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In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference 
time-domain method and lattice Boltzmann method is presented for electromagnetic wave 
propagation in weakly ionized hydrogen plasmas. In this framework, the multi-component BGK 
collision model considering both elastic and Coulomb collisions and the multi-component force 
model based on the Guo model are introduced, which supply a hyperfine description on the 
interaction between electromagnetic wave and weakly ionized plasma. Cubic spline interpolation and 
mean filtering technique are separately introduced to solve the multi-scalar problem and enhance the 
physical quantities which are polluted by numerical noise. Several simulations have been 
implemented to validate our model. The numerical results are consistent with a simplified analytical 
model, which demonstrates that this model can obtain satisfying numerical solutions successfully. 
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Ⅰ. INTRODUCTION 
 

The complicated behavior of electromagnetic wave 
propagation in weakly ionized plasma gas is becoming 
more and more important because of the fast 
development of plasma stealth technique (PST) in the 
recent quarter of a century [1, 2]. As a kind of new 
concept stealth technique, the PST using magnetized or 
unmagnetized cold plasma gas to avoid being detected 
by radar systems. The PST has a series of advantages, 
such as wideband absorbing ability, high absorbing 
efficiency and low cost. In addition, the shape of 
protected objects should not be modified. All these 
advantages make the PST be widely focused on by most 
researchers in related areas. This situation will continue 
because of the rapid development of practical PST [3,4]. 
As an essential fundamental problem in PST, the basic 
physical process of electromagnetic wave propagation in 
weakly ionized plasma gas consists of many extremely 
complex transport phenomena, such as electron-molecule 
or ion-molecule collisions, electron-ion collisions and 
interactions between self-consistent field and charged 
particles, even more when boundary conditions and 
plasma configurations are so complex that the analytical 
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solutions are out of question [5-7]. For the purpose of 
PST design and other complicated plasma science 
problems, several different numerical methods have been 
implemented [8-12]. 

At the beginning of research on plasma physics, the 
theoretical analysis played an essential role, for a large 
number of important results had been acquired by the 
methods of single charged particle dynamics, 
magnetohydrodynamics (MHD) and Vlasov-Maxwell 
kinetics [5-7]. With the development of plasma physics, 
however, problems were becoming more and more 
complicated, which contained complex collisions and 
nonlinear coupling interactions with multi-degree of 
freedom, and raising a big challenge in theory to describe 
the properties of the plasma phenomena. Since the 
middle of last century, the experimental plasma physics 
has got a continual development, even when the 
theoretical analysis encountered obstacles. Many related 
fields, such as astrophysics, nuclear fusion technique and 
laser acceleration technique etc have been well served by 
these significant plasma experiments [13,14]. Though the 
experimental methods have achieved great success, it 
cannot solve all problems in plasma physics and the costs 
of most plasma experiments are too expensive. The huge 
demands in experiments and a lot of other fields require 



much more interaction laws and accurate results for all 
kinds of conditions. Numerical simulation, with the 
development of computer technique and computational 
physics, supplies a powerful and accurate tool in this 
regime. Using various numerical simulation methods, a 
series of significant results have been achieved [8,9]. 

Generally speaking, there are two kinds of methods 
seem to be most popular in plasma numerical simulation: 
macroscopic methods based on the MHD and 
microscopic methods based on the charged particle 
dynamics. In macroscopic simulation, plasmas are 
treated as continuum media and the basic mathematic 
model consists of Navier-Stokes equations and Maxwell 
equations [15,16]. Finite element method (FEM), finite 
difference method (FDM) and finite volume method 
(FVM) are three main numerical methods for solving the 
partial differential equations [17]. With these methods, 
the MHD simulation has been widely used, especial in 
astrophysics and magnetic confinement fusion. In 
microscopic simulation, the dynamics of single particle 
and the statistical fluctuation are under consideration, 
and the basic mathematic models are Hamilton canonical 
equations and Maxwell equations. With microscopic 
results, macroscopic physical quantities could be 
acquired by statistical analysis. The most famous 
numerical method of microscopic simulation is one 
called particle in cell (PIC), which is a kind of simplified 
molecular dynamics. Using the PIC technique, a large 
area of plasma problems have been simulated, including 
nuclear fusion, gas discharge and free electron laser 
[8-11]. Though the macroscopic and microscopic 
simulation have been widely used in computational 
plasma physics, several intrinsic disadvantages limit their 
further development in more complicated problems, such 
as the continuum media hypothesis in macroscopic 
model, computational resource restraints and limitation 
in multi-scale simulations. As a combination of the 
macroscopic and microscopic methods and the new 
development of physical kinetics theory, the mesoscopic 
methods based on Boltzmann equation supply a useful 
and accurate tool to explore new areas in computational 
plasma physics. 

