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Abstract

Percolation is one of the most widely studied models in which a unique giant cluster emerges after

the phase transition. Recently, a new phenomenon that multiple giant clusters are observed in so

called BFW model has attracted much attention, and how multiple giant clusters could emerge in

generic percolation processes on random networks will be concerned in this paper. By introducing

the merging probability and inspecting the distinct mechanisms which contribute to the growth

of largest clusters, a sufficient condition to generate multiple stable giant clusters is given. Based

on the above results, the BFW model and a new multi-ER model given by us are analyzed, and

the mechanism of multiple giant clusters of these two models is revealed. Furthermore, large

fluctuations are observed in the size of multiple giant clusters in many models, but the sum size

of all giant clusters exhibits self-averaging as that in the size of unique giant cluster in ordinary

percolation. Besides, the growth modes of different giant clusters are discussed, and we find that

the large fluctuations observed are mainly due to the stochastic behavior of the evolution in the

critical window. For all the discussion above, numerical simulations on BFW model and multi-ER

model are done, which strongly support our analysis. The investigation of merging probability and

the growth mechanisms of largest clusters provides insight for the essence of multiple giant clusters

in the percolation processes and can be instructive for modeling or analyzing real-world networks

consisting of many large clusters.
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INTRODUCTION

Percolation transition, which concerns the emergence of large-scale connectivity in lattices

or networks, has been regarded as a fundamental model of phase transitions in statistical

physics [1]. It has many applications in materials science, network robustness as well as

epidemic spreading, and has been widely studied [2].

In percolation processes, links or nodes are selected and occupied gradually with time.

A famous and well studied model of percolation is the Erdös-Rényi (ER) random graph [3],

in which links are chosen uniformly in complete graph to be occupied. Erdös and Rényi

[3] proved that as the ratio of the number of links and the number of nodes passes the

critical point tc = 1/2, the model undergoes a second-order transition and a unique giant

cluster emerges. This kind of classical percolation is also observed in directed networks

[4], correlated networks [5] and clustered networks [6], in which second-order transition and

unique giant cluster are common characteristics.

By a simple modification of the rule to choose links in ER model, Achlioptas, D’Souza

and Spencer showed that the percolation can be discontinuous, which was called explosive

percolation [7]. This surprising result led to intensive research later, and the efforts on

different topologies like scale-free networks [8, 9], 2D square lattice [10, 11] and Bethe lattice

[12] were made, also the tricritical point [13] and the transport properties [14] were discussed.

Besides the Achlioptas process, many new models such as cluster aggregation model [15–17],

Gaussian model [18, 19], Hamiltonian approach [20] have been devised and studied, showing

that discontinuous transition can be made when the evolution mechanism produces many

clusters which are relatively large in the subcritical regime [21]. Although some numerical

[22–25] and theoretical results [26] demonstrated that explosive percolation in the original

Achlioptas processes is actually continuous in the mean-field limit, discontinuous transition

indeed exists in other alternative models, e.g., the global competitive percolation process

[27, 28].

On the other hand, a new kind of percolation with multiple giant clusters was also

discovered and attracts our attention. The so called BFW model [29] was analyzed by Chen

and D’Souza [30], which exhibits a strongly discontinuous percolation and two stable giant

clusters coexisting after the transition. In an earlier paper, percolation with multiple giant

clusters was also discussed in a process of aggregation with freezing [31]. According to the
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analysis of Chen et al. [30], the key to formation and coexisting of multiple giant clusters

in BFW model is the high probability of sampling internal-cluster links in the supercritical

region, and any link which would lead to merging two giant clusters will be rejected. Later,

the BFW model was further studied on the lattice by K. J. Schrenk et al. [32]. However,

their discussion concentrated on the BFW model, for further understanding of how multiple

giant clusters emerge and their properties, we should consider the mechanisms in general

processes.

In this paper, we consider a class of generic percolation processes and its evolution mech-

anism. The merging probability between clusters is introduced, which can explicitly express

the rule of different percolation models, and is the most important factor in learning the

evolution of the processes. By analyzing the merging probability and distinct mechanisms in

the evolution of largest clusters in one step, we found only the mechanism of joining largest

clusters together prevents the formation of multiple giant clusters, and then a sufficient con-

dition to generate multiple giant clusters is got as well as the condition to have them coexist

stably later. Two percolation models with multiple giant clusters are discussed to support

our analysis, including both discontinuous and continuous cases. Furthermore, we investi-

gate the size of multiple giants, and contrary to the determinate size of unique giant cluster

in ordinary percolation, large fluctuations are observed in each of multiple giant clusters

among different realizations. However, the sum of all giant cluster size shows no fluctuation

when the internal links in the system are not considered. Besides, in one realization, the

different growth modes of multiple giant clusters are discussed, with which we can determine

the sizes of giant clusters later in the process if their early behavior is known.

MERGING PROBABILITY IN GENERIC PERCOLATION PROCESSES

The widely studied bond percolation on random networks is considered here, in which

the percolation processes can be generally expressed as follows. Start from N nodes with all

links between nodes unoccupied, then each step one unoccupied link is selected and occupied

with some rules, the process continues until a given number of steps are reached. Let T be

the total number of occupied links at current step, and the time t = T/N . At any time t,

every unoccupied link (i, j) has an occupying probability pt(i, j) to be occupied, which is

determined by the specific rule. For two connected clusters A, B, the merging probability
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Pt(A,B) =
∑

i∈A,j∈B pt(i, j) gives the probability that A, B are connected by a link at time t.

Obviously, Pt(A,B) = Pt(B,A), Pt(A,A) represents the probability of occupying an internal

link in A, and
∑

A,B,A 6=B Pt(A,B)/2 +
∑

A Pt(A,A) = 1.

For convenience, in this paper we consider three assumptions on the merging probability:

(1) For two links (i, j) and (i′, j′), i, i′ ∈ A, j, j′ ∈ B, pt(i, j) = pt(i
′, j′), i.e., links in the

same cluster have the same probability to be occupied. Then, we denote pt(A,B) ≡ pt(i, j),

i ∈ A, j ∈ B, and Pt(A,B) = sAsBpt(A,B), if A 6= B;

(2) Denote sA the size of cluster A. Pt(A,B) = Pt(A
′, B′), if sA = sA′ , sB = sB′ , A 6=

B,A′ 6= B′, i.e., two pairs of clusters with the same sizes must have the same merging

probability. Then, without confusion, we can use Pt(sA, sB) instead of Pt(A,B) when A 6= B;

(3) pt(A,B) ≥ pt(A
′, B), if sA ≤ sA′ , i.e., the probability to occupy a link between large

clusters is not larger than that between small clusters. Thus, Pt(A,B) ≥ sA/sA′Pt(A
′, B),

if sA ≤ sA′ .

There is a general class of percolation processes which satisfies these three assumptions,

including all the models we mentioned above, such as ER model, Achlioptas processes and

BFW model.

For example, in ER model, Pt(A,B) is simply the fraction of the number of links con-

necting A and B in the total number of unoccupied links,

PER
t (A,B) =

sAsB
C2

N − tN
≈

2sAsB
N2

. (1)

Note that PER
t (A,B) only depends on sA, sB.

In many other models, Pt(A,B) is also associated with the cluster size distribution n(s, t),

which is the number of clusters of size s per node at time t. For product rule in Achlioptas

processes, for two given clusters A and B,

P PR
t (A,B) =

4sAsB
N2

∑

sA′sB′>sAsB

sA′sB′n(sA′, t)n(sB′ , t), (2)

in which 2sAsB
N2 is the probability we choose a link between A and B, and the sum term is the

probability we choose a link between two clusters whose size product is larger than sAsB. If

we choose both of these two links, by product rule, A, B will be connected.

Besides sA, sB and n(s, t), Pt(A,B) may be associated with other quantities such as the

stage k in BFW model, which we will discuss later.

To study a percolation model, the merging probability is very important in learning the

evolution of the process and the nature of the transition.
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ANALYSIS ON THE EMERGENCE OF MULTIPLE GIANT CLUSTERS

Growth mechanisms in the evolution of largest clusters

In order to study the emergence of multiple giant clusters, it is worth to consider the

evolution of largest clusters in general processes first. In [27], whenever a single link is

occupied, the evolution of the largest cluster C1 was classified into three mechanisms which

are discussed respectively for the analysis of discontinuous percolation transitions. Here, we

use a similar classification when the evolution ofC1 andC2 are both considered, and identify

five distinct mechanisms. How these mechanisms impact on the formation of multiple giant

clusters will be learned. Just like in [27], all existing clusters are ranked by their sizes from

large to small, and the ith largest one is denoted by Ci with its size Ci = |Ci|, C1 ≥ C2 ≥

. . . ≥ Cvmax , vmax represents the total number of existing clusters.

Then, as discussed in [27], for the evolution of C1 and C2, there are essentially five

distinct mechanisms: (1) Direct growth of C1: C1 connects with a small cluster with size

Ci ≤ C1(except C2), C1 + Ci → C1, i ≥ 3; (2) Overtaking of C1: two small clusters of

size Ci, Cj ≤ C1 join together to form one which is larger than the current largest cluster,

Ci+Cj → C1, and the originalC1 becomes new C2; (3) Direct growth ofC2: C2+Ci → C2;

(4) Overtaking ofC2: Ci+Cj → C2; (5) Merging ofC1 andC2: C1+C2 → C1, C3 becomes

the new C2, which makes C1 increase most but C2 have a decrease of C2−C3. The doubling

mechanism considered in [27] is already included in the above cases, as we permit Ci = C1

for i > 1.

When studying the formation of multiple giant clusters, the size ratio C1/C2 is very

important, since it will be finite through the critical point when multiple giant clusters

exist, otherwise in the thermodynamic limit C1/C2 → ∞ after the transition. Next we

inspect how these mechanisms impact on the evolution of C1/C2 respectively. First, let’s

look at the two overtaking mechanisms. Let C1(t) denote the size of C1 at time t, ∆t = 1
N

is the time increased after occupying one link. For the overtaking of C1, both C1 and C2

increase, and C1(t + ∆t) = Ci(t) + Cj(t), C2(t + ∆t) = C1(t). As Ci(t), Cj(t) ≤ C1(t),

whenever mechanism (2) happens, after this step we have C1 ≤ 2C2. Thus, the overtaking

of C1 always keeps C1/C2 ≤ 2. For the overtaking of C2, it only contributes to the growth

of the size C2. Thus the overtaking of C2 always reduces C1/C2.
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Then, we turn to the direct growth mechanisms. The direct growth of C1 increases

C1/C2, but the direct growth of C2 decreases it. With the assumption that Pt(C2, Ci) ≥

C2

C1
Pt(C1, Ci), we have Pt(C1, Ci)Ci/Pt(C2, Ci)Ci ≤ C1/C2 for every i ≥ 3. Thus, together

in one step, these two direct growth mechanisms won’t increase C1/C2 in expected. What’s

more, we note that C1/C2 increases at most 1 in one step of direct growth when C1 merges

with C3. Since the probability that the direct growth of C1 occurs for successively infinite

steps is zero, thus in any time interval [t0, t1], with probability one the maximal number

of successive steps of direct growth of C1 is some finite k. Then, in every successive k + 1

steps, the direct growth of C2 occurs at least once. When C1(t0)/C2(t0) ≤ k, after every

k + 1 steps C1/C2 ≤ k too, which means C1/C2 will stay finite.

