the xk

i
of an infinite cellular structure reflects only the

characteristics of the generation procedure, rather than
the details of any particular realization of the structure,
then the k-distances between two infinite structures will
be exactly zero for all finite k. Note that the curves in
Fig. 10 do indeed go to zero for small values of k and asN
increases they tend to go to zero for larger and larger val-
ues of k. This is an important result, since this provides
a test for whether two cellular structures are statistically
equivalent.

Finite-size effects are strongly visible in Fig. 10 for
large values of k; this presumably occurs for the same rea-
son as the saturation of the k-entropy in Fig. 6. That is,
there may be some value of k above which every swatch
of X and Y is in a distinct k-equivalence class. From
Eq. 3, this would cause the k-distance to saturate at the
maximum value of one at nearly the same value of k as
for the saturation of the k-entropy in Fig. 6, as is visible
from a comparison of the figures.

The k-distance between the 2d Poisson and the 2d
evolved structures are shown in Fig. 11 for realizations
with the same but variable number of cells. Similar to
Fig. 10, the k-distance curves appear to be converging
to a limiting curve as N increases. This limiting curve
reflects the topological similarities and differences of in-
finite versions of the evolved structure and the Poisson
structure. Deviations from the limiting curve occur due
to sampling error from a finite number of cells, and is
particularly visible in Fig. 11 for large values of k.

The existence of limiting k-distance curves that rigor-
ously quantify the differences in cellular network topol-
ogy raises the possibility that a cellular structure could
be identified by the k-distances to a collection of refer-
ence structures. This is the subject of Fig. 12, which
gives the k-distance between a 2d evolved structure and
the four other reference 2d structures (plus a second real-
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FIG. 12. (Color online) k-distances between a 2d evolved
structure and the other four 2d reference structures. The
evolved curve represents the distance between different real-
izations of the evolved structure and is shown for reference.
All of the realizations contain 105 cells.

ization of another evolved structure) each with 105 cells.
Not surprisingly, the distance between two realizations
of evolved structures has the smallest k-distance for all
k. Next, as expected from a visual inspection of Fig. 5
and from the analysis of the k-entropy curves in Fig. 7,
the evolved structure is statistically quite similar to the
Poisson structure (i.e., smaller k-distance for all k as com-
pared with the other reference structures). The interpre-
tation of the k-distance curves for the remaining refer-
ence structures is more subtle. The hexagonal and per-
turbed structures should be at about the same k-distance
from the evolved structure for k small enough that the
corresponding swatch covers only a few cells, as is ob-
served. The increased number of k-equivalence classes
inhabited by swatches of the perturbed structure makes
this slightly more similar to the evolved structure with
increasing k. Finally, the distance from the evolved to
the flip structure is higher than for any other reference
structure when k is equal to three, owing to the strong
preponderance of three-sided cells in the flip structure.
The curve for the flip reference structure then falls below
that for the hexagonal structure; this is likely due to the
increased variability of the flip structure relative to the
hexagonal one.

The concept of the k-distance can also be used to study
the difference between pairs of three-dimensional cellu-
lar structures. Figure 13 shows k-distances between a
single 3d evolved structure and the four other reference
3d structures (plus a second realization of another 3d
evolved structure). All structures contain roughly 9800
cells.

A number of observations are worthy of note. First,
the k-distance between the pair of 3d evolved structures
is lower than the distance between the evolved structure
and any of the other 3d reference structures for all k.
This is reasonable given that the two evolved structures
are generated using the same process, implying that as
the system size increases, this curve will approach zero

FIG. 13. (Color online) k-distances between a 3d evolved
structure and the other four 3d reference structures. The
evolved curve represents the distance between different real-
izations of the evolved structure and is shown for reference.
All of the realizations contain roughly 9800 cells.

for all k.

Next, for most values of k, the 3d evolved structure is
statistically most similar to the 3d Poisson structure and
therefore has smaller k-distances as compared with the
other reference structures. This should not be surprising
given the similarity of the evolved and Poisson structures
as illustrated in Fig. 8. For k = 3 though, the Poisson
structure is more distant from the evolved structure than
the perturbed one. This may be explained by the abun-
dance of triangles in the Poisson structure (about 13.5%
of all faces) and the scarcity of them in the evolved and
perturbed structures (less than 1% of all faces).

As in 2d, the interpretation of the k-distance curves
for the remaining 3d reference structures is more sub-
tle. The BCC and perturbed structures are roughly the
same k-distance from the evolved structure for k small
enough that the corresponding swatch covers only a few
cells. The increased number of k-equivalence classes in-
habited by swatches of the perturbed structure makes
this slightly more similar to the evolved structure than
the BCC structure though, as is evident from the slightly
smaller k-distance values.

Finally, the distance from the 3d evolved structure to
the 3d flip structure is higher than for any other reference
structure when k is equal to three, owing to the abun-
dance of three-sided faces in the flip structure (over 30%
of all faces). The curve for the flip reference structure
then falls slightly below that for the BCC and perturbed
structures, likely due to the increased variability of the
flip structure relative to the others.

Remarkably, the ordering of the k-distance curves in
Figures 12 and 13 is identical for most k. Aside from
indicating the similarity of specific types of cell struc-
tures in different dimensions, this also helps illustrate
the applicability of the concepts of k-equivalence class,
k-entropy and k-distance in describing the topology of
cellular structures in a manner that is independent of
the dimension of the particular structure.
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(a) 3-coordinated Bethe lattice (b) Reconstructed cellular network

FIG. 14. (a) Our labeling scheme applied to the reference structure (3-coordinated Bethe lattice) for the 2d reconstruction,
with a unique string for every vertex. (b) Reconstruction of the cellular structure in Fig. 1 from the the reference structure
and the relations in Table Ia.

VI. CONCLUSIONS

We have developed the swatch as a mathematical ob-
ject to describe the topology of a portion of a cellular
network in two and three dimensions. By considering the
probability of a swatch in a randomly chosen location be-
ing of a particular type, we are further able to character-
ize the statistical features of the topology of the cellular
network as a whole. This allowed a meaningful definition
of the entropy of a cellular structure to be developed, and
the statistical difference of a pair of cellular structures to
be rigorously measured by a distance function.

Historically, the materials science community has re-
lied predominantly on the visual comparison of micro-
graphs or on scalar measures such as the grain size to
identify a cellular structure and reconstruct the process-
ing history of a sample. While a full characterization
of a material would include information relating to the
presence of second phases particles, variations in solute
content, grain morphology, etc., the distance measure
presented here is an important step toward the complete
and impartial quantification of a cellular structure. Built
upon the topology of the grain boundary network, our
distance function will enable a rigorous characterization
of microstructure variability for a given processing pro-
cedure, and will allow the identification of the processing
steps necessary to bring a material closer to the desired
microstructure. From the standpoint of simulations, this
distance function will enable measurements of the decay
of the initial condition as the cellular network evolves to-
ward a steady-state microstructure, and will enable the
strict validation of simulation results using experimental
microstructures.

More generally, our hope is that this paper stimulate
interest in the broader scientific community in the study
of cellular networks. The disorder that is frequently
present in cellular networks has made the study of these
structures resistant to reductionist techniques, and calls

out for the development of a language able to capture the
properties of a complex structure as a whole.
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Appendix A: Reconstruction from a 2d swatch

One of the claims of Section II is that a swatch contains
enough information to identify the endpoints of the three
edges around any given vertex, provided that the swatch
is constructed to a sufficient radius. This implies that the
swatch labeling scheme described in Section II provides
sufficient information for the reconstruction the cellular
network topology in 2d. In fact, the cellular network
topology is completely specified by the set of relations
between strings with lengths that differ by at most one.
Our intention is to substantiate this claim by explicitly
reconstructing the topology of the region in Fig. 1a using
only the relations that appear in Table Ia and the as-
sumption that every vertex is 3-coordinated (connected
to exactly three edges).
Let a graph be a collection of vertices connected by

edges and a tree be a graph where any pair of vertices is
connected by exactly one path. The n-coordinated Bethe
lattice is defined as the tree where every vertex is directly
connected to n other vertices. For instance, a portion of
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(a) 4-coordinated Bethe lattice with
surfaces

(b) Reconstructed cellular network

FIG. 15. (a) Our labeling scheme applied to the reference structure for the 3d reconstruction, with a unique string for every
vertex. (b) Reconstruction of the cellular structure in Fig. 3 from the reference structure and the relations in Table II. Dashed
lines indicate the continuation of the adjoining surface.

the 3-coordinated Bethe lattice around the root is given
in Fig. 14a. This is used as the reference structure for
our 2d reconstruction since the 3-coordinated Bethe lat-
tice satisfies the minimal requirements to be a valid cel-
lular network in 2d. Specifically, the property of a tree
that any pair of vertices be connected by exactly one
path precludes the existence of any closed cells in the
reference structure, and more generally of any relations
(equivalence of two labels for the same vertex, e.g., C1
and B00 in Fig. 1a) in a swatch of the reference struc-
ture. The absence of relations implies that every possible
string occurs as the label of exactly one vertex.
The topology of a region described by a swatch may be

reconstructed by identifying vertices and edges of the ref-
erence structure according to the relations of the swatch.
This procedure induces the identification of certain of
the surrounding edges and vertices as well, meaning that
many vertices receive more than one label. When this
occurs, only the lexicographically minimal string is re-
tained for a given vertex. Our lexicographic ordering
always places a shorter string before a longer one, and
orders strings alphabetically otherwise.
There are two distinct types of relations in this con-

text. Relations between strings with lengths differing
by one always occur in pairs and indicate the identi-
fication of a pair of edges. Consider B0 = C11 and
C1 = B00 in the third column of Table Ia. These re-
lations are satisfied by identifying the edge from C1 to
C11 with the edge from B0 to B00 in Fig. 14a. Continu-
ity of the structure is maintained by overlaying the sur-
rounding branches according to the relations B = C111,
B01 = C110, C = B000, C10 = B001, etc., and re-
taining only the lexicographically minimal label for the
vertices in every case. This gives the five-sided cell above
and to the right of the root in Fig. 14b. Meanwhile, rela-
tions between strings of the same lengths occur individ-
ually and indicate the identification of a pair of vertices.
The relation A00 = B11 in the fourth column of Table Ia

implies the identification of the vertices A00 and B11 and
the overlaying of the surrounding branches according to
the relations A0 = B111, A001 = B110, B1 = A000, etc.
Retaining the lexicographically minimal string for every
vertex gives the six-sided cell below and to the right of the
root in Fig. 14b. Applying the remaining relations from
Table Ia in a similar manner gives the graph in Fig. 14b;
the reader is invited to confirm that this is topologically
identical to the region around the root in Fig. 1a.
Since a swatch allows a network to be built that is

topologically identical to the original 2d cellular network,
the swatch gives a complete description of the cellular
network topology. This appendix supports the stronger
claim that the relations alone give a complete description
as well. Furthermore, the relations provided by the pro-
cedure in Section II appear to be a minimal description in
the sense that there is no redundant information. Since
the relations are in correspondence with identifications of
the vertices or edges of the 3-coordinated Bethe lattice,
removing a relation from the set would result in a path
not being closed, i.e., the reconstruction would no longer
be topologically identical to the original network.

Appendix B: Reconstruction from a 3d swatch

The procedure for reconstructing the cellular network
topology from a swatch in 3d closely follows the proce-
dure of Appendix A for reconstruction in 2d. Specifi-
cally, relations between strings with lengths differing by
at most one are applied to a reference structure. The
reference structure must satisfy the basic requirements
of a cellular network in 3d, namely, that every vertex be
connected to exactly four edges and every edge be con-
nected to exactly three surfaces. This set of properties is
fulfilled by attaching surfaces to the 4-coordinated Bethe
lattice to give the required reference structure, a portion
of which appears in Fig. 15a. Analogous to the 2d case,
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every possible string occurs as the label of a vertex some-
where in the structure.

The cellular network topology may be reconstructed by
identifying the vertices and edges of the reference struc-
ture according to the relations of the swatch. As before,
this procedure requires the identification of surrounding
edges and vertices as well; i.e., many vertices receive more
than one label. The same lexicographic ordering as in
Appendix A is used to retain the lexicographically min-
imal string for a given vertex. That is, shorter strings
always occur before longer ones and strings are ordered
alphabetically otherwise.

Since a graph underlies our analysis of both 2d and
3d cellular networks, the same types of relations occur
in both cases. Specifically, a pair of relations between
strings with lengths differing by one indicates the identi-
fication of a pair of edges, while a relation between strings
of the same lengths indicates the identification of a pair of
vertices. Consider the relation A0 = B1 in the third col-
umn of Table II. Identifying this pair of vertices requires
the application of the further relations A = B11 and
B = A00 to maintain the continuity of the surface com-
mon to A0 and B1, and of A02 = B12 and A01 = B10
to satisfy the requirement that every vertex be connected

to four edges. The result is the four-sided face connected
to the root and extending out of the page in Fig. 15b.
Analogously, the relation C0 = D1 in the third column
of Table II requires the identification of the surrounding
vertices according to the relations C = D11, D = C00,
C01 = D10 and C02 = D12 for the resulting structure
to be a valid cellular network. This gives the four-sided
face connected to the root and extending into the page
in Fig. 15b. Although pairs of relations between strings
with lengths differing by one do not occur for the swatch
in Table II, the procedure in that case is essentially equiv-
alent. Applying the remaining relations from Table II in
the above manner gives the cellular network in Fig. 15b,
which the reader is invited to confirm is topologically
identical to the region around the root in Fig. 3.
The fact that a swatch allows the construction of an

object that is topologically identical to the original 3d
cellular network means that a swatch gives a complete
description of the cellular network topology. Moreover,
this demonstrates that the relations alone are sufficient
in this respect. Since neglecting any one of the relations
would result in the absence of one of the required vertex
or edge identifications of the reference structure, our de-
scription appears to be minimal as well. This discussion
is not a proof of the optimality of our description though.
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