In the last two decades, an essential mesoscopic 
numerical method called lattice Boltzmann method 

(LBM) has been used as an alternative for the simulation 
of partial differential equations [18,19]. At first the LBM 
was designed for hydrodynamics simulation based on 
kinetics model, then had been rapidly and widely 
developed in almost all fields of physics, even in 
chemistry, biology, geosciences, economics and several 
other extended fields, for its clear physical connotation, 
succinct schemes and efficient computational ability 
[18-41]. In fact, at the beginning of the research, S. Succi 
et. al. had introduced the LBM into the MHD equations 
simulation [21]. In that simulation, Plasmas were 
described by macroscopic Navier-Stokes equations and 
magnetic diffusion equations, and the LBM as an 
efficient alternative for macroscopic hydrodynamics 
simulation was proved successfully. Later on, several 
other LBM models had been developed for MHD, such 
as the work by D.O. Martinez et. al. [24], one of the first 
3D LBM models for MHD by Osborn [34], the 3D LBM 
models for turbulent MHD by Fogaccia et. al. [27], the 
vector LBM model for MHD by Paul Dellar [32,33] and 
the 3D LBM models for magnetic reconnection and 
electrodynamics by M. Mendoza et. al. etc [39,40]. All 
these models based on Navier-Stokes equations and 
magnetic diffusion equations have displayed the 
powerful simulation ability of LBM and supplied many 
useful results of plasma physics, and will get a further 
development in future, though their mathematic model is 
macroscopic approximation of microscopic collective 
dynamics of charged particles. From another point of 
view the plasma LBM simulation can be done directly 
based on Boltzmann-Maxwell kinetics equations, for 
kinetics description is a more intrinsic physical model. 
Checking this model carefully, we find it is a 
multi-component multi-scale flow problem with 
complicated interactions between self-consistent field 
and charged particles. For this purpose, hyperfine 
collision and force models should be structured and 
suitable electromagnetic numerical method should be 
introduced. Several collision models had been studied for 
multi-component flow, such as the initiating work by 
Flekkøy [42], the pseudo potential model and its 
improvement by X. Shan et. al. [43]. and free energy 
model by M. R. Swift et. al. [44]. Among the many 
works on collision models for multi-component flow, a 



group called kinetics models deserves a special attention 
for the present work. They describe binary mixture 
collisions directly from kinetics theory, which are 
physical and universal. A kind of multi-component 
collision models based on Hamei kinetics for mixtures 
were developed by P. Asinari and L. S. Luo [45,46]. 
Simple binary mixture force models could be found in 
their papers as well. As a modification, some finer force 
models designed for single component flow should be 
used in these multi-component models, such as the one 
proposed by X. He et. al. [47]. And its equivalent form 
proposed by Z. Guo et. al. [48]. When it comes to 
electromagnetic numerical methods, choices are 
abundant, for FEM, FVM and method of moment (MoM) 
are all popular in this regime. Considering the demand in 
time domain calculation and the compatibility with LBM, 
we chose the finite-difference time-domain (FDTD) 
method for self-consistent field simulation [49,50]. 

The first 2D hybrid LBM and FDTD method for 
plasmas was developed by Huayu Li and Hyungson Ki 
[51-53]. They structured the framework of the model and 
proved its veracity by numerical tests. Recently a 
modified model had been proposed by them for laser 
plasma interaction (LPI), which considered the impact 
ionization and three-body recombination [53]. Their 
works were improved by other researchers as well, such 
as the modified LPI model introduced by X. Zhang et. al. 
[54]. All these models only consider the collisions 
between neutrals as an approximation and the force 
terms could be improved for multi-component flow 
model. In this manuscript, we present a FDTD-LBM 
model for electromagnetic wave propagation in weakly 
ionized hydrogen plasmas, which consists of elastic 
collision terms between molecules, Coulomb collision 
terms between charged particles, kinetics collision and 
force models in multi-component schemes and 
multi-scale lattice technique for matching FDTD to LBM. 
The FDTD-LBM model has second order accuracy and a 
large stable range. 

Section Ⅱ describes the physical model, with the 
unified three components collision and force terms 
approximation schemes, plus the formulations of elastic 
and Coulomb collisions. The schemes of multi 
component local equilibrium distribution functions are 

developed in Appendix A. Section � describes the 
numerical model, including the distribution of physical 
variables, stability condition, lattice interpolation method, 
filtering techniques and computational procedure. The 
discretization schemes are developed in Appendix B. In 
section Ⅳ, a series simulations have been implemented 
to validate the model. The main results and discussions 
are presented in this section. 

Ⅱ. PHYSICAL MODEL 

A. Review of the Maxwell-Boltzmann equations 

In this paper, two assumptions are used. First, the 
plasmas considered consist of three components which 
are electrons, ions and neutrals. Second, there are no 
elastic collisions, such as ionization and recombination, 
exist in these dynamics.  

Assuming the kinetics model, the evolution of the 
weakly ionized plasma can be described by the 
Boltzmann-Maxwell equations [5,16] 
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in the preceding equations, ( )( ) , ,sf x V t  is the single 

particle distribution function in phase space, where 
, ,s e i n=  denotes the type of particles and can take 

, ,e i n  for electrons, ions and neutrals. sV  is the 

macroscopic velocity and ms  is the mass of different 
type of particle. Qe e= −  is the charge of the electron 

and Qi Ze=  is the charge of the ion. fσ  and J  are 

free charge density and transport electric current density 
in plasma area.  
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 represents the change rate of ( )sf  

caused by collision interactions between the two type of 

components of s and s'. ( )Q
m

s
s

s

E V B+ ×  represents the 

acceleration of s component driven by self-consistent 
field. 

Equations (1) to (3) describe the transport movement 
of plasma components. Equations (4) to (7) describe the 
evolution of self-consistent field. The nonlinear coupled 
relation between field and particles is represented by 
equations (8) and (9). Equations (10) and (11) are 
electromagnetic constitutive relationships. 

B. Velocity discretization and BGK approximation 

A norm lattice Boltzmann model consist of three 
elements, which are discrete velocity model (DVM), 
equilibrium distribution function and evolution equation. 
Appropriative distribution function is the key part of the 
model and it’s embody depends on DVM.  

D2Q9 model is a widely used DVM proposed by Y. H. 
Qian et. al. [55]. In this model the local equilibrium 
distribution function in subspaces is defined as the first 
approximation of the Boltzmann distribution 
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in equation (12), subscript α  denote 9 subspaces which 
are related to 9 different velocities. sn  is the number 

density and sθ  is the sound velocity of s component. 

αω  and ( )s
eα  are weight and velocity vector of the 

D2Q9 DVM.  
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in the preceding equations, s
lc  is the lattice sound 

velocity of the s component, which limit the lattice  
time step ratio. 

BGK approximation is a kind of simplified collision 
operator, which assumes that the collision interaction 
which leads to equilibrium could be replaced by a 
relaxation process [56]. The lattice Boltzmann equations 
with BGK approximation are described as 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,

,

,

1

1

1

eee e e eq e

e

ii i i i eq i

i

nn n n n eq

n

f e f f f F
t

f e f f f F
t

f e f f f
t

αα α α α α

αα α α α α

αα α α α

τ

τ

τ

⎧ ∂ ⎡ ⎤+ ⋅∇ = − − +⎪ ⎣ ⎦∂⎪
⎪ ∂⎪ ⎡ ⎤+ ⋅∇ = − − +⎨ ⎣ ⎦∂⎪
⎪ ∂ ⎡ ⎤+ ⋅∇ = − −⎪ ⎣ ⎦∂⎪⎩

 (17) 

where sτ , , ,s e i n=  is the collision relaxation time of s 

component, which is the inverse of the collision 

frequency. ( )eFα  and ( )iFα  are Lorentz force terms in 

subspaces. Equations (17) are the basic evolution 
equations of the model. 
 



C. Approximation model of the collision terms in 
weakly ionized plasmas 

BGK approximation is originally designed for single 
component gas [56]. As an improved alternative for the 
binary kinetics model, several kinetic schemes have been 
introduced [42-44]. For the purpose to describe 
complicated interactions in plasmas, we propose the 
multi-component collision terms for electron with BGK 
approximation as 
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where ( ),ee eqfα , ( ),ei eqfα  and ( ),en eqfα  are partial local 

equilibrium distribution functions of electron (for more 
details see Appendix A). The terms eeτ , eiτ  and enτ  

are partial collision relaxation times of electron, which 
rest with different collision types. To simplify the 
equation (18), we can define some useful parameters 
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in the preceding equations, eτ  equals to the collision 

relaxation time of electron defined in equation (17) and 

( ),e eqfα  is the local equilibrium distribution function of 

electron. Then 
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The multi-component collision terms for ion and 
neutral could be modeled in the same procedure. Then 
they are described as 
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The equations (24) to (26) supply a hyperfine 
description for the combined action of different type of 
collisions (for more details see Appendix A).  

D. Approximation model of the Lorentz force 

Force term is another essential element of the LBM 
model. Though there are more then ten kinds of force 
models have been developed, all of them are originally 
designed for single component flow. Among the many 
works, the one introduced by Z. Guo et. al. deserves a 
special attention for the present work, for this model has 
clear physical connotation and equals to the one 
introduced by He et. al. to secondary order 
approximation, which is widely used [47,48].  

Based on equation (23), the He model in 
multi-component form could be written as (take electron 
component for example) 

( ) ( )Q
m

e e
e

e

a E V B= + ×           (27) 



( ) ( ) ( )

( ) ( )

( ) ( )( ( ) ( ) )

,

, , ,

ee e
V

e e eq
V

e ee eq ei eq en eq
V ee ei en

F a f

a f

a f f f

α
α

α

α
β β β

⎡ ⎤= − ⋅∇⎢ ⎥⎣ ⎦

⎡ ⎤≈ − ⋅∇⎢ ⎥⎣ ⎦

⎡ ⎤= − ⋅∇ + +⎢ ⎦⎣

(28) 

As an alternative for the preceding equation, Guo 
model in multi-component form is obtained 
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where sρ , , ,s e i n=  is the mass density of s 

component. 'ssV  is the centroidal velocity of s and s' 
component. Obviously 'ssV  equals to 's sV . tδ  is the 
time step of LBM.  

In order to calculate kinetics equations (17), 
macroscopic velocity of charged particle is defined as 
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where ( )e
F  describes the external action caused by 

acceleration ( )e
a . Analyzing the equation (29), the 

scheme of ( )e
F  is obtained 
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The multi-component force term for ion could be 
modeled in the same way. Then it is described as 
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Using equations (24), (25), (26), (29) and (36), 
kinetics equations (17) could be updated step by step.  

E. Physical quantities in the model 

There are some physical parameters should be given 
before using the LBM model to simulate electromagnetic 
wave propagation in weakly ionized plasmas. First of all, 
the initial distribution functions could be defined as 
uniform and the number densities are obtained by Saha 
equation [51] 
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where iU  is the first ionization energy of neutral  and 
for hydrogen it is 15.427 eV ( eT  in this equation is 

defined in eV).  
In order to calculate collision terms, different collision 

relaxation times are necessary parameters. The elastic 
collision relaxation time is defined as [51] 
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where subscript ss' denotes the following 5 types: en, in, 
ne, ni and nn. The 'ssσ  is the collision cross section 



between s and s' components, then the sr  means 

particle radius of s component.  
The Coulomb collisions between charged particles 

active in a kind of long distance interaction form, which 
is different from the elastic collision. With Landau 
approximation, the ei and ii Coulomb collisions 
relaxation times are described as [5] 
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where eL  and iL  are Coulomb logarithms for electron 

and ion and they are defined as [5] 
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With the same definition, eeτ  and ieτ  could be 
obtained. Compare them with eiτ  and iiτ , we have the 

following results [5] 
~ee eiτ τ                (46) 

ie iiτ τ>>                (47) 

the equations (46) and (47) are useful in approximation 
simulation.  

Coulomb collision frequencies are usually too low 
compared with elastic collisions, that many models 
neglect them to simplify the calculation. But as a 
complete theoretical description, Coulomb collisions 
should be included in the LBM model. Actually 
Coulomb collisions could have the same strength with 
elastic collisions in some critical situations.  

With the LBM simulation, some physical quantities 
could be get and they are updated step by step, such as 
number density, mass density, charge density, 
macroscopic velocity, current density and centroidal 
velocity etc, which are defined as 
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In one part, the equations (48) to (53) describe the 
macroscopic state of the plasmas, which are used for 
diagnosing. In another, they are necessary for evolution 
equations updating. For instance, equation (52) is used as 
source term in the FDTD simulation. 

F. Applicability of the model 

The FDTD-LBM model presented in this paper 
derives itself from Maxwell-Boltzmann equations (or 
called Vlasov kinetics equations). Then there are some 
fundamental hurdles we cannot avoid when LBM like 
schemes are used for Vlasov description. In Vlasov type 
description, strong fields will easily excite higher order 
Hermite coefficients. However, LBM like schemes by 
definition truncates at finite order (and very small too) 
Hermite coefficient. Thus, it is obvious that LBM like 
schemes can work only in presence of natural smallness 
parameters such as Mach number. This is the intrinsic 
limitation of the FDTD-LBM model, which determines 
the applicability of the model. 

Taking the strong laser field and plasma interaction for 
example, we give further explanation for the preceding 
conclusion. When the field density of incident laser is 
grater than a certain threshold, obvious nonlinear 
parametric process will be observed and some abnormal 
electromagnetic relations company with high order 
modes is excited. The LBM like schemes cannot 
availably describe these phenomena, for they only 
consider low order terms near equilibrium state. In other 
word, the FDTD-LBM model cannot describe nonlinear 
parametric process. 

When it comes to PST, the field density of incident 
electromagnetic wave is far lower than strong laser and 
the collision absorption is the main physical mechanism, 
which leads to equilibrium state. Then Mach number in 
this problem is very small. As a result, The FDTD-LBM 



model presented in this paper is suitable to describe 
electromagnetic wave propagation in weakly ionized 
plasmas. 

 
Ⅲ. NUMERICAL MODEL 

 
Once the parameters are selected, the FDTD-LBM 

model can be used for electromagnetic wave weakly 
ionized plasma interaction. Based on the physical model 
presented in section Ⅱ, the numerical model is obtained. 
FIG. 1 shows the simulation domain. 

 
FIG. 1. Schematic of the simulation domain. 

In this study, the FDTD simulation domain for 
electromagnetic wave computation is discretized by a 
500×250 uniform Yee grid, which is surrounded by 
convolution perfect matched layer (CPML) boundary in 
X direction to simulate free space [57-60]. The CPML 
thickness is 10 layers. The LBM simulation domain for 
kinetics equations computation is discretized by an 
800×500 uniform lattice whose scalar is half of the Yee 
grids. The mixed boundary is used in X direction for 
LBM computation. In order to simulate infinite boundary, 
the periodic boundary is introduced both for FDTD and 
LBM in Y direction. Assuming that the electromagnetic 
wave is in TM mode whose field quantities are Ex, Ey 
and Hz, the total field scatter field (TF/SF) boundary is 
used to introduce uniform incident wave. 

To enhance computation accuracy and simplify 
sampling procedure, sub-grids are introduced in the 
public domain (coincide with the uniform lattices), 
where FDTD variables are interpolated into sub-grids. 
FIG. 2 shows all physical variables distributions in the 
simulation domain. 
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FIG. 2. Variables positions in the simulation domain. 

The preceding schematic shows the distributions of all 
kinds of physical variables in every area. The left area is 
the FDTD domain. In this area the electric and magnetic 
field variables are distributed according to the normal 2D 
Yee's rule. The right area is the public domain where the 
public sub-grid scalar is half of the Yee grid scalar in 
FDTD domain and all kind of variables are distributed on 
every node. It is obviously that the physical variables in 
public domain cannot be obtained directly. To obtain 
FDTD variables, the linear interpolation technique is 
used, for sub-grids are perfectly embedded in the normal 
Yee grids (for more details see Appendix B). To obtain 
LBM variables, the cubic spline interpolation technique 
is introduced, for electromagnetic wave phase velocity is 
far grater than lattice sound velocity so that sub-grid 
scalar is far larger than normal LBM lattice scalar. More 
details are discussed later. 

Numerical stability is an essential problem in all kinds 
of numerical simulations. The stability of explicit FDTD 
scheme is controlled by Courant Friedricks Lewy (CFL) 
condition which is written as 

2 2

1 1 1c
t x y

≥ +
Δ Δ Δ

            (54) 

where tΔ  is the time step and c is the light velocity in 
vacuum (c should be replaced by c' if the wave 
propagates in dielectric medium, where c' is the wave 
phase velocity in medium) [49]. To simplify the 



calculation, space step x yΔ = Δ  is usually considered 

as a basic assumption. Then the sub-grid scalar 
' ' 0.5x y xΔ = Δ = Δ  can be defined in the public domain. 

Considering the numerical dispersion, the following 
conditions are usually used 

min min0.1 , 0.05 ,
2 '

xx x t
c

λ λ ΔΔ ≤ Δ = Δ ≤     (55) 

where minλ  is the minimal wave length in simulation 

domain. Although the CFL condition makes FDTD 
simulation is stability, it is incompatible with normal 
LBM model, for normal lattice is limited by 

( ) ( ) ( )s s s
ix c tδ δ=              (56) 

where lattice length ( )sxδ  is defined by lattice time step 
( )stδ  which is associate with the physical emplastic of 

plasma [18] 

( )( )2 0.5 s
s s tυ θ τ δ= −            (57) 

where υ  is decided by component temperature and 
collision frequency. The preceding equation shows that 

( )stδ  introduces numerical emplastic. Considering the 
statistical fluctuation, υ  is allowed finite variational to 
extend the simulation. With this assumption, nonnegative 
is a basic limitation to υ , otherwise the computation 
will be instable. Once the physical emplastic and lattice 
time step are decided, modified relaxation time for LBM 

can be obtained. When the lattice time step ( )stδ  is far 
smaller than physical relaxation time, the modification 
can be ignored according to equation (57).  

Based on preceding discussion, the problem that CFL 
condition is incompatible with normal LBM needs to be 
solved. For this purpose, two techniques should be 
considered. First, the multi-time step method is widely 
used in PIC simulation to solve multi-component 
problems. Second, the interpolation method has been 
used in LBM model to simulate high Reynolds number 
problem. In this study, the second technique is selected, 
for it is more suitable for large scalar simulation. Then 
the following relations are defined to construct the 
interpolation model 
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with the equations (58) and (59), cubic spline 

interpolation could be introduced to update distribution 
functions  
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the cubic spline has a more smooth character than 
quadratic polynomial interpolation described as  
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with the interpolation lattice scheme, considering the 
CFL condition and physical emplastic conditions, a 
self-consistent numerical method for 2D plasma 
electromagnetic wave interaction is developed.  

The computational procedure is carried out step by 
step from FDTD to LBM, which is shown in the 
following FIG. 3. 
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FIG. 3. Flow chart of the FDTD-LBM simulation. 

In the preceding flow chart, stop condition is that both 
the electromagnetic wave and the plasma reach steady 
state. If wave frequency is far lower than electron-neutral 
collision frequency, the time step is far grater than 
physical relaxation time, and then relatively fewer steps 
can lead system to steady state. On the contrary, if wave 
frequency is far grater than electron-neutral collision 



frequency, the time step is far smaller than physical 
relaxation time, then relatively greater steps (about 
hundreds of times physical relaxation time) to keep 
system in steady state. Based on the procedure, 
discretization schemes for simulation are obtained (for 
more details see Appendix B). 

There is a detail should be pay attention to. Physical 
quantities obtained by interpolation from Yee grid to 
sub-grid are usually polluted by high frequency 
numerical white noise. In order to enhance 
computational accuracy, the mean filtering technique is 
introduced in this study, which can denoise the physical 
quantities effectively. 

 
Ⅳ. RESULTS AND DISCUSSIONS 

 
In order to validate our model, several simulations 

have been implemented. For this purpose, we introduce a 
simplified analytical model to test our numerical results. 
We compare the numerical and approximate analytical 
propagation constants, attenuation constants and 
propagation waveforms at different electromagnetic 
waves frequencies. 

As a simplified model, the process of electromagnetic 
wave propagation in cold weakly ionized plasma gas can 
be described in fluid dynamics approximation. Due to the 
ion mass is much grater than the electron mass, the 
electron Langmuir frequency is much grater than the ion 
Langmuir frequency. As a result, the relative permittivity 
of plasma can be written as [5] 
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in the equation (62), ω  is the angular frequency of 

incident wave, enν  is the electron-neutral collision 

frequency and pω  is the electron Langmuir frequency, 

which is defined as [6] 

2

0

e
p

e

n e
m

ω
ε

=                 (63) 

With the preceding relative permittivity, we plug plan 
wave mode into Maxwell equations, then the frequency 
dispersion relation could be obtained 

( )2 2
0 ' j ''r rk k ε ε= −             (64) 

where k  is the mode of wave vector in plasma and 0k  
is the wave number in vacuum. 'rε  and ''rε  are real 
and imaginary parts of rε  in plasma. 

The complex wave vector k  can be rewritten as sum 
of real part β  and imaginary part α  

jk β α= −                (65) 
where α  and β  are called attenuation constant and 

propagation constant. After plugging equation (65) into 
equation (64), we obtain the following schemas 
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The preceding equations (66) and (67) indicate that 
collision plasma is a kind of complicated dissipative and 
dispersive medium, for attenuation constant α  and 
propagation constant β  depend on the frequency of 

incident wave.  

As the first validation, hydrogen plasma with a 9.5E-5 

ionization degree is considered. In this simulation, the 

temperature of electrons is 0.6 eV and the temperature of 

ions and neutrals is 0.0253 eV as constants. The number 

densities of three species are en = in =1.0000E20 m-3 and 

nn =1.0522E24 m-3 according to the Saha equation (39). 

The corresponding electron Langmuir frequency and 

electron-neutral collision frequency are pω =5.6415E11 

rad⋅s-1 and enν =4.2831E11 Hz according to equations (63) 

and (40). Using the preceding parameters we can obtain 

the theoretical dispersion relation of this plasma 

according to equations (64), (65), (66) and (67). FIG. 4 

shows the dispersion curve of the plasma. 



 
FIG. 4. (Color online) Theoretical dispersion curve of the 

plasma (the frequencies are from 1E11 to 1E12 Hz). 

In the preceding curves, we can see that when the 

incident wave frequency ω  is higher than pω , the 

propagation constant ratio 0 1kβ ≈  and the attenuation 

constant α  is small. It means that the plasma behaviors 

like a low loss dispersive dielectric medium, which is 

important in the PST. On the contrary, when incident 

wave frequency ω  is far lower than pω  and enν , the 

plasma behaviors more like a perfect conductor, which 

leads to strong loss and high reflection.  

 
FIG. 5. (Color online) Ey component sampled at 3E11 Hz 

(t=28017 steps), which is measured by V⋅m-1. 

 
FIG. 6. (Color online) Hz component sampled at 3E11 Hz 

(t=28017 steps), which is measured by A⋅m-1. 

 
FIG. 7. (Color online) Jy component sampled at 3E11 Hz 

(t=28017 steps), which is measured by A. 

The incident wave frequencies in this simulation are 

selected at 1E11, 2E11, 3E11, 4E11, 5E11, 6E11 and 7E11. All 

these frequencies are measured by Hz. The amplitude of 

incident wave is 100 V⋅m-1. FIG. 5, FIG. 6 and FIG. 7 

show the Ey, Hz and Jy components sampled at 3E11 Hz 

when time is 28017 steps (1000 times eτ ).  

In the preceding images, components sampled at 3E11 

Hz show that the incident wave is attenuated in the 

plasma area, and keep uniform in the Y direction. Once 

the incident wave crosses the plasma-vacuum interface, 



it will drive the charged particles. Then these particles 

will depart from the equilibrium center and be 

accelerated by the time varying electric field. During this 

process, strong elastic collisions and somewhat weaker 

Coulomb collisions exist, which hold a prominently 

dominant position of the dissipation mechanism. With 

these collisions, the macroscopic kinetic energy of 

charged particles acquired from incident electromagnetic 

wave transfer to thermal energy. This process is usually 

called energy thermalization.  
FIG. 8 shows the Ey component sampled at 3E11 Hz 

along the propagation direction when time is 28017 steps. 
From this curve, we can obtain the propagation and 
attenuation constants and then compare them with the 
approximate analytical ones. 

 
FIG. 8. Ey component sampled on 3E11 Hz along the 

propagation direction (t=28017 steps), plasma region is 
between the two thick lines. 

As can be seen from the preceding figure. When the 
incident wave enters the plasma area, its wave length is 
increased and its amplitude exponential decays along the 
propagation direction. These phenomena show that the 
propagation constant in plasma area is slightly lower 
than vacuum wave number and the attenuation constant 
is small. The simulations at other frequencies are 
implemented also. FIG. 9 shows the comparison of the 
propagation and attenuation constants between numerical 
and approximate analytical results. 

 
FIG. 9. (Color online) propagation and attenuation 

constants : numerical versus approximate analytical 

( enν =4.2831E11 Hz, pω =5.6415E11 rad⋅s-1). 

The preceding curves show that the numerical 
propagation and attenuation constants are consistent with 
the approximate analytical ones, which demonstrates that 
the model is accurate and can obtain satisfying numerical 
solutions successfully. Slight deviations come from the 
numerical errors and the simplification used in analytical 
model, for only electron-neutral collision is considered in 
analytical approximation. Different from macroscopic 
methods, more parameters of the plasma can be obtained 
from the distribution functions in this simulation.  

Finally, another simulation with hydrogen plasma with 

9.1E-4 ionization degree is implemented to support the 

preceding conclusion. The temperature of electrons is 0.8 

eV and the temperature of ions and neutrals is 0.0253 eV 

as constants. The number densities of three species are 

en = in =1.0000E22 m-3 and in =1.1043E25 m-3. The 

corresponding electron Langmuir frequency and 

electron-neutral collision frequency are pω =5.6415E12 

rad⋅s-1 and enν =5.1905E12 Hz. The incident wave 

frequencies in this simulation are selected at 2E12, 3E12, 

4E12, 5E12, 6E12, 7E12, 8E12 and 9E12. All these 

frequencies are measured by Hz. FIG. 10 shows the 

comparison of the propagation and attenuation constants 

between numerical and approximate analytical results.   



 
FIG. 10. (Color online) propagation and attenuation 
constants : numerical versus approximate analytical 

( enν =5.1905E12 Hz, pω =5.6415E12 rad⋅s-1) 

The comparison between numerical and approximate 
analytical results shows that the preceding conclusion is 
valid and the FDTD-LBM model can accurately simulate 
the physical phenomena that an electromagnetic wave 
propagation in weakly ionized hydrogen plasmas.  

 
Ⅴ. CONCLUSIONS 

 
In this work, a hybrid electrodynamics and kinetics 

numerical model has been developed for electromagnetic 
wave propagation in weakly ionized hydrogen plasmas. 
The FDTD-LBM model is proved effective to simulate 
the weakly ionized plasma problems. To our knowledge, 
the multi-component BGK collision model considering 
all kinds of particles collisions (including elastic 
collisions and Coulomb collisions) and multi-component 
force model based on the Guo model are firstly 
introduced in the FDTD-LBM model, which supply a 
hyperfine description on the interactions between 
electromagnetic wave and weakly ionized plasmas. 
Cubic spline interpolation and mean filtering technique 
are separately introduced to solve the multi-scalar 
problem and enhance the physical quantities which are 
polluted by numerical noise. Several simulations are 
implemented to validate the numerical method. The 
numerical propagation and attenuation constants at 
different frequencies with different plasma parameters 

are consistent with the approximate analytical ones, 
which demonstrate the accuracy of this model. The 
numerical results show that the plasmas behavior like a 
low loss dispersive dielectric medium when the incident 
wave frequencies are higher than the electron Langmuir 
frequencies. All these results indicate that the weakly 
ionized plasmas can be used in anti-radar stealth 
technique. Additionally, this work can be extended as an 
effective tool in plasma stealth system design.  
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Appendix A：Local equilibrium distribution functions 

 
Partial local equilibrium distribution functions are 

essential quantities of the multi-component LBM model 
established in this study. In order to determine the 
formulations of this distribution functions, we start by 
taking the Taylor expansion of the Maxwell distribution 
function until second order, as follows 
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The preceding equations (A1) to (A9) represent the 
partial equilibrium status of test component s in the 
background component s'. The weighted mean of  
equations (A1) to (A3) determine the equilibrium 
distribution function of electron as showed in equation 
(23). With the same procedure, equilibrium distribution 
functions of ion and neutral are obtained. 
 

Appendix B：Discretization schemes 
 

FIG. 3 shows the computational procedure of the 
FDTD-LBM model for plasma simulation. In order to 
carry out this procedure, discretization schemes are 
developed, as follows 
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The equations (B1) to (B3) are updating equations of 

TM mode in Yee grid, where the source terms 1/ 2
1/ 2,

t
xi jJ +

+  

and 1/ 2
, 1/ 2

t
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+  are obtained by equation (52) after the 

LBM calculation.  
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The equations (B4) to (B7) describe the operation of 

interpolation from Yee grid to sub-grid (take xE  for 

example, the schemes of yE and zH  can be obtained 

with the same procedure). After these operations, 1/ 2
', '

t
xi jE + , 

1/ 2
', '

t
yi jE + and 1/ 2

', '
t

z i jH + on LBM lattice nodes are obtained. 

As mentioned, mean filtering should be done in this 

procedure.  
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The equations (B8) and (B9) are discretization 
expansions of the accelerations caused by Lorentz force, 
which are essential terms in the LBM force model. 
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The preceding equation describes the evolution 
procedure of the distribution functions. After this 
operation, cubic spline interpolation can be done to 
update the distribution functions. 

Finally, equations (B1), (B2), (B3) and (B10) 
determine the evolution of the self-consist field and 
plasma. These are the discretization equations of hybrid 
electrodynamics and kinetics. 
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