For the merging of C1 and C2, C1(t + ∆t)/C2(t + ∆t) ≥ C1(t)/C2(t) + 1 at least.

What’s more, the merging of C1 and C2 is against the overtaking of C1, as C1(t + ∆t) ≥

C2(t + ∆t) + C3(t + ∆t), which means the overtaking of C1 is invalid for at least one step

next.

With the above discussion, we can give a description of the evolution of C1/C2 in ordinary

percolation processes. As we know, the largest cluster becomes a giant through the critical

point tc. Let’s consider the critical window [tc − ǫ, tc + ǫ], ǫ→ 0 as N →∞. Before tc − ǫ,

Pt(C1,C2) is very small due to their small sizes, then the overtaking and direct growth

mechanisms keep C1/C2 ∼ O(1). In the critical window, Pt(C1,C2) increases with the

growth of C1 and C2, and the merging of C1 and C2 dominates the evolution, thus C1/C2

increases rapidly. Beyond the critical window, C1 is macroscopic but C2 has o(N) size,

thus only one giant cluster can emerge. Therefore, the merging of C1 and C2 is the only

mechanism which largely increases C1/C2 and prevents the formation of two giant clusters.

If we can control Pt(C1,C2) to make C1/C2 stay in O(1) order through the critical window,

then C2 may become a giant cluster along with C1 too.

Condition of multiple stable giant clusters

If the overtaking of C1 exists until C1 becomes of O(N) size, two giant clusters must

emerge since C1/C2 ≤ 2. Otherwise, it doesn’t exist since sometime before the transition,

and from then with merging probability Pt(Ci,Cj) the expected growth ∆C1 = C1(t+∆t)−
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C1(t) and ∆C2 = C2(t +∆t)− C2(t) can be simply expressed as follows,

∆C1 =
∑

i≥3

Pt(C1,Ci)Ci(t) + Pt(C1,C2)C2(t),

∆C2 =
∑

i≥3

Pt(C2,Ci)Ci(t)− Pt(C1,C2)(C2(t)− C3(t))

+
∑

i,j≥3,i6=j
Ci+Cj>C2

Pt(Ci,Cj)(Ci(t) + Cj(t)− C2(t)). (3)

For ∆C1, the first term in right hand side stands for the direct growth of C1, and the second

refers to merging of C1 and C2; for ∆C2, the first term stands for the direct growth of C2,

the second also associates with merging of C1 and C2, and the third denotes the overtaking

of C2.

In one step, when C1/C2 ∼ O(1), if Pt(C1,C2)C2(t) ∼ o(∆C1), then in (3), ∆C2 > 0 and

∆C1/∆C2 ≤ C1/C2, the impact of the merging of C1 and C2 can be neglected. If this is

satisfied in all the following steps, noting that at the beginning C1/C2 ≤ 2 and according to

our above analysis, C1/C2 will stay in O(1) order, and C2 must grow to be a giant cluster.

Before the critical window, all clusters are very small including C1 and C2, the merging

of C1 and C2 is indeed negligible. Thus the evolution in the critical window should be

mainly considered. In second-order transitions, (C1(tc + ǫ) − C1(tc − ǫ))/N = Aǫ for some

constant A > 0 as ǫ → 0, and in first-order transitions, (C1(tc + ǫ) − C1(tc − ǫ))/N = A

as ǫ → 0. Thus, in average ∆C1 is no less than O(1) order in the critical window. So if

Pt(C1,C2)C2(t) ∼ o(1), then Pt(C1,C2)C2(t) ∼ o(∆C1). Combining with the discussion

before, we obtain the sufficient condition to have two giant clusters as follows,

Pt(C1,C2) ∼ o(1/C2(t)). (4)

In fact, sometimes the above condition may be too strong, especially when C3 ∼ O(C1),

as C1/C2 is still O(1) after the merging of C1 and C2. Later, we have an example in which

two giant clusters can also emerge for Pt(C1,C2) ∼ O(1/C2(t)) when C3 ∼ O(C1).

After two giant clusters C1 and C2 emerge in the system, they may merge together

in a few steps, and ultimately only one can be observed. Thus we should consider the

condition for two giant clusters to coexist stably. We call multiple giant clusters stable

if with probability one they can coexist until any finite time t. This requires that, the

probability that C1, C2 join together in a period of time [tc, t] is zero, which can be satisfied

if

Pt(C1,C2) ∼ o(1/N) (5)
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in this period. Since after the transition, C2 ∼ O(N), condition (5) coincides with condition

(4).

The evolution of the first k (k = 3, 4, . . .) largest clusters can be analyzed analogically,

and if
∑

i,j≤k,i<j

Pt(Ci,Cj) ∼ o(1/Ck(t)), (6)

the system will exhibit a percolation with k stable giant clusters.

The fact that multiple giant clusters could emerge in our condition (6) seems amazing

compared to ordinary percolation. Obviously, this is due to the controlling of merging

probability. In ordinary percolation, all links are occupied uniformly and independently.

However, in our condition the occupying probability of each link depends on the size of

the merging clusters, which means the probability a link to be occupied can depend on the

occupancy of other distant links. From the physical point of view, this implies nonlocal

control. It is well known that including long-range correlations can give rise to important

changes on the university class or even the nature of the transitions, especially in [33–35] the

local cluster aggregation models, the nonlocal product rules and the percolation under pair-

exclusion constraint have been studied respectively, all showing that strong nonlocal features

make the transition change from ordinary to explosive percolation. Thus it is not surprising

that in our condition a percolation model with the controlling of merging probability could

have multiple giant clusters.

Next, we will study two models to support the above analysis. One is the already known

BFWmodel, which has a discontinuous transition; the other is amulti-ER model constructed

by us, through controlling merging probability of classical ER model, which has a continuous

transition.

MULTIPLE GIANT CLUSTERS IN BFW MODEL AND MULTI-ER MODEL

Discontinuous percolation case: BFW model

In order to verify our analysis above, a well known BFW model which is initially intro-

duced by Bohman, Frieze, and Wormald [29], is discussed here. It has been recently analyzed

by Chen and D’Souza [30], showing a strongly discontinuous percolation with multiple stable

giant clusters. The detailed rule of the BFW model is as follows.
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Let k denote the stage of the process, initially set k = 2, u the total number of links

sampled, T the number of occupied links, T = 0 at the beginning as all the nodes are

isolated. At each step u, one link eu is sampled from all unoccupied ones uniformly at

random, and the following algorithm is implemented:

l ← the maximum cluster size if eu is occupied

If (l ≥ k)

{Occupy eu, u = u+ 1, T = T + 1}

Else if (T/u ≥ g(k) = 1/2 +
√
1/(2k))

{u = u+ 1}

Else

{k = k + 1 and repeat the algorithm}.

The BFW model samples links uniformly from all the unoccupied ones, yet another pro-

cess called restricted BFW (RBFW) is also considered in [30], in which the same rule is

followed but only the links that connect distinct clusters (external links) can be sampled.

The sizes of the largest and the second largest clusters per node in both BFW and RBFW

processes are shown in Fig. 1(a). As discussed in [30], they both exhibit a strongly discon-

tinuous transition at the same critical point tc = 0.976, but after the transition, two stable

giant clusters coexist in the BFW model while only one in the RBFW model.

Chen and D’Souza have carefully studied the mechanisms of the BFW model and showed

that the high probability of sampling internal-cluster links in the supercritical region is the

key to coexisting multiple giant clusters. In contrast, while internal links are forbidden to

sample in RBFW model, no multiple giant clusters coexist then. Here we understand the

mechanisms in our framework by considering the merging probability Pt(A,B). From the

above rule, if a link eu between two distinct clusters A, B is sampled, then it is occupied in

two cases:

(1) sA + sB ≤ k, then occupation of eu won’t lead to the largest cluster size l > k.

(2) sA + sB > k but T/u < g(sA + sB − 1), since g(k) = 1/2 +
√
1/(2k) is a decreasing

function, when k ≤ sA + sB − 1, T/u < g(k) and k will increase until k = sA + sB and eu is

occupied.
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FIG. 1. (Color online) (a) C1/N,C2/N versus time t in BFW and RBFW model for N = 106,

showing the emergence of two giant clusters in the BFW model after transition, while in the

RBFW model the giant cluster is unique ultimately. (b) PBFW
t (C1, C2) (dotted blue line) and

PRBFW
t (C1, C2) (red line) near tc. Note that PBFW

t (C1, C2) = 0 for all t. Inset, T/u in both BFW

and RBFW model are compared with g(C1 + C2 − 1) near tc. All data points are averages over

1000 realizations, N = 106.

We use Pt(sA, sB) instead of Pt(A,B)(A 6= B), and

PBFW
t (sA, sB) =




sAsB/W, if sA + sB ≤ k or T/u < g(sA + sB − 1).

0, else.
(7)

W is a normalized constant, and denotes the total number of unoccupied links which are

internal-cluster links or belong to the two cases. PRBFW
t (sA, sB) has the same expression as

(7), but the number of internal-cluster links is not counted in W .

Obviously, T/u, the fraction of accepted links, is very important in determining the

merging probability. In the BFW model, sampling internal-cluster links always increases

T/u, as they are occupied for sure. In the subcritical region, all clusters are very small,

and sampling internal-cluster links rarely occurs, thus the evolution of BFW and RBFW

is similar. While in the supercritical region, when giant clusters emerge, there is a high

probability to sample internal-cluster links in BFW model as discussed in [30], which makes

T/u always larger than g(C1 + C2 − 1), and PBFW
t (C1, C2) > 0. But this is not satisfied in

RBFW model due to prohibiting sampling internal-cluster links.

We numerically get T/u, k for every t in both BFW and RBFW model, and calculate

PBFW
t (C1, C2), P

RBFW
t (C1, C2) by (7). Near tc, the average over 1000 realizations is shown
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in Fig.1(b). We can see that PBFW
t (C1, C2) = 0 for all t, according to our analysis above,

two giant clusters must emerge through the transition as we observed, and they will coexist

stably in the later evolution. For RBFW model, in fact C2 also grows to O(N) size, but

PRBFW
t (C1, C2)≫ 1/N for t ≥ tc and has a peak at tc, thus two giant clusters can’t coexist

stably, in a few steps two giants merge together with the largest jump in C1 and no second

giant cluster is left. Inset, near tc, T/u > g(C1 + C2 − 1) in BFW model while T/u <

g(C1 + C2 − 1) in RBFW model, which determines the difference between PBFW
t (C1, C2)

and PRBFW
t (C1, C2).

The original BFW model can be generalized so that g(k) = α+
√
1/(2k), and parameter

α controls the number of stable giant clusters. With decreasing α, the transition is delayed

and more giant clusters may appear since the merging probability of largest clusters gets

more suppressed. For α = 0.3, three giant clusters emerge at critical point t0.3c = 0.998, as

shown in Fig. 2. We numerically calculate the merging probability between C1, C2 and C3

as well. Inset, we can see PBFW
t (C2, C3) = 0 at all t for α = 0.3, in contrast, PBFW

t (C2, C3)

has a peak at t0.5c for α = 0.5. Thus, there are only two giant clusters in BFW model with

α = 0.5, while three ones when α = 0.3 as we observed.

Continuous percolation case: multi-ER model

The well known ER model exhibits a second-order percolation transition, and a unique

giant cluster emerges through the critical point tc = 0.5. However, we can modify the ER

model by controlling the merging probability to get multiple giant clusters. The way to

control the merging probability is intuitive: when a link is randomly chosen like in ER

model, it will not be occupied definitely, but only with probability p. p may be different for

different links, those links with smaller p are more difficult to be occupied.

In our model, let p = 1 when it is an internal-cluster link, and p = exp(−θsAsB
N4/3 ) when

the link connects two distinct clusters A, B, whose sizes are sA, sB respectively. N is the

total number of nodes. θ ≥ 0 is a parameter which controls the number of giant clusters,

obviously, if θ = 0 it reduces to the original ER model. We call this multi-ER model.

We know before the critical window, all clusters have o(N2/3) size in the ER model,

and C1, C2, . . . , Ci ∼ O(N
2
3 ) for finite i at tc = 0.5 [36]. So p is designed to make the

early evolution same as the original ER model, but the merging probability between largest
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FIG. 2. (Color online) C1/N,C2/N,C3/N versus time t in generalized BFW model with α = 0.3

for N = 106. Inset, PBFW
t (C2, C3) for α = 0.3 (dotted blue line) and α = 0.5 (red line) near the

critical point. PBFW
t (C2, C3) = 0 at all t for α = 0.3.

clusters is controlled in the critical window.

We numerically implement our model for different θ, and Fig. 3 shows C1/N for θ = 0

and C1/N , C2/N in a typical realization for θ = 1. We can see, in contrast to original

ER model (θ = 0), two giant clusters emerge through the transition when θ = 1, and they

coexist stably.

From the definition, it is easy to get the merging probability as follows,

Pt(A,B) ∼
2sAsB
N2

exp(−
θsAsB
N4/3

), A 6= B. (8)

Pt(A,B) has a maximal point at sAsB = N4/3/θ, and decreases rapidly after across it.

maxPt(C1, C2) ∼ O(1/C2), but as C1, C2 grow, Pt(C1, C2) decreases more rapidly than

1/C2. Pt(C1, C2) ∼ o(1/C2) when C1C2/N
4/3 →∞.

In the critical window, the expected growth of C1 and C2 in one step can be estimated,

when we get the cluster size distribution n(s, tc). In original ER model, we already know

n(s, tc) ∼ s−
5
2 [37]. Since the same evolution before tc, we infer that n(s, tc) should satisfy the
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FIG. 3. (Color online) C1/N versus t for θ = 0 and C1/N , C2/N versus t in a typical realization

for θ = 1, N = 106. Inset, the cluster size distribution at tc = 0.5, n(s, tc) ∼ s−
5
2 for both θ = 0

and θ = 1.

same power law in the multi-ER model. In the inset of Fig. 3, the cluster size distributions

at tc for both θ = 0(ER) and θ = 1 are shown, which confirms this.

Thus, with (3) and (8) we have at tc,

∆C1 =
C2∑

s=1

Pt(C1, s)Nn(s, tc)s

∼
∫ C2

s=1

2C1s
− 1

2

N
exp(−

θC1s

N4/3
)ds

≥
∫ C2

s=1

2C1s
− 1

2

N
exp(−

θC1C2

N4/3
)ds

∼
2C1 · 2(C

1
2
2 − 1)

N
exp(−

θC1C2

N4/3
). (9)

Analogically,

∆C2 ∼
2C2 · 2(C

1
2
3 − 1)

N
exp(−

θC2C3

N4/3
)−

2C1C2(C2 − C3)

N2
exp(−

θC1C2

N4/3
)

=
2C2

N2/3
exp(−

θC2C3

N4/3
)[
2(C

1
2
3 − 1)

N1/3
−

C1(C2 − C3)

N4/3
exp(−

θC2(C1 − C3)

N4/3
)]. (10)
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FIG. 4. (Color online) (a) The merging probability Pt(C1, C2) and (b) the expected growth ∆C2

near the critical point for θ = 0, 0.5, 1, N = 106. All data points are averaged over 1000 realizations;

error bars indicate the standard deviations and reflect system-intrinsic fluctuations.

Note that C1, C2, C3 ∼ O(N
2
3 ) at tc. For θ = 0, ∆C1 ∼ O(1), which agrees with the

fact that ER model has a second-order percolation transition at tc. The direct growth term
2C2·2(C

1
2
3 −1)

N
of C2 is also O(1), but as the the growing of C1, C2, the merging of C1 and C2

dominates the evolution and ∆C2 < 0, thus only one giant cluster can emerge through the

transition.

For θ > 0, we still have ∆C1 ∼ O(1), so the multi-ER model also exhibits a second-order

transition at tc. Pay attention to the last term in (10), we have C1(C2−C3)

N4/3 exp(−θC2(C1−C3)

N4/3 ) ≤

C2(C1−C3)

N4/3 exp(−θC2(C1−C3)

N4/3 ) ≤ 1
θe
, so for sufficiently large θ, ∆C2 is positive and of O(1) size

throughout the critical window. That is to say, C2 will keep growing, when C1C2 ≫ N4/3,

Pt(C1, C2) ∼ o(1/C2), then C2 will become a giant cluster like C1, as what we observed in

Fig. 3 for θ = 1.

We numerically verify the above analysis. Pt(C1, C2) and ∆C2 are computed in 1000

realizations, and the averages are shown in Fig. 4 for θ = 0, 0.5, 1. We can see, as θ

increases, Pt(C1, C2) is controlled to be smaller, making the merging of C1 and C2 be more

strongly suppressed. Near tc, Pt(C1, C2) reaches its maximal point, and maxPt(C1, C2) ∼

O(N−2/3) ∼ O(1/C2). But for θ = 1, Pt(C1, C2) decreases rapidly to nearly zero, and

Pt(C1, C2) ∼ o(1/C2) later. For ∆C2 it turns from negative to positive in the critical

window as θ increases, and when θ = 1, ∆C2 > 0 in the whole evolution.

We are aware that Pt(C1, C2) and ∆C2 have large deviation due to the fluctuation of C1,
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FIG. 5. (Color online) The proportion of realizations in which Ci > 0.01N at t = 1, in total 1000

simulations versus θ for i = 2, 3, 4, 5, 6, N = 106.

C2, C3 near tc in different samples. This may lead to the uncertainty in the evolution of C2

for some θ. In Fig. 4, the average value of ∆C2 is near zero for θ = 0.5, while the deviation

of ∆C2 makes that whether it is positive is not determined. As a result, C2 will become a

giant cluster in some realizations while not in others in this case.

Thus, for the cluster C2, there is an unstable parameter region, when θ belongs to the

region (like θ = 0.5), whether C2 becomes a giant cluster is not certain but with some

probability. If θ is very small (like θ = 0), C2 won’t become a giant cluster, while for θ large

enough (like θ = 1), two giant clusters must emerge.

The discussion of C3, C4 and so on is analogical. Next, we numerically implement 1000

realizations for each θ, and observe the evolution of Ci(i = 2, 3, 4, 5, 6). In practice, the

process is continued until t = 1, and we regard Ci as a giant cluster if Ci grows to larger

than 0.01N in the realization. The proportion of realizations in which Ci > 0.01N at t = 1

is shown in Fig. 5 versus θ. We can see, as θ goes large, Ci starts to have probability to

become a giant cluster, and the probability increases to one ultimately.

On the other hand, for a given θ, the number of stable giant clusters is not deterministic.
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FIG. 6. (Color online) Number of stable giant clusters of size larger than 0.01N at t = 1 versus θ,

N = 106. The data points are averaged over 1000 realizations and dashed line is the best linear

fit with n = 1.2θ + 1. The lower and upper bars are minimum and maximum values respectively.

Inset is the distribution of n (number of stable giant clusters) for θ = 1, 2, 3.

Denote n(θ, 0.01N) the number of stable giant clusters with size larger than 0.01N at t = 1.

We implement 1000 independent realizations for θ = 0, 1, . . . , 6, the average, minimum and

maximum values of n(θ, 0.01N) are shown in Fig. 6. The average of n(θ, 0.01N), denoted

by n, has an approximate linear relation with θ. The dashed line is the best linear fitting

with n = 1.2θ + 1.

QUANTITATIVE ANALYSIS ON THE SIZE OF MULTIPLE GIANT CLUSTERS

Fluctuation in the sizes of giant clusters

For ordinary percolation with unique giant cluster, it is well known that the order pa-

rameter, which refers to the relative size of the largest cluster C1(t)/N , converges to a

nonrandom function in the thermodynamic limit. That is to say, stochastic fluctuations can
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be neglected as N →∞ [1]. Formally, this is called self-averaging.

However, when we study the size of multiple giant clusters, stochastic fluctuations are

often observed in different realizations. In Fig. 7(a), C1/N and C2/N in three independent

realizations of multi-ER model with θ = 1 are shown, and clearly different realizations

exhibit different behavior in the evolution, which implies large fluctuations exist in the size

of giant clusters. This phenomenon is also observed in a modified BFW model with multiple

giant clusters introduced by Chen and D’Souza [38], where the controlling function of BFW

process is set to g(k) = 1/2 + (2k)−β, and β = 2. Fig. 7(b) shows the size of giant clusters

versus t for three independent realizations of modified BFW model, similar as our multi-ER

model, large fluctuations are found.

In order to learn it further, we consider the mean µ1 and the standard deviation χ1 of

the largest cluster size C1/N at t = 1 for different N . If self-averaging holds for the process,

then µ1/χ1 → 0, as N → ∞. In Fig. 8, µ1 and χ1 are numerically estimated based on 103

runs for each N , and compared to ER model, µ1/χ1 does not tend to 0 as N goes large for

multi-ER and modified BFW. Thus, they are not self-averaging, large fluctuations observed

are not due to finite size effect and don’t disappear in the thermodynamic limit. Fig. 9

further illustrates the dependence of the mean and standard deviation on N for both two

models, the mean values of the largest two clusters seem to be stable for large N and large

standard deviations always exist for both.

The large random fluctuations in the order parameter of percolation have been discussed

in [39], where two Achlioptas processes which are not self-averaging are introduced. Accord-

ing to their analysis, this may due to the “freezing in” of early variations, which means the

microscopic fluctuations in the size of the largest component are magnified and propagated

to later in the process. It is similar in percolation with multiple giant clusters. The be-

havior of the percolation process in the critical window is stochastic (For multi-ER model,

the behavior is similar as ER model, where C1, C2, · · ·, is a random sequence which relates

to a certain modified Brownian motion [40]). After the transition, the giant clusters have

random initial sizes. Due to the condition we discussed above, it is known that the giant

clusters won’t join together in the subsequent evolution, thus they should grow respectively.

However, there are usually some relations in the growth of different giant clusters which

always hold for the later process, then the random size at the beginning will be propagated

to later and lead to large fluctuations observed. The relations in the growth of different
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FIG. 7. (Color online) (a) C1/N,C2/N versus t in three independent realizations of multi-ER

model with θ = 1, N = 106. Inset, the ratios of the two giant clusters sizes C1/C2 after transition.

(b) Three independent realizations of modified BFW model with g(k) = 1/2 + (2k)−2, N = 106.
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(each based on 103 realizations) for multi-ER, modified BFW and ER models.

giant clusters will be summarized as growth modes and discussed in detail later.

The sum size of giant clusters

Fig. 9 shows the mean and the standard deviation of the sum size of giant clusters

(C1 + C2)/N . The fluctuations in the sum size are obviously smaller than the fluctuations

in C1/N , C2/N respectively, especially for the modified BFW model (the nondeterministic

number of giant clusters in multi-ER model discussed in the previous section may be the

reason which causes larger fluctuations).

The smaller fluctuations in the sum size imply that the sizes of two giant clusters C1/N ,

C2/N are correlated, and their sum size may have a deterministic evolution in the process.

Let’s take multi-ER model as an example to study the evolution of the sum size of giant

clusters. For simplicity, we suppose the system only has two giant clusters. After the

transition, Pt(C1, C2) ≈ 0 and the overtaking mechanisms don’t work since other clusters

are much smaller than C1, C2. By (3) we have ∆(C1+C2) =
∑

i≥3[Pt(C1, Ci)+Pt(C2, Ci)]Ci,
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thus we can view C1 and C2 as one cluster, the evolution of which is very similar to that of

the unique giant cluster with size C1 + C2 in original ER model. However, there is still one

difference that the links between C1 and C2 won’t be occupied while they may be occupied

as internal links in the giant cluster for original ER model. We indicate that, the difference

in occupying internal links is the only reason which leads to the small fluctuations in the

sum size.

Denote L̂ the number of occupied external links, and t̂ = L̂/N , which is called noninternal

time in [21]. If we consider the evolution of the sum size in noninternal time t̂, then it must

have no fluctuation in the thermodynamic limit and be self-averaging just as what’s in

the original ER model. To demonstrate our analysis, (C1 + C2)/N versus t̂ for the three

different realizations of multi-ER model above are shown in Fig. 10(a), in which we can see

a data collapse and no significant fluctuations. To learn it further, we calculate the standard

deviation of the sum size of all giant clusters, denoted as χsum, versus t̂ over an ensemble of

1000 realizations, which is indeed very small and can be neglected beyond the threshold as

shown in the inset.

Moreover, we can analytically fit the sum size versus t̂ in multi-ER model since it has the

same evolution as C1 in original ER. For a classical ER network A of N nodes with mean

degree c, the size per node γ of the giant cluster is given by [37],

1− γ = e−cγ. (11)

To calculate the number of external links per node t̂ in this network, we divide A into two

parts: the giant cluster G and the remaining network B. For G, there are γ external links

per node in it. For B, there is an important property that B is still an ER network but with

a smaller size (1 − γ)N and a lower mean degree c′ < 1 [40]. Obviously, A and B have the

same number of isolated nodes, then with the Poisson degree distribution for ER network

we have,

e−cN = e−c′(1− γ)N. (12)

The internal links in the remaining network B can be neglected since the clusters in B are

very small and tree-like, which means all the c′

2
(1− γ)N links in B are external. The total

number of external links in A is the sum of two parts, thus,

t̂ =
c′

2
(1− γ) + γ. (13)
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Combing (11), (12) and (13), γ and t̂ satisfy,

1− γ = e
−

2(t̂−γ)γ

(1−γ)2 . (14)

According to our analysis, the sum size in multi-ER model versus t̂ must satisfy (14)

too. Solving the self-consistent equation, we can give an analytical fit of the sum size,

which coincides with (C1+C2)/N in the three realizations very well as shown in Fig. 10(a).

This result further confirms that the sum size of giant clusters is self-averaging and has no

fluctuation in noninternal time.

No fluctuation in the sum size of giant clusters seems to be a common feature in generic

percolation processes with multiple stable giant clusters. For the original BFW model which

doesn’t show large fluctuations in the size of each giant cluster [30], the sum size does for

sure. For the modified BFW model, things are similar as multi-ER. We realize that in

noninternal time, the evolution of the sum size is just the same as C1 in a modified RBFW

model with β = 2. (C1+C2)/N versus t̂ for the three different realizations of modified BFW

model coincide with the simulation of RBFW model with β = 2, which is found in Fig.

10(b). Inset, the standard deviation over 1000 realizations is shown, which is neglectable

except for at the critical point tc = 0.951, thus (C1 + C2)/N has no fluctuation beyond the

transition. The large deviation at tc may due to the discontinuity of the transition [24].

Combining the results above, it is suggested that the sum size of all giant clusters plays a

role of order parameter in the percolation with multiple giant clusters, as what C1/N does

in the ordinary percolation.

Different growth modes of giant clusters

Besides the large fluctuation in the size of each giant cluster in different realizations, on

the other hand, the relation of the growth of different giant clusters in one realization is

discussed here. We still only consider the two giant clusters case. As the discussion above,

for the evolution of giant clusters C1 and C2, only the direct growth mechanisms work.

When considering the growth of these two giant clusters, the discussion can be classified

into three modes in general.

Mode 1. ∆C1/∆C2 = C1/C2. As in multi-ER model, Pt(C1, Ci) ∼
2C1Ci

N2 , Pt(C2, Ci) ∼

2C2Ci

N2 since Ci is very small, then Pt(C1, Ci)/Pt(C2, Ci) = C1/C2 for every i ≥ 3 and
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FIG. 10. (Color online) (C1 + C2)/N versus t̂ (number of external links per node) for the three

different realizations in Fig. 7. Inset, the standard deviation of the sum size of giant clusters χsum

versus t̂ over 1000 realizations, N = 106. (a) multi-ER model. (b) modified BFW model.

23



∆C1/∆C2 = C1/C2. In this mode, C1(t + ∆t)/C2(t + ∆t) = C1(t)/C2(t) in expected.

Since beyond the critical window all other clusters are much smaller than the two giant

ones, the deviation of the ratio C1/C2 in one step is negligible. Thus after some fluctuation

in the critical window, C1/C2 becomes invariant later in the evolution. In the inset of Fig.

7, the ratios for the three realizations are shown respectively. We can see, C1/C2 indeed

stabilizes to a constant for each realization, but the stable values are different due to the

fluctuations in the critical window.

Mode 2. ∆C1/∆C2 = 0. As in modified BFW model, when the probability of sampling

internal-cluster links is larger than g(k), all links that lead to a cluster of size larger than k

are always rejected. In this mode, the direct growth of C1 doesn’t work, C1 stays invariant

after the transition, and only C2 grows in the following evolution, which can be seen in Fig.

10. Like the different C1/C2 in multi-ER model, the invariant size C1 is nondeterministic

due to the fluctuations in the critical window.

Mode 3. 0 < ∆C1/∆C2 < C1/C2. In this case, both C1 and C2 grow, but the ratio

C1/C2 decreases in the evolution. In fact, we don’t find natural models belonging to this

mode.

By the above discussion, we find the behavior in the critical window is crucial for the

process, which determines the initial size of different giant clusters and even the evolution

later. Especially, in spite of large fluctuations, we can always determine the size C1/N ,

C2/N versus t in a given realization, if we know C1, C2 just beyond the critical window.

Let’s take multi-ER model and BFW model as examples.

In multi-ER model, denote m = C1/C2 in one realization, which is a constant beyond

the critical window according to our analysis. Then in this realization, the system has
C2

1+C2
2

(C1+C2)2
= m2+1

(m+1)2
proportion of internal-cluster links compared to a classical ER network

with the giant cluster of size C1+C2, since the links between C1 and C2 are no more internal

links. Thus, using the symbols in (11) and (13), the number of all the occupied links is,

t = t̂ + (
c

2
− t̂)

m2 + 1

(m+ 1)2
. (15)

Combing with (14), we have

1− γ = e
−

2[(m+1)2t−2mγ]γ

m2+1+2m(1−γ)2 . (16)

Solving (16), we can get γ = (C1 + C2)/N at time t. C1/N = m
m+1

γ, C2/N = 1
m+1

γ. In

the realization 1 in Figure 7(a), m stabilizes at 2.417. The analytical calculation fits the

24



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t
 

 
C

1
/N

C
2
/N

analytical fit

m=C
1
/C

2
=2.417

FIG. 11. (Color online) Analytical fit of C1/N , C2/N in realization 1 in Figure 7(a).

numerical results of this realization very well, which is shown in Fig. 11.

In BFW and modified BFW model, C1 can be viewed as being frozen, and we can recog-

nize that there is only one giant cluster C2 in the system. As we have known, the evolution

of the sum size C1+C2 versus t̂ is determined, when internal links are not considered. Hav-

ing C1, C2 just after transition, we can get the number of internal links in the system and

thus determine the two giant clusters sizes versus t in the later evolution of the process. The

detail discussion is omitted here.

The analysis above indicates that the fluctuations of size C1 and C2 are mainly due to

the stochastic behavior in the critical window, of which the influence is propagated to the

later evolution in the process.

CONCLUSION

In summary, we study how multiple giant clusters could emerge in generic percolation pro-

cesses on the random network, and show the merging of largest clusters is the only mechanism

which prevents the formation of multiple giant clusters. Thus controlling the merging prob-
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ability of largest clusters is the key for the emergence of multiple giants, especially we have

got the sufficient condition of k stable giant clusters as
∑

i,j≤k,i<j Pt(Ci,Cj) ∼ o(1/Ck(t))

for every t. It seems that the emergence of multiple giant clusters is independent to the

nature of percolation transition, as we give examples for both discontinuous and continuous

transition cases. Our analysis provides insight on the essence of multiple giant clusters in the

percolation processes. What’s more, multiple giant clusters can be generated in any model

of percolation process simply by following our condition, which may have many applications

such as, creating communication networks consisting of multiple large clusters operating

on different frequencies, or analyzing epidemic infections simultaneously arising in distinct,

independent groups.

Unlike the unique giant cluster, large fluctuations in different realizations are observed

in the size of multiple giant clusters in many models, which is unanticipated. But without

considering the internal links, the sum of all giant clusters sizes shows nearly no fluctuation

as the sums in different realizations collapse to the same value. Besides, in every realization,

by discussing the relation of the growth of different giant clusters, we show that the early

behavior after the transition determines the later evolution, thus the fluctuations are mainly

due to the stochastic behavior in the critical window.

Not all percolation processes with multiple giant clusters show large fluctuations in differ-

ent realizations, for example, the original BFW model. It would be interesting to understand

the mechanisms which lead to no fluctuation. Furthermore, a recent work studying the BFW

model on the lattice shows no multiple stable giant clusters can coexist on the 2D square

lattice [32], which provides a challenge that the emergence of multiple stable giant clusters

in various structures of different dimensions should be considered later.
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