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Abstract

We study the problem of electron-ion temperature equilibration in plasmas. We consider pure H

at various densities and temperatures, and Ar-doped H at temperatures high enough so that the

Ar is fully ionized. Two theoretical approaches are used: classical molecular dynamics (MD) with

statistical 2-body potentials, and a generalized Lenard-Balescu (GLB) theory capable of treating

multi-component weakly-coupled plasmas. The GLB is used in two modes: 1) with the quantum

dielectric response in the random-phase approximation (RPA) together with the pure Coulomb in-

teraction, and 2) with the classical (h̄ −→ 0) dielectric response (both with and without local-field

corrections) together with the statistical potentials. We find that the MD results are described

very well by classical GLB including the statistical potentials and without local-field corrections

(RPA only); worse agreement is found when static local-field effects are included, in contradiction

to the classical pure-Coulomb case with like charges. The results of the various approaches are all

in excellent agreement with pure-Coulomb quantum GLB when the temperature is high enough.

In addition, we show that classical calculations with statistical potentials derived from the ex-

act quantum 2-body density matrix produce results in far better agreement with pure-Coulomb

quantum GLB than classical calculations performed with older existing statistical potentials.
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I. INTRODUCTION

The problem of electron-ion temperature equilibration has enjoyed a renewed interest

over the past 5 or so years due to the increased excitement resulting from the completion of

the National Ignition Facility and a general growing interest in inertial confinement fusion

(ICF) [1]. Because of the asymmetric manner in which the alpha-particle fusion products

deposit energy to the electrons and ions, together with the short time-scales of the ICF

implosion experiment, it is generally believed that significant portions of the thermonuclear

burn process will occur in situations where the electrons and ions are out of equilibrium.

Since the fusion burn rate depends very sensitively on the ion temperature [2], a precise

knowledge of the rate at which the individual species temperatures are driven back to equi-

librium (together with an equally precise knowledge of the plasma heating and cooling rates)

is desired.

Most if not all integrated simulations of thermonuclear burn [2, 3] make use of theoretical

equilibration rates of the Landau-Spitzer (LS) variety [4]. In LS theory, an equilibration rate

is derived from a Fokker-Plank equation assuming a simple two-body electron-ion collision

operator. The result is,

1

τei
=

8
√

2πniZ
2
i e

4

3memic3

[
kBTe
mec2

+
kBTi
mic2

]−3/2

lnλei, (1)

where 1/τei is the rate at which the electron temperature, Te changes given an ion temper-

ature, Ti, according to (assuming a single species of ions),

dTe
dt

=
Ti − Te
τei

. (2)

Electron and ion masses are me and mi, number densities are ne and ni, and Zi is the ion

charge. The factor lnλei is the so-called Coulomb logarithm, arising from the (divergent!)

integral of the Rutherford scattering cross-section over impact parameter. In a standard

treatment the logarithmic divergence is eliminated by setting lnλei equal to the logarithm

of a ratio of maximum to minimum impact parameters, ln(bmax/bmin). Landau [4] argued

that bmax should be chosen to be a Debye screening length, since if the impact parameter

is larger than this, an effective 2-body collision will not occur. Since he considered classical

plasmas, he chose bmin to be the classical turning point distance, (now termed the ”Landau

length”), which for a representative collision between electrons and ions at a temperature
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T is approximately b0 = Ze2/kBT . This assumes that the electron is a point-like particle

which undergoes classical motion. For a quantum plasma, another natural choice for bmin is

the thermal de Broglie wavelength, λth [4]. Since λth ∝ 1/
√
T while b0 ∝ 1/T , λth is sure to

be larger than b0 for high T , indicating that the close electron-ion collisions will involve a

spread-out electron wave-packet rather than a classical point-like electron. If Z = 1, λth > b0

for keV plasmas in the fusion-burning regime. Thus, LS theory shows that the short-ranged

part of the electron-ion energy transfer can be dominated by quantum diffraction even when

the electron occupation numbers are completely Maxwellian.

The LS solution to the electron-ion temperature equilibration problem suffers from

two serious deficiencies: 1) It is only applicable for weak plasma coupling, i.e.- Γei =

Zie
2n1/3/T << 1 [5]. Indeed, if Γei is large, b0 and/or λth can exceed the screening length,

which means that both lnλei and the resulting transition rate become negative. 2) As Lan-

dau himself admitted, his theory produces predictions of ”logarithmic accuracy”. If, say, a

factor of two or better accuracy is desired (as for the ICF application), LS is likely insufficient

even for weakly-coupled plasmas.

The desire to go beyond LS has prompted numerous researchers to address this problem

using other theoretical and computational means. Those most closely related to the LS

treatment involve kinetic and many-body theories in which plasma screening and quantum

effects are explicitly taken into account [6]. In this way, the collision integral is computed

without the need for ad hoc, albeit physically motivated, cutoffs as in the Coulomb logarithm

of LS. These include the many-body Greens function approach of Dharma-Wardana and

Perrot [7], the kinetic theory + dimensional regularization work of Brown, Preston and

Singleton (BPS) [8], the T-matrix theory of Gericke et al. [9], and the quantum Lenard-

Balescu treatments of Daligault and Dimonte [10] and Vorberger et al. [11]. Though these

approaches have produced much in the way of insight, precise numerical predictions of τei

have been essentially confined to plasmas exhibiting weak electron-ion coupling, particularly

for the physically relevant case of opposite charges, since the quantitative inclusion of bound-

state effects is still quite challenging at present. Indeed, with the exception of an excellent

recent work involving like-charges (proton-positron) [10], it is not known how weakly-coupled

the plasma must be for the above approaches to be predictive. This problem is exacerbated

by the complete absence of high-accuracy experimental data of τei for plasmas in the fusion-

burning regime.
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Another approach, capable of including arbitrarily complex many-body correlations for

a classical plasma, is MD. Since the work of Hansen and McDonald in the 1980’s [12],

researchers have attempted to compute τei in cases where bound states are either unim-

portant (like-charge, or sufficiently high-T ) or are largely ignored (by positing fixed, time-

independent Zi). The major problem here, of course, is that real plasmas are not classical.

And as we stated above, for the fusion-burning plasmas which are our interest, quantum

diffraction is expected to be essential to include if a reasonable τei is to be obtained. In fact,

there is an even more basic practical problem: Any plasma comprised of opposite charges

is necessarily quantum-mechanical, in that the problem of mutually interacting classical

electrons and protons is fundamentally ill-posed; in a classical simulation, an electron will,

through multi-particle energy exchange processes, eventually be forced infinitesimally close

to a proton even if they are forbidden to radiate. Indeed, it is the very quantum nature of

the electrons which gives rise to the stability of matter [13].

Methods for simulating quantum systems do indeed exist, but none are easily applied

to the problem of electron-ion equilibration. Self-consistent electronic structure-based MD,

such as that based on various approximations within density functional theory [14], typically

invokes Born-Oppenheimer-like assumptions, whereby the electron and ion dynamics are

decoupled. This prevents irreversible work from being performed by one subsystem on

the other, preventing heat transfer. Quantum Monte Carlo methods have also reached a

mature stage [15], but these approaches are generally limited to computing time-independent

thermal averages in equilibrium, not non-equlilibrium properties such as energy exchange.

True time-dependent Schrödinger dynamics is also coming to fruition, but only for few-body

systems [16].

To wit, researchers studying temperature equilibration in plasmas have used classical MD

in two varieties: 1) Like-charge MD, in which a truly classical plasma is studied. This has

much merit, since for the weakly-coupled plasmas (i.e., spatially homogeneous, no bound

states) for which LS and related approaches are intended, the like-charge and opposite-

charge predictions are exactly the same [4]. Dimonte and Daligault [10, 17] have used

this approach and have identified a flavor of kinetic theory which reproduces their like-

charge MD results strikingly well up to moderate plasma couplings. 2) Opposite-charge MD

with 2-body statistical potentials (SP). Here, classical effective potentials are derived which

reproduce the correct static structure factors of the quantum plasma; they look essentially
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like the bare Coulomb interaction at large-range and a softened (e.g. finite) potential within

the de Broglie wavelength at short-range [18–20]. This fixes the opposite-charge classical

instability problem, and it is hoped that the softening of the electron-ion potential at short-

range embodies the salient features of quantum diffraction present for true quantum plasmas.

Work in this area includes the original Hansen-McDonald contribution [12], together with

more recent work exhibiting far better statistical accuracy: Jeon et al. [21], Glosli et al.

[22], both addressing pure hydrogen, and Benedict et al. [23] addressing an idealization of

an SF6 plasma exhibiting weak electron-ion coupling but strong ion-ion coupling.

Both like-charge and opposite-charge MD simulations have verified that LS-type ap-

proaches work well for hydrogen plasmas as long as Γei is not too large (so, high-T and

low-n), though all have shown that leading-order corrections to LS supplied by, for instance,

the BPS theory, are important to include even for Γei ∼ 0.1 or less [17, 21, 22]. For stronger

coupling, they clearly show a break-down of the weak-coupling theories, manifested in the

effective Coulomb-log, lnλeff
ei , approaching zero slowly from above as Γei is increased [17, 22].

Fits to the T-matrix results of Ref.[9] have been shown to reproduce the MD performed with

SPs quite nicely for H, in a regime for which Γei is fairly large but T is still high enough to

prevent bound-state formation [22]. The MD work on the SF6 plasma exhibited the effects

of strong ion-ion coupling but relatively weak electron-ion coupling [23]. In particular, it

was seen that the final equilibrated temperature was notably different from what LS (or

indeed most of the aforementioned theories) would predict, a result of the screened ions

storing potential energy when the ion temperature is low and the ions are strongly cor-

related. This potential energy contribution to the temperature equilibration problem had

been discussed before [24], and has now been modeled in detail by Vorberger et al. [11].

It should be stressed that plasmas for which at least some of the ions are strongly-coupled

are quite probably of the greatest interest at present, since: 1) Pure H or DT plasmas in

the fusion-burning regime (n ∼ 1025 1/cc and T ∼ a few keV) are probably weakly coupled

enough for existing quantum-kinetic treatments to apply, and 2) The admixture of high-Z

dopants from the ablator of an ICF capsule into the DT fuel is a very real concern [1].

In this work, we present the results of classical MD simulations, most of which use the

SPs, for two systems: pure H, and Ar-doped H for fully-ionized Ar (Z = 18). For the

chosen systems, n varies between 1022 1/cc and 1026 1/cc, with the bulk of the simulations

concentrated around 1025 1/cc. Temperatures are between 100 eV and 10’s of keV (for the
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Ar-doped H). These conditions are chosen to coincide with those for DT fusion. While some

of the conditions relevant for fusion include regimes in which the electrons are degenerate

[25], we focus largely on those in which the electrons are Maxwellian; this is appropriate

for the classical MD studies reported here. The few cases we include that venture into

the degenerate regime are considered primarily to afford comparisons between our classical

simulations and associated theories (mentioned below).

In addition to presenting MD results for τei which are far more accurate than our earlier

MD predictions for H [22], we also use a multi-species version of the Generalized Lenard-

Balescu (GLB) theory, such as that presented in Refs. [10, 11], to better understand our

MD data. We use the GLB method in two distinct ways: 1) In its quantum variety along

with the bare Coulomb potential, and 2) In its classical variety (h̄ −→ 0) with the SPs. By

doing 1, we endeavor to learn nature’s true answer, at least for the weakly-coupled cases

where GLB should be accurate. With 2, we address various concerns that arose in our earlier

MD work on H [22]. Both 1 and 2 taken together allow us to see the extent to which we

should expect classical MD simulations of τei to reflect quantum reality. We will show that

for low-Z plasmas in the fusion-burning regime, classical MD with previously available SPs

[18, 19] should produce values for τei which are within 10 - 20 percent or so of the quantum

results. In addition, we use computations of the exact quantum pair density matrix to

construct improved SPs for which the agreement is better than this by at least a factor of

four, verifying the efficacy of earlier attempts to construct potentials in this manner [20].

While direct comparisons such as these can only be done for weak-coupling (since one is

only sure of GLB’s validity in such situations), we suspect that some of our conclusions will

inform future and ongoing MD studies of strongly-coupled quantum plasmas.

II. MOLECULAR DYNAMICS SIMULATIONS

Temperature relaxation simulations are performed with the ddcMD molecular dynamics

code [26]. Two-body forces are evaluated with a particle-particle-particle mesh method

[27] designed for long-ranged Coulomb and related interactions. Recent optimization of

ddcMD allows us to increase the numbers of particles in each simulation by factors of 103−

104 relative to our earlier plasma studies [22, 23], with corresponding improvements in

statistical uncertainties. Our main goal for these MD studies is to provide guidance for the
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discrimination between, or development of, theories of electron-ion relaxation for plasmas.

In addition, we seek to detect differences in the simulations resulting from the use of different

models for the electron-ion interaction. Thus, a fairly high level of statistical accuracy is

needed.

The simulations all involve classical many-particle dynamics. In some, we use repulsive

1/r potentials, and in others, quantum statistical potentials [18–20]. The latter are designed

to reproduce the equilibrium quantum pair Coulomb correlations by sampling a classical

equilibrium distribution with the model potential; they account for quantum mechanical

diffraction at short distances in some thermally averaged sense. Both types of potential

have been used to compute non-equilibrium plasma properties before [10, 12, 21–23]. Pre-

vious simulations suggest that the temperature relaxation due to Coulomb and statistical

potentials differ by 10% or less at moderate coupling for hydrogen [22], so we seek to limit

our uncertainties to much less than this. Because our MD code scales well, we use large

systems (1024000 particles for H) to minimize statistical errors instead of many indepen-

dent, small replicas. In a few cases, we compare the results from statistically uncorrelated

replicas to quantify the uncertainties for these large simulations. In the following discussion,

we describe the details of our hydrogen simulations, though similar approaches are used for

the Ar-doped H plasma simulations we also present below.

We prepare nonequilibrium, two-temperature hydrogen plasmas so as to minimize initial

transient behavior during the temperature relaxation runs. The particles are started in a

perfect ionic lattice in the CsCl structure. This artificial placement ensures that long wave-

length charge fluctuations are initially zero. The longest wavelength acoustic modes relax

slowly for large systems, and it is preferable to begin with a well-characterized density not

far from the expected thermal distribution. In contrast, our prior use (in small systems) of

a random mixture at quasi-uniform density [22, 23] can introduce spurious, athermal charge

density fluctuations that must then be annealed from the system. No attempt has been

made to seed the CsCl structure with density fluctuations appropriate to the temperature

and compressibility of the system, although this could be done in the future. The initial

particle velocities are drawn randomly from separate Maxwell-Boltzmann distributions. We

add separate, weak Langevin thermostats to the electrons and protons,

mαv̇dt = −mαv

τα
dt+

√
2kTmα

τα
dξ (3)
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during the MD sample preparation. Here, dξ is white noise and α ∈ {e, i} for electrons

and ions. Typically, the species-dependent velocity decay time, τα, is adjusted to exceed

the plasmon (for electrons) or ion acoustic wave (for ions) period, or density oscillations are

overdamped and their evolution can be delayed. In order to quickly approach a stationary

state, we initially scale the proton masses to mp ' me. An MD simulation is performed over

multiple oscillation periods, until the distribution of amplitudes for the longest-wavelength

modes appears to be stationary. The disparate species temperatures equilibrate rapidly for

mp ' me; this causes departures from the two-temperature profile and alters the nonequilib-

rium pair correlations. Afterwards, the proton masses are rescaled logarithmically towards

their physical values, and all particle velocities are rescaled to recover the desired species’

temperatures. The system is then annealed for a similar interval as before. The subsequent

temperature equilibration is slower due to the increased adiabatic separation of ions and

electrons, and the final configuration is closer to the desired two-temperature limit. In par-

ticular, the density fluctuation spectrum and total potential energy more closely approximate

that for the nonequilibrium temperature relaxation problem. The sequence (mass-scaling,

velocity-scaling, and thermostatted MD) is repeated three times, until the final proton mass

is obtained.

The physical electron mass is used in all simulations, but the proton mass has been taken

for the most part to be 1824me here, rather than its true physical mass (∼ 1836me). This

is simply because of an error in defining the proton mass in the MD code which was not

caught until later; the closeness of the chosen value to the true value allows us to assert

that the physical value of any computed temperature relaxation time can be recovered by

appealing to Eq.1 and scaling the reported relaxation times (computed with mp = 1824me)

by the factor 1.0066.

The as-prepared system has quasi-Maxwell-Boltzmann distributions near the desired tem-

peratures, and density fluctuations that approximate a stationary, but non-equilibrium dis-

tribution. In some cases, independent samples are obtained by repeating this procedure,

starting from the stationary configuration just described. The initial mass scaling, mp ' me,

quickly reaches a state that is uncorrelated to the starting configuration.

Temperature relaxation rates are obtained by microcanonical MD simulations of the as-

prepared non-equilibrium systems. Simulation durations range from <1% to substantial

fractions of τei, and ∆T = Te(t)− Tp(t) relaxes by as little as 0.1% for weak-coupling cases
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and up to 50% for strong-coupling. We perform a nonlinear least squares fit of a relaxation

function F (C(t− t0)) to ∆T (t) over the entire simulation interval, in terms of a rate C and

time offset t0. The relaxation time τ−1
ei = Cdln(F )/dt. Different analytic results for F (t)

have been used in the past [10]; here the fitting function is a numerical solution to,

dF

dt
= −(Fe +

Fp
1824

)−3/2ln(F 1/2
e )F, (4)

where Fe = F/2 + T∞ represents the fit electron temperature in a Landau-Spitzer like

expression, Fp = −F/2 + T∞, and T∞ is some average (Te + Tp)/2, an estimate for the

asymptotic, equilibrium temperature in the weak-coupling limit, and mp/me is here assumed

to be 1824. This is adjusted accordingly in the few cases where a reduced proton mass is used

in the temperature relaxation simulations. Eq. 4 includes leading deviations from constant

linear relaxation. However, it does not account for strong-coupling cases where equilibration

Teq 6= T∞ due to changing potential energy contributions [23, 24]. An example of the raw

MD data, together with the aforementioned fit, appears in Fig.1 for a hydrogen plasma at

n = 1025 1/cc (discussed in Section IV A).

The numerical uncertainty in τei cannot be estimated from the fit to a single short simu-

lation because fluctuations in relative temperature occur over times characteristic of τei. A

lower bound to the error can be obtained by considering the equilibrium situation. When two

systems are in thermal equilibrium with an external bath, their internal energies fluctuate:

(δE)2 = E2 − (E)2 = kBT
2Cv, (5)

(Ref.[28], 6.5.5. and 7.2.13). The heat capacity for the kinetic energy of the electrons or

protons is just the ideal gas Cv = 3
2
NkB. If the bath is removed, the temperatures of the

two species will still fluctuate, each serving as a (finite) bath for the other. This implies

(
3

2
NkBδT )2 =

3

2
N(kBT )2 (6)

and a relative uncertainty in the temperature of δT/T ' (3N)−1/2, about 0.1% for the sim-

ulations considered here. The autocorrelation time for these fluctuations is related to τei.

For example, an equilibrium simulation of hydrogen at ρ = 1022/cc Te = Tp = 30eV, using

the Dunn-Broyles and Deutsch potentials [18, 19] for the inter-particle interactions predicts

τei '1450 fs. This is obtained from the first 70 fs of the 〈∆T (t)∆T (0)〉 autocorrelation

function from a 400 fs simulation. In comparison, two independent, 150 fs, nonequilibrium
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FIG. 1: (Color online) Raw data (black dots) for the simulation of temperature equilibration in a

hydrogen plasma with n = 1025 1/cc and initial electron and proton temperatures of 1000 eV and

800 eV, respectively. Dunn-Broyles + Deutch statistical potentials were used in the MD simulation.

Solid blue and red curves show the fit to the data which is used to extract the value of τei.

simulations with Tp=60 eV, Te=30 eV give τei ' 1545 fs from the direct numerical fit to ∆T

(see Table I)). If multiple short (e.g., duration 0.01τei), statistically-independent, equilib-

rium simulations are performed, the slope d∆T/dt will average to zero, with an uncertainty

of order δT/τei or 0.1%. A comparable error will apply to the d∆T/dt and the rate constant

derived from short nonequilibrium temperature relaxation runs. Finally, the nonequilibrium

temperature relaxation runs are compatible with these estimates. The residual or difference

between the simulated Ti − Te and the fitted function fluctuates with an amplitude that is

consistent with the near equilibrium conditions of the simulation.

There are additional contributions to the uncertainty between independent simulations.

The isothermal sample preparation described above gives an ensemble of systems with dif-

ferent internal energies; Te+Ti
2

may differ at the 0.1% level, resulting in slightly different

expected τei throughout the simulations. However, an explicit sampling of independent cal-

culations with 5× 105 hydrogen suggest that τei differ by 1-2%. Larger errors occur because

kinetic energy is also exchanged with the potential energy of the system. The heat capacity
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due to the potential energy is proportionately small in the weak coupling limit, but the

relevant correlation time constant can be shorter than τei. Thus, the influence of potential

energy fluctuations is magnified by a short simulation. There may also be residual transient

relaxations from the sample preparation. In practice, our demonstrated numerical accuracy

is sufficient to distinguish between some theories of electron-ion equilibration in interesting

regimes, and at least some different models for e-p interactions, regardless of the sources of

error.

MD plasma simulations are most challenging in the weak coupling limit; relaxation times

are large here, so long simulations are required. The high thermal velocities also demand

small time steps to resolve trajectories for small impact parameter collisions. The 1/r

Coulomb potential poses the most stringent time step requirements; the use of statistical

potentials to include quantum diffraction effects greatly ameliorates this trend. Numerical

errors manifest most prominently as a failure of energy conservation, but it is essential to

note that good energy conservation is by no means a sufficient condition to ensure that the

temperature equilibration rate is conserved. We maintain a high degree of energy conser-

vation, typically parts in 103 − 104 over a simulation in which temperature differences may

relax by anywhere from 10% to 0.1%. Explicit checks that τei itself is converged with re-

spect to dt are complicated by the computational difficulties of running multiple simulations

with sufficiently large numbers of particles, and for the required long run times. One such

convergence test appears in Fig.2. For each dt chosen, multiple statistically independent

2 − T replicas are run long enough to obtain τei. It is apparent in this case that for the

numbers of particles used (5 × 105 electrons and protons), the statistical spread in the re-

sulting relaxation times limits the assessment of time step convergence. This problem only

gets worse as T is increased at fixed particle density. Nevertheless, we find that for the

statistical potentials we use in most of our study, and for hydrogen densities of 1025 1/cc

(this isochore is discussed extensively below), sufficiently small time steps range from 10−5

fs for T ∼ few hundred eV to 10−7 fs for T ∼ many keV. For this reason, we are not able to

study extremely weakly coupled cases with this approach.

Finally, we consider four models for electron-ion scattering. The classical Coulomb po-

tential is only considered for like-sign charges (a proton-positron gas) in order to eliminate

(singular) classical bound states. Three statistical potentials are also compared; they (when

attractive) include bound states in generating the correct equilibrium pair correlations g(r).
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FIG. 2: Values of τei extracted from MD runs for a hydrogen plasma (n = 1025 1/cc, Te = 1000

eV, Tp = 800 eV, Dunn-Broyles + Deutch potentials) as a function of the MD time step. The

multiple points for each time step indicate statistically independent replicas.

Most simulations are performed with the Dunn and Broyles diffractive correction to the

Coulomb potential [18], along with a Deutsch term for the Pauli exclusion for electrons [19],

Uαβ(r, T ) =
ZαZβe

2

r

[
1− exp

(
−2πr

Λαβ

)]
+

kBT log(2) exp

(
−4π log(2)r2

Λ2
αβ

)
δαeδβe, (7)

where Λαβ =
√

2πh̄2/µαβkBT and µαβ = mαmβ/(mα + mβ). This is the form used in the

early Hansen and McDonald [12] paper on MD of temperature relaxation. We consider

both opposite- and like-sign charges for these potentials. We also examine a new diffractive

correction based on calculations of the exact quantum pair density matrix at a given tem-

perature. These potentials, which we discuss directly below, are related to the Kelbg form,

so we also compare temperature relaxation using the Kelbg potential [20].
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A. Statistical potentials based on the exact pair density matrix: Modified Kelbg

In order to treat electrons as classical particles in an MD simulation, a variety of quantum

statistical potentials have been developed. Their use in the study of plasmas was pioneered

by Hansen and coworkers.[12, 29–32] The effects of quantum diffraction, interference, and the

Pauli exclusion principle are incorporated in these potentials in a thermally averaged sense.

In this work, we utilize these existing statistical potentials, in addition to new potentials

derived from the diagonal part of the exact Coulomb pair density matrix and fit to a modified

form of the Kelbg potential.[20, 33, 34] This treatment and its limitations are presented in

greater detail in Refs. [35] and [36].

A statistical potential for a pair of particles can be defined from the non-ideal part of the

exact pair density matrix, ρ2(rij, rij; β),

UC(rij, β) = − 1

β
log

[
ρ2(rij, rij; β)

ρF (rij, rij; β)

]
, (8)

where

ρF (rij, rij; β) =
(
2πβh̄2/µij

)−3/2
exp

[
−µij|rij|2/2h̄2β

]
is the free particle density matrix, β ≡ (kBT )−1, and µij is the reduced mass of the interacting

pair of particles. Our computation of ρ2 for electron-electron and electron-proton cases is

discussed elsewhere [35, 36]. We fit our results for the statistical potential with the modified

Kelbg form for a pair of particles with indices i and j [33],

UC(rij, β) =
ZiZj
rij

1− e
−
(
rij
λij

)2
+

√
π
ZiZj
λijγij

(
1− erf

[
γij

rij
λij

])
, (9)

where we treat λij and γij as temperature-dependent fitting parameters. At very high

temperatures, in the limit of weak coupling, λij is equal to the thermal de Broglie wavelength,

λ2
ij = h̄2β

2µij
, and γij = 1, and we therefore recover the original Kelbg potential[20]. As

the temperature is reduced and the coupling increases, these parameters deviate from the

weakly coupled values. We examine the behavior of the fitting parameters over a wide range

of temperatures in order to derive the following expressions for electron-electron (ee) and

electron-proton (ep) interactions:[36]

λee =

√√√√ h̄2β

me

(
1 +

0.005√
T

)
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γee = 1 +
0.0321

T 0.4664

λep =

√√√√ h̄2β

2mp

(
1− 0.002

T

)

γep = 1− 0.06√
T
, (10)

where T is expressed in Hartrees.

For the ee interaction, we add an additional term to UC(rij, β) to account for the effect of

Fermi statistics. Here, we use the same form as adopted by Hansen and coworkers [12, 29–

32], which was originally suggested by Deutsch, Gombert, and Minoo [37, 38]

Uee(rij, β) = UC(rij, β) + β−1ln(2) exp
(
−[πln(2)]−1r2/Λ2

H ]
)
, (11)

where ΛH = h̄/
√
πmeT . We stress that a 2-body term such as this cannot account for

strong electron degeneracy; it is meant here to incorporate corrections to classical statistics

that appear as the temperature is lowered slightly below the regime where purely classical

statistics should apply.

III. GENERALIZED LENARD-BALESCU THEORY

A. theory

In order to understand our MD results, we use the GLB theory as presented in Ref.[10],

which is itself based partly on the intellectual constructs of Ichimaru [40]. In their treatment,

the time rates of change of the species temperatures, due to Ohmic heating of one species by

the others, are related to ensemble averages of products of density fluctuations. Assuming

spatial homogeneity of the particle densities, the expressions for dT/dt may be written as

double integrals over k- and ω-space. We consider arbitrary numbers of species here, a

straightforward generalization of the work of Ref.[10, 39],

dTα
dt

=
1

π2nαΩ2
×∑

β 6=α

∑
k

∫ ∞
0

dωωvαβ(k)Im〈δnα(k, ω)δnβ(−k,−ω)〉

 , (12)

where vαβ(k) is the Fourier transform of the two-body interaction between particles of species

α and particles of species β. The δnα are the density fluctuations in the presence of the inter-

particle interactions. The ensemble average of their products is related to the exact dielectric
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response, or polarizability tensor [40]. Care must be taken when defining the precise meaning

of the ensemble average involved here; the time-scale for this averaging must be long enough

to identify individual-species equilibrium temperatures (provided that they make sense),

but short compared to the inter-species equilibration time that we aim to compute [10, 40].

This is possible as long as the ion mass is significantly greater than the electron mass, for

instance, but must necessarily be called into question when the equilibrating species have

more similar masses.

In order to connect this average to quantities which are calculable, we assume a linear

response-like relation between the interacting density fluctuations, and the spontaneous, or

ideal gas, fluctuations, δn(s)
α [10, 40],

δnα = δn(s)
α + χ0

α

∑
β

vαβ[1−Gαβ]δnβ, (13)

where it is understood that the argument of each quantity is (k, ω). The δn(s)
α are the

density fluctuations in the absence of interactions. Note that β can equal α in this sum.

This equation describes the manner in which the density fluctuations of one species (with

free-particle linear polarizability, χ0) are induced by the fluctuations of all the other species.

The factors, G, are the local field corrections (LFC); if all the G are set equal to zero, this is

just the random-phase approximation (RPA) for multiple species. As discussed in the work

of Ref.[10], it is essential to include the LFC in cases where the Landau length, b0, exceeds

the thermal de Broglie wavelength of the lighter-mass species. RPA (G = 0) works well

when the reverse is true, as well as in cases where one species is highly degenerate. This will

be discussed more in what follows.

Eq.13 is a matrix equation in the species indices (α, β) which must be solved for the

δnα in terms of the δn(s)
α . Once this is done, the ensemble average in Eq.12, 〈δnαδnβ〉,

can be rewritten in terms of ideal gas (i.e., free particle) averages, 〈δn(s)
α δn

(s)
β 〉. These are

well-known and can be readily computed for any density and temperature [40]. Then the

right-hand-side of Eq.12 can be evaluated. We write the formal solution to Eq.13 as,

δnα = −
∑
β

Bαβδn
(s)
β , (14)

where Bαβ is the matrix inverse of the matrix, Aαβ, defined by:

Aαβ = χ0
αvαβ[1−Gαβ]− δα,β. (15)
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Then we have,

〈δnα(+)δnβ(−)〉 =
∑
µ

∑
ν

Bαµ(+)Bβν(−)

× 〈δn(s)
µ (+)δn(s)

ν (−)〉, (16)

where (+) indicates (k, ω), and (−) indicates (−k,−ω). The ensemble averages of products

of free-particle density fluctuations are related to the (free-particle) dynamic structure factors

through [10, 40],

〈δn(s)
µ (k, ω)δn(s)

ν (−k, ω′)〉 = (2π)2δµ,νδ(ω + ω′)

× ΩS0
µµ(k, ω), (17)

and the structure factors are related back to the independent-particle polarizabilities through

the fluctuation-dissipation theorem [40],

S0
µµ(+) = − h̄

2π
N

(
h̄ω

2kBTµ

)
Imχ0

µ(+), (18)

where N(x) = coth(x). The final result for the time rate of change of the species temperature

is then obtained by inserting Eqs.16-18 into Eq.12, obtaining,

dTα
dt

= − h̄

3π3nα

∫ ∞
0

k2dk
∫ ∞

0
ωdω

∑
β 6=α

vαβ(k)×

Im

[∑
µ

[
N

(
h̄ω

2kBTµ

)
Bαµ(+)Bβµ(−)Imχ0

µ(+)

]]
. (19)

For the case of just two species, electrons and ions, this expression can be simplified to

[10, 24],

dTi
dt

= − h̄

3π3nα

∫ ∞
0

k2dk
∫ ∞

0
ωdω

[
vei(k)

D(k, ω)

]2

[1−Gei(k, ω)]×
[
N

(
h̄ω

2kBTi

)
−N

(
h̄ω

2kBTe

)]
Imχ0

e(k, ω)Imχ0
i (k, ω), (20)

once the matrix inverse of Eq.15 is explicitly evaluated to obtain the Bαβ. The D(k, ω)

involves the v’s, χ0’s and G’s and essentially represents the plasma dielectric function[10,

24, 40],

D = [1− vee(1−Gee)χ
0
e][1− vii(1−Gii)χ

0
i ]

− v2
ei(1−Gei)(1−Gie)χ

0
eχ

0
i . (21)

Note that dTi/dt is proportional to the square of the electron-ion interaction, and is also

proportional to the imaginary parts of both electron and ion free-particle susceptibilities.
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As discussed in Refs.[7, 10, 24], because the ion plasma frequency is much lower than the

electron plasma frequency (owing to the large mass difference), Imχ0
i is peaked at very low-

ω, and this allows one to use the f-sum rule to evaluate the remaining factors at ω −→ 0.

Though this is a fine approximation for H [10], we choose not to make this replacement in

this work, since some of the cases which interest us have multiple ion species and/or involve

scaled ion masses (see the Ar-doped H cases discussed later).

It is instructive to see how Eq.20 relates back to an LS-type result. Though we refer

the reader to the more detailed discussion of this in Ref.[10], we highlight the salient points

here, in which we consider electrons and protons interacting via the Coulomb interaction:

Once the ω-integral has been performed, we are left with an integral over k. From the above

discussion, the resulting integrand will involve the various factors evaluated near ω = 0. For

small k, the integrand will be forced to zero by the dielectric function, D, which becomes

large for k smaller than the screening (Debye) wave vector. This then provides the ”bmax” of

LS. For large k, Imχ0
e(k, ω −→ 0) is proportional to exp(−λ2

thk
2) [41] for a non-degenerate

quantum plasma, so the k-integrand will be forced to zero when k is larger than the de

Broglie wave vector, 1/λth. This gives rise to the choice of bmin = λth in LS. If the electrons

are degenerate, χ0
e(k, ω −→ 0) will go to zero rapidly beyond k ∼ 2kFermi [10, 24, 41].

For a classical plasma, Imχ0
e(k, ω −→ 0) approaches a constant, −ne/kBTe, independent of

k; in this case, the large-k cutoff can only arise from the 1 − Gei factor. For like-charge

plasmas this factor has been shown to go to zero right when k approaches the inverse

Landau length [10], hence providing the impetus for the identification, bmin = b0. Thus, the

expression of Eq.20 and its multi-ion generalization in Eq.19 represent theories devoid of

the logarithmic divergences that plague LS. Plasma screening mitigates the low-momentum

(large b) divergence, while quantum diffraction and/or 2-body correlations (embodied in

Gαβ) eliminate the high-momentum (small b) divergence; no ad hoc cutoffs are needed [10].

There are three types of quantities which are required in order to compute dTα/dt with

Eq.19: The Fourier transforms of the 2-body interactions, vαβ(k), the free-particle suscepti-

bilities, χ0
α(k, ω), and the LFCs, Gαβ(k, ω). Not much is known about the ω-dependence of

the Gαβ. Though there are methods that purport to obtain it [40, 42], the various approxi-

mations involved have not been thoroughly tested for real plasmas. We follow the approach

of Ref.[10], and restrict our attention to static LFCs, Gαβ(k), for which various methods

apply; we discuss Gαβ more below. For the 2-body interactions, vαβ(k), we use either the
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Coulomb interaction, 4πZαZβe
2/k2, or the Fourier transform of a SP. The free-particle sus-

ceptibilities, χ0
α(k, ω), are computed from the expression [40, 41],

χ0
α(k, ω) = lim

η→0+

2
∑
k′

fα(k′ + k)− fα(k′)
h̄2(k′+k)2

2mα
− h̄2k′2

2mα
− h̄ω + iη

 , (22)

where fα(k) is the Fermi-Dirac occupancy for particles of energy h̄2k2/2mα at a temperature

of Tα. For quantum particles, the imaginary part of χ0 has an analytic expression as a

function of density and temperature while the real part of this quantity for electrons has

been tabulated and fit for all n and T by Dandrea, Ashcroft, and Carlsson[43]. We use their

fit, which is very accurate for both degenerate and non-degenerate electrons. We note that

the dependence on mass in Eq.22 allows us to scale their result to use it for quantum ions

as well, provided that the proper (n, T )-dependent chemical potential for the ions is used in

the resulting expressions.

As we mentioned earlier, we use the GLB in two modes: Quantum with the bare Coulomb

interaction (QC), and classical (h̄ −→ 0) with the SPs (CS). For QC, we apply the above

prescription exactly as stated and set vαβ(k) = 4πZαZβe
2/k2. For CS, we not only choose

the Fourier transform of a SP for vαβ(k), but we also take the h̄ −→ 0 limit in two distinct

places. The first is in the free-particle polarizabilities, χ0
α(k, ω). Here, we make use of the

relation [10],

lim
h̄→0

[
Imχ0

e(k, ω)
]

= −
√
πne

kBTe
Y e−Y

2

, (23)

where Y =
√
me/2kBTe(ω/k), and the corresponding expressions for Imχ0

i (k, ω). The real

part is then obtained by appealing to the so-called plasma dispersion function (also known

as Dawson’s function),

Reε(k̃, ω̃) = 1 +
1

k̃2
−
√
π

2

ω̃

k̃3
e−

ω̃2

2k̃2 erfi

(
ω̃√
2k̃

)
(24)

where χ0
e is related to ε via ε = 1− (4πe2/k2)χ0

e. In the above equation, erfi(x) ≡ −ierf(ix),

k̃ ≡ k/kD, and ω̃ ≡ ω/ωp, where kD is the Debye wave vector and ωp is the plasma frequency.

The second place where the h̄ −→ 0 limit is taken is in the N -function appearing in Eq.19.

Here we simply set N(x) = 1/x for the classical case [10]. It should be mentioned that this

second change is almost immaterial for low-Z systems as long as the ions are chosen to have

their physical masses; since the ion plasma frequency is far lower than the electron plasma

frequency, most of the important contributions to the integrand of Eq.19 are for ω ≈ 0,
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which also leads to N(h̄ω/2kBT ) −→ 2kBT/h̄ω. Thus, the major changes when studying

the classical case are the appearance of the SP in vαβ(k) and the use of the classical electron

polarizability.

Note that for QC, vαβ(k) decreases slowly with k, as 1/k2, while χ0
e(k, ω −→ 0) dies off

exponentially for k greater than 1/λth, providing the large-k convergence of the integral.

For CS, vαβ(k) dies off quickly above 1/λth, while χ0
e(k, ω −→ 0) goes to a constant. In

both cases, the k-integral converges at large-k, but for different reasons. This illustrates

how the effect of quantum diffraction, arising from the χ0
e in the quantum calculation, gets

inserted into the SPs in the classical calculation. It is this classical GLB calculation which

is analogous to our MD. While this insertion is strictly unfounded, we will see that the

differences between τei computed with QC and τei computed with CS get rather small as the

fusion-burning regime is approached (see the Appendix for a detailed discussion of this).

To go beyond the RPA in the calculation of the plasma dielectric response (embedded

in the 〈δnαδnβ〉 of Eq.12 and the BαµBβµ of Eq.19), we make use of static LFCs, Gαβ(k).

Since these are a direct result of physics beyond the RPA (cf. Eq.13), they must be derived

by comparing some manifestation of RPA density-density response to an analogous quantity

determined in an ostensibly less approximate way. We choose to focus on the static 2-

body radial distribution functions, gαβ(r), the conditional probability of finding a particle

of species β between r and r+ dr away from a particle of species α. The radial distribution

functions are related to the static structure factors by Fourier transformation [40],

gαβ(r) = 1 +
1

√
nαnβ

∑
k

[Sαβ(k)− δαβ]eik·r, (25)

and the resulting inverse transformation,

Sαβ(k) = δαβ +
√
nαnβ

∫
d3re−ik·r[gαβ(r)− 1], (26)

where Sαβ(k) = 1√
nαnβ

∫∞
−∞ dωSαβ(k, ω). From the fluctuation-dissipation theorem, we can

relate the structure factors to the polarizabilities [40],

Sαβ(k, ω) = − h̄

2π
coth

(
h̄ω

2kBT

)
Imχαβ(k, ω), (27)

where we assume for simplicity that the whole system is in thermal equilibrium at a tem-

perature, T . In this way, we can compute the gRPAαβ (r) from χRPAαβ (k) and compare them

to the ”true” gαβ(r) produced some more accurate way, say from MD, or from some less

approximate theory than RPA.
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In order to relate this comparison to the Gαβ, we start from their definition in Eq.13, and

extract the interacting polarizability, χαβ: Upon the application of an external potential,

Φβ, acting on species β, a resulting density fluctuation, δnα, will be induced in species α

[40],

δnα =
∑
β

χαβΦβ = χ0
α

Φα +
∑
β

vαβ(1−Gαβ)δnβ

 . (28)

The expression in brackets on the right-hand-side is the total potential felt by the α-species

particles, which is comprised of an external piece (Φα) and an induced potential which

involves the LFCs. This relates the interacting polarizability, χαβ, which responds to the

external potential to the free-particle polarizability, χ0
α, which responds to the total potential.

Like Eq.13, this is a matrix equation in the species indices. Solving for the LFCs gives,

1−Gαβ =
1

vαβ

[
1

χ0
α

δαβ −
[
χ−1

]
αβ

]
, (29)

Where [χ−1] denotes the matrix inverse of the χαβ matrix. The prescription is then as

follows: Determine the gαβ(r) using MD or some other means. Compute Sαβ(k) from them

using Eq.26. Solve Eq.27 to obtain χαβ(k) from Sαβ(k) (see below), and then invert the χ

matrix to obtain the Gαβ(k) from Eq.29.

There are three additional points regarding our scheme for obtaining the LFCs which must

be mentioned: 1) Eq.27 relates Sαβ to Imχαβ, rather than to both the real and imaginary

parts of χαβ. We require both the real and imaginary parts, yet in order to obtain Reχαβ(k)

from Imχαβ, we would have to use the Kramers-Kronig transform, which itself requires

knowledge of Imχαβ(k, ω) [or Sαβ(k, ω)] for all ω. This dynamical information is very difficult

to obtain for a quantum many-particle system [40, 42]. Thus, we choose to compute the

LFCs for our classical cases (CS) only. For classical particles, the static limit of Eq.27 is

simply written as [40],

Sαβ(k) = − kBT√
nαnβ

χαβ(k, ω = 0), (30)

so both real and imaginary parts of χαβ(k) are obtained once the static structure factors are

known. 2) We use a combination of two methods to determine the gαβ(r) for our various CS

cases: MD, and the hypernetted chain approximation (HNC) [30]. Both methods constitute

improvements upon RPA; both use the vαβ(k) as input, which we take to be our various

forms of SPs for the opposite-charge plasmas we study, and the bare Coulomb interaction

for the few like-charge cases we consider. 3) Eq.27 assumes thermal equilibrium, yet our
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interest is in situations for which Tα differs from Tβ. We believe this to be of negligible

importance as long as Tα and Tβ are not too dissimilar. For most of our cases this is

satisfied, and even when Te and Ti differ by a lot, equilibrium and non-equilibrium MD

results for gαβ(r) are in very good accord (see below). Thus, we carry out the prescription

of Eqs.16-20 for plasmas in equilibrium, and then apply the resulting LFCs to the associated

out-of-equilibrium problems.

1. Hypernetted-chain evaluation of static LFCs

There is a close connection between the LFCs obtained from Eq.29 and the direct corre-

lation function that has a central role in the hypernetted-chain method.

If we let the total correlation functions hij(r) be defined by hij ≡ gij − 1, then the

direct correlation functions cij(r) are introduced with the quite general Ornstein-Zernicke

relation [30]

hij(r) = cij(r) +
∑
k

nk

∫
d3r′ hik(r− r′)ckj(r

′) . (31)

The hypernetted-chain approximation closes this system of equations with this expression

for hij(r):

hij(r) = exp[hij(r)− cij(r)− βUij(r)]− 1 , (32)

in which Uij(r) is the pair potential for the pair (i, j), and which could be either the Coulomb

interaction or an effective potential with quantum diffraction and Pauli corrections.[44] We

note that the HNC method is limited to the classical case; indeed the OZ relation has a

modified form when the electrons are treated quantum-mechanically. [44, 45] For particular

choices of density, temperature, particle densities nk and the potentials Uij(r), Eqs.31,32

may be solved for hij and cij by a non-linear iteration. [46, 47]

In Fourier space the OZ relation takes this form:

h̃ij(k) = c̃ij(k) +
∑
k

nkh̃ik(k)c̃kj(k) . (33)

The earlier expression 26 for the static structure functions Sij(k) can be written in this way:

Sij(k) = δij +
√
ninj h̃ij(k) . (34)

It is convenient to write hij, cij and Sij in matrix form: H = (hij) and so forth. We
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introduce a diagonal matrix d of particle densities with

dij = δijni , (35)

and denote by d1/2 the diagonal matrix with diagonal values
√
ni. Then the OZ relation

becomes

H̃ = C̃ + C̃dH̃ , (36)

of which the solution for H̃ is

H̃ = (I − C̃d)−1C̃ , (37)

where I is the unit matrix.

The matrix form of the defining relation, Eq.34, for S is

S = I + d1/2H̃d1/2 . (38)

With a little manipulation it can be shown that

S = I + d1/2(I − C̃d)−1C̃d1/2

= (I − d1/2C̃d1/2)−1 . (39)

We make contact between the matrix S and the density-density response function matrix

χ by expressing Eq.30 in this way:

βS(k) = −d−1/2χ(k)d−1/2 , (40)

and, since in the classical case χ0
α = −βnα, Eq.29 becomes

1−Gij =
1

βṽij

[
−d−1 + d−1/2S−1d−1/2

]
ij

= − 1

βvij

{
d−1/2

[
I − S−1

]
d−1/2

}
ij

= − 1

βvij
c̃ij . (41)

Since the quantities c̃ij(k) are by-products of the HNC calculation, and ṽij(k) is iden-

tified with the effective potential Ũij(k), the LFCs are found immediately when the HNC

calculation is done.

It may be noted that the matrix A in Eq.15 is just

A = dc̃− I = −d1/2S−1d−1/2 , (42)
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so

det(A) = − 1

det(S)
= − det(I − d1/2C̃d1/2) . (43)

is the negative of the discriminant D(k, 0), related to the static dielectric function, as ap-

pearing in Eq.21 for the 2-component case.

B. Numerical details

In order to compute dTα/dt for the various species using Eq.19, we must identify a

suitable (k, ω)-grid over which to compute the double integral numerically. The challenge

here is that Imχ0
i (k, ω) is peaked at very low-ω in the neighborhood of the ion plasma

frequency, ωi =
√

4πZ2
i e

2ni/mi, while Imχ0
e(k, ω) is peaked at the generally much higher

electron plasma frequency, ωe =
√

4πe2ne/me. We use an exponential grid in ω such that

ωmin = 10−7×
√

2T/me/rs, and ωmax = 105×
√

2T/me/rs. This large value of ωmax ensures

that for suitably large Te, the broadening of the electron plasmon peak is well-represented.

Also, since the plasmon disperses with k, this large ωmax also ensures that the plasmon peak

is contained for the largest values of k we choose (recall that the plasmon energy increases

with increasing k [40]).

For the k-mesh, we also use an exponential grid, though this is certainly less crucial than

for the ω-integral. The kmin is chosen to be 10−3/rS, where rS is the Wigner-Seitz radius,

while kmax is chosen to be 104/rS. These choices are appropriate for densities ranging from

1022− 1026 1/cc and temperatures between 1 eV and 20 keV, since kmin will be comfortably

below 1/λDebye, and kmax will be large enough to encompass the range over which Imχ0
e(k)

decreases to zero well above k = 1/λth.

For all of our calculations using Eq.19, we use a modified rectangular-rule integration in

which the logarithm of the independent variable is used in defining the differential. For the

k-integral, for example, we take u = log k and write:∫
F (k)dk =

∫
kF (k)

dk

k
=
∫
kF (k)du

≈
∑
i

kiF (ki) [log ki+1 − log ki] . (44)

An identical expression is used for the ω-integral. The number of integration points we use is:

Nk = 1801, and Nω = 1201. We determined that these numerical parameters are sufficient

for accurately computing the dTα/dt by converging the results with respect to kmin, kmax,
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ωmin, ωmax, Nk, Nω, as well as by requiring that the f-sum rule be simultaneously satisfied

for both electrons and ions,

−
∫ ∞

0
ωdω

(
4πZ2

e,ie
2

k2

)
Imχ0

e,i(k, ω) =
πωe,i

2

2
. (45)

With the aforementioned parameter choices, electron and ion f-sum rules are satisfied to

within one part in 105 using a single ω-mesh, and for all relevant k (note that the RHS in

Eq.45 is independent of k).

For the HNC calculations of the static LFCs, we iteratively solve the simultaneous system

Eqs.31 and 32 with a non-linear adaptation of the GMRES method [48] which accelerates

the solution. Some of the HNC applications in this paper need quite a large dynamic range

in r and also in k in order to describe the full variation of 1−Gij. The coding uses equally-

spaced meshes to allow efficient Fourier transforms, the most costly operations involved.

The present calculations used 217 = 131072 points in r and k.

IV. RESULTS AND DISCUSSIONS

A. Hydrogen

Relaxation times, τei, determined from the MD simulations are presented in the right-

most columns of Tables 1-4, under headings indicating the types of inter-particle potentials

used. They are the uncorrected results of the MD simulations, where the proton mass had

been fixed at 1824 times the (physical) electron mass. As discussed above in Section II,

this was an oversight; all reported MD relaxation times have been scaled up by a factor of

1.0066 to account for this. The reported temperatures are selected to avoid extrapolation of

Te outside the simulation interval. The instantaneous Tp are then calculated from T∞ and

the fitting function of Eq.4; they differ slightly between independent samples. The results

for τei are not sensitive to T∞, whether taken as the average of temperatures at t = 0 or

tfinal, or an average over the simulation. Here we use the instantaneous temperatures at

t = 0 to compute T∞. In some cases, we perform multiple uncorrelated MD simulations for a

given set of conditions in order to assess variability. Note that for essentially all our studied

cases, these run-to-run variations in τei are significantly larger than the error estimates of

our determination of the initial slope, dTe/dt, for any single run.
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TABLE I: MD simulation results for τei (in fs) for hydrogen at n = 1022/cc. The electron

temperatures are the values used in computing the numerical relaxation rate; they lie within the

range of temperatures spanned by the simulation. Proton temperatures are calculated from T∞

and so vary slightly for different sample realizations. The target temperature is shown here. The

relaxation columns are in fs and are labeled by potential type (all simulations used a Deutsch form

for the Pauli term) and particle types (”ep”=electron-proton, ”pp”=positron/proton). For all but

the last τei reported (Γei= 0.005 case), 2 independent MD runs were performed; the results here

indicate the average.

Tp (eV) Te (eV) Γei DunnBroyles (ep) DunnBroyles (pp) Coulomb (pp)

59.5 30.5 0.167 1517 1542 1333

199.5 100 .5 0.050 5708 5204 4295

599.4 300.5 0.017 21833 18939 15522

1996. 1002. 0.005 95226 — —

Table I shows a collection of MD results for H at a density of 1022/cc. Note first that

as the electron and ion temperatures increase, τei increases. This is to be expected from

any theory of temperature equilibration, such as LS [4]. Weaker electron-ion coupling, here

indicated in the third column, gives rise to slower electron-ion relaxation. Secondly, note

that opposite-charge and like-charge results with the same potential (Dunn-Broyles) give

similar results. This is also expected, particularly for the fairly weakly-coupled (Γei ∼ 0.01

- 0.2) cases here, as motivated again by LS. We stress, however, that the equilibration

times of Table I are the result of running the MD simulations for a time less than 0.01τei,

owing to the difficulty of simulating such weakly-coupled cases (as discussed in Section

II above). As such, detailed quantitative trends can not be gleaned from these data, as

evidenced by the apparent divergence of opposite-charge and like-charge results as Γei is

decreased, in contrast to expectation. Finally, we note that the like-charge τei results with

the pure Coulomb interaction are smaller than those obtained with the statistical potential

for the same conditions, and these differences between the τei increase as the temperature is

increased. This is because the electron thermal de Broglie wavelength is significantly larger

than the Landau length at high-T (discussed above in Section I); the statistical potential

is softened within the de Broglie wavelength while the Coulomb interaction is not, so the
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effective bmin in the lnλei of Eq.1 is smaller for pure Coulomb than for the Dunn-Broyles

treatment.

Since we have invoked LS in understanding the gross features of the results pertaining

to Table I, it is natural to ask: Do these MD results agree quantitatively with LS (and

related approaches)? The first two cases in Table I were studied earlier by some of us in

Ref.[22], albeit with much smaller system sizes which led to lower accuracy. In Fig.2 of

that work, the effective lnλei (which is proportional to 1/τei) extracted from MD results

using the Dunn-Broyles potential is shown along with the predictions of LS, BPS [8] and

a fit to the results of Ref.[9]. The MD equilibration rates for these cases were 60% or so

lower than those predicted by the theories, though this was somewhat obscured by the fact

that our error bars were large enough to render this difference nearly unresolved. Our more

converged results for these cases present equilibration rates which are a bit higher than those

of Ref.[22], but are still substantially lower than LS and BPS. The LS and BPS predictions

for τei for Te = 30 eV and Tp = 60 eV are 1207 fs and 1103 fs, respectively, roughly 25 - 33%

lower than our MD results for the electron-proton systems using the Dunn-Broyles potential.

At the higher temperatures, Te = 100 eV and Tp = 200 eV, we get 3982 fs and 4431 fs. These

are 25 - 36% lower than the MD results. Some of this discrepancy likely results from a lack

of convergence due to the challenges of performing the MD at such weak plasma couplings

(short simulation times, etc.). However, the reason for much of this discrepancy is that

these theories pertain to energy transfer between quantum particles mediated by the pure

Coulomb interaction. The MD τei, in contrast, are the result of classical dynamics with a

modified, statistical potential.

To demonstrate that this assertion is correct, we use the GLB theory to calculate the

τei for these cases in two different ways, as discussed above in Section III.A. Local-fleld

effects are neglected for now (Gij = 0); we include them later. First, we use the quantum

prescription and the Coulomb interaction (QC). This produces τei(Tp = 60eV) =1108 fs, and

τei(Tp = 200eV) =4466 fs, nearly equivalent to the quantum BPS predictions [22]. Next,

we use the h̄ → 0 classical prescription and the Dunn-Broyles potential (CS), which yields

τei(Tp = 60eV) =1276 fs, and τei(Tp = 200eV) =4922 fs, somewhat closer to our MD results.

This strongly suggests that the underprediction of the electron-ion temperature equilibration

rate for the higher-T weak coupling cases, as compared with the theories and shown in Fig.2

of Ref.[22], is partly due to the use of classical dynamics and the Dunn-Broyles potential. We
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TABLE II: MD simulation results for τei (in fs) for the hydrogen isochore, n = 1025/cc. The actual

initial species temperatures are shown here. GLB (and/or LS) theory shows that the values of τei

are essentially the same as they would have been if these initial temperatures had been exactly

equal to the target temperatures (say, Tp = 80 eV and Te = 100 eV, rather than Tp = 83 eV and

Te = 98 eV), owing to the closeness of actual and target initial temperatures. The errors in τei

reported are the result of computing the standard deviation for several statistically independent

MD runs for the same conditions. For the value in which no error is reported, only a single MD

run was performed.

Tp (eV) Te (eV) Γei DunnBroyles

83 98 0.500 56.02±0.82

180 195 0.250 67.23

203 245 0.200 77.86±0.34

414 488 0.100 127.59±0.88

805 995 0.050 249.29±5.3

1608 1995 0.025 553.63± 26.

4004 5000 0.010 1602.51±71.

will show below that for higher temperature cases, the discrepancy between our classical MD

with Dunn-Broyles potentials and weak-coupling theories which assume quantum dynamics

and the pure Coulomb interaction are almost entirely accounted for in this way.

How accurate should we expect classical MD with a statistical potential to be in predicting

τei for hydrogen? Can this approach still be of use in, for instance, differentiating between

candidate theories? We address this by studying temperature relaxation for hydrogen at

different temperatures along the n = 1.0×1025 1/cc isochore. This is a density very relevant

for ICF, and moreover, the increased Γei (relative to the n = 1022 1/cc cases) allows us to

obtain more accurate MD results. We consider electron temperatures between 100 eV and

20 keV, and for each case, we take Tp = 0.8Te. For all these temperatures, λth > b0, so

quantum diffraction should govern the lower length scale in the Coulomb logarithm of LS.

Fig.3 shows the results of various calculations of the initial slope in the proton temper-

ature, dTp/dt, as a function of Te(t = 0) [again, with Tp(t = 0) = 0.8Te(t = 0)]. The

gross features of these curves (e.g., the maxima at Te ∼ 1 keV) are due to the fact that

27



dTp/dt ∝ (Te − Tp) ∝ Te, together with the dependences of λth, λDebye, and the prefactor

of Eq.1 on Te, as per LS. The red points are the results of GLB in the QC mode, with

LFCs set equal to zero (see below). This should be the true answer for hydrogen at the

highest Te’s, since Γei is quite small there. Though we don’t display them in this figure,

these QC-GLB results are essentially identical to those of the quantum limit of BPS [8].

The magenta squares show the MD results with the Dunn-Broyles statistical potentials.

The associated τei values are displayed numerically in Table II. In the plot, the values for

the individual statistically independent MD runs are shown (several for each Te); these are

the values which contribute to the errors reported in the associated Table. As for n = 1022

1/cc, the MD equilibration rates lie quite below the QC-GLB results, though they approach

them as Te is increased [49]. The green symbols represent the results of GLB in the CS

mode (LFCs = 0), where the same Dunn-Broyles statistical potentials were used. They are

in very good agreement with the MD results. This suggests that the error incurred by using

classical MD with the Dunn-Broyles potential can be largely quantified and understood by

examining the differences between QC-GLB and CS-GLB. These distinctions were discussed

before in Section III.A.: quantum versus classical short-wavelength dielectric response, and

Coulomb versus softened statistical potentials. Note that for T = a few keV, temperature

relaxation from classical MD with the Dunn-Broyles potential should be well within 10% of

the quantum result.

It is important to note that at these keV temperatures, the use of the statistical potential

in MD simulations is crucial: Since λth is much larger than b0, the magnitude of the relaxation

is sensitively dependent on the softening of the potential at short-range. The fact that the

MD and QC-GLB agree reasonably well means that this softening is accounting for the

salient features of true quantum diffraction, though in a necessarily approximate way. We

also add that high accuracy in predictions of τei with classical MD and these statistical

potentials is by no means guaranteed, since the potentials are, at best, only constrained to

reproduce static properties of the quantum plasma. The roughly 10 - 15% or so difference

between our Dunn-Broyles MD and QC-GLB is therefore encouraging, particularly since the

ICF community is not in need of predictions of τei which are much better than this.

Before continuing further in our analysis of MD results of τei for hydrogen, we briefly

discuss some features of our GLB predictions that shed light on the physics of temperature

equilibration. Much of this expands upon the discussion in Section III.A. and a similar
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FIG. 3: (Color online) Values of the initial (t = 0) dTp/dt for H along an isochore at a density,

n = 1025 1/cc, for which Tp(t = 0) = 0.8Te(t = 0). Results of GLB calculations of different types

(see text) and MD results are shown.

discussion in Ref.[10]. In order to make an explicit connection between our GLB results and

LS, we consider the k-integrand of an effective Coulomb logarithm, F (k), defined by:

∫ ∞
0

F (k)dk =
3memic

2

8
√

2πneZ2
i e

4

[
kBTe
mec2

+
kBTi
mic2

]3/2
dTi/dt

(Te − Ti)
, (46)

where dTi/dt is given by the expression of Eq.19 (for α = i; we consider just two species here).

F (k) is defined so that its integral over k equals lnλei in cases where the more general GLB

result of Eq.19 reduces to LS (Eqs.1,2). These cases are characterized by having Maxwellian

electron and ion distributions, an ion mass that greatly exceeds the electron mass, and

species temperatures which are not too dissimilar. Fig.4 shows a plot of QC-GLB results

for kF (k) versus rSk for all the cases of our n = 1025 1/cc isochore. As Te is increased,

kF (k) −→ 1 for intermediate values of k. LS corresponds to F (k) ≡ 1/k, together with the

constraint that the integral over k is taken to be
∫ kmax
kmin

F (k)dk, where kmin = 1/bmax and

kmax = 1/bmin. The QC-GLB F (k) possess maxima at small k and then go quickly to zero

as k −→ 0, due to the sharp increase in the plasma dielectric function at long wavelength

for k < kDebye. For large k, F (k) goes to zero very gradually as k is increased well beyond
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FIG. 4: (Color online) kF (k) (see text for definition) vs. krS for various τei H simulations along

the n = 1025 1/cc isochore. These are the results of GLB calculations in the quantum-Coulomb

(QC) mode. LFCs (Gij) are set to zero.

1/λth, due to quantum diffraction arising from the Imχ0
e factor in Eq.20. In this way, one

sees the sense in which LS can be viewed as an approximation to GLB. The approximation

is the most reasonable at the weakest couplings since here, F (k) ∼ 1/k for intermediate

values of k, yet even in such cases, it is only perfectly accurate if one happens to choose bmin

and bmax in such a way that
∫ 1/bmin
1/bmax

dk/k ≡
∫ kmax
kmin

dk/k =
∫∞

0 F (k)dk.

Figure 5 shows both QC-GLB and CS-GLB results for kF (k) for the case: n = 1025

1/cc, Te = 1 keV, Tp = 0.8 keV, where the Dunn-Broyles potentials are used for vαβ(k) in

the CS-GLB calculation. The differences between the quantum pure-Coulomb theory and

the classical theory with the softened statistical potential can here be seen in a momentum-

resolved way. Note that the small-k parts of the two F (k) are identical. This is expected,

since the long-range parts of the statistical and Coulomb potentials are the same, and the

resulting screening at large distances is therefore also the same. The intermediate and large-

k behavior is notably different, however. As discussed in Section III.A., these differences are

the combined result of the short-ranged softening in the statistical potential, and the drastic

difference between classical and quantum electron dielectric response. The comparison shown
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FIG. 5: (Color online) kF (k) vs. krS for Te = 1 keV and Tp = 0.8 keV for H. Both quantum-

Coulomb (QC) and classical-statistical potential (CS) GLB results are shown. The statistical

potential is of the Dunn-Broyles variety. LFCs (Gij) are set to zero.

in Fig.5 suggests that it should be possible to optimize vSPei (k) to require that CS-GLB

produces exactly the same F (k) as QC-GLB. Indeed, we would simply need to iterate the

h̄ −→ 0 version of Eq.20 to convergence in comparison with the QC result. Here, that

would involve increasing vSPei (k) somewhat at large-k. Though this approach for designing

an effective potential to be used in classical simulations by optimizing agreement with a

time-dependent property of a quantum system is certainly reasonable, we choose not to do

this here. Time-dependent quantum phenomena are not known precisely for many-body

systems such as a plasma, except at very weak coupling. Though T =1keV and n = 1025

1/cc in pure H may indeed constitute weak enough coupling for this to work, we prefer to

base any improvements to existing statistical potentials on static, equilibrium properties,

since these are known essentially for all plasma couplings (see the end of the Appendix for a

discussion of a statistical potential constrained to reproduce the QC result for temperature

equilibration at weak coupling).

To this end, we adopt the modified Kelbg (MK) potentials introduced in Section II.A.

Referring back to Fig.3, the sky-blue symbols are the results of CS-GLB performed with the
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TABLE III: MD simulation results for τei (in fs) for hydrogen with various forms of statistical

potentials.

n (H/cc) Tp (eV) Te (eV) Γei DunnBroyles Kelbg modified Kelbg

1.25× 1024 200 248 0.100 298.67 262.82 257.75

1025 400 500 0.100 126.05 114.97 113.39

1025 800 998 0.050 232.99 224.91 212.39

8× 1025 1600 1993 0.050 101.22 99.68 88.16

MK statistical potentials. These dTe/dt are significantly closer to the QC-GLB predictions

than they are to the CS-GLB results with the Dunn-Broyles potentials. Just as for Dunn-

Broyles, the MK results asymptote to the pure-Coulomb quantum answers at high-Te. Our

GLB studies strongly suggest that classical MD to determine temperature equilibration

should be a factor of 4 or so more accurate if MK rather than Dunn-Broyles potentials are

used. The results shown in Table III show differences between Dunn-Broyles and modified

Kelbg simulations which are of the proper magnitudes. Fig.6 shows the kF (k) for the same

case as in Fig.5, but with the MK CS-GLB result overlayed. The difference between the

Dunn-Broyles and MK F ’s is notable; this results in the difference between green and sky-

blue points at Te = 1 keV seen in Fig.3. In addition, F (k) from the MK CS-GLB is almost

indistinguishable from the F (k) of QC-GLB even though no attempt was made to fit directly

to the quantum GLB result. Better agreement with static properties is enough to generate a

statistical potential far better suited for temperature equilibration simulations, at least for

the weak-coupling cases such as this one, where QC-GLB should be accurate.

We mention in passing that for all the cases studied so far, MD results for τei produced

with our modified Kelbg potentials and results obtained for the identical cases with the orig-

inal Kelbg potentials [20] are the same within our statistics (compare the last two columns

of Table III). This means that for hydrogen in the fusion-burning regime, the Kelbg form

is generally the form of choice for calculations of τei. We remind the reader, however, that

results obtained with the Dunn-Broyles/Deutch prescription are qualitatively similar, and

asymptote to those of Kelbg (and modified Kelbg) at sufficiently high-T .

Up to now, our discussion of results has involved GLB calculations with no LFCs (i.e.,

Gij = 0). As we mentioned in Section III.A, we do not attempt to estimate LFCs in
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FIG. 6: (Color online) kF (k) vs. krS for Te = 1 keV and Tp = 0.8 keV for H. Both quantum-

Coulomb (QC) and classical-statistical potential (CS) GLB results are shown. Statistical potentials

of both the Dunn-Broyles and modified-Kelbg varieties are considered. LFCs (Gij) are set to zero.

the quantum cases [42]; this we save for a subsequent investigation. It is still of interest,

however, to include LFCs in our classical GLB studies, aimed at directly reproducing our

MD results with this or that potential. We consider static LFCs only, Gij(k, ω) ≡ Gij(k), as

recommended in Ref.[10], and compute them with HNC, as described in detail in Sections

III.A and III.A.1. The results are easy to summarize: In all cases studied, the relaxation

rates are larger if static LFCs are included, and seem to be in worse agreement with MD,

given our present understanding of the statistical and finite-size errors in those simulations.

Fig.3 shows this clearly for the n = 1025 1/cc isochore. The dark-blue points are the CS-

GLB results with the Dunn-Broyles potential and including the Gij(k) as calculated by

HNC with this potential. Again, the predictions of all the approaches converge at high-Te,

but the discrepancies below a few keV are systematic and large. Though not shown in

the figure, CS-GLB results with HNC-derived Gij(k) for the MK potential also overpredict

dTe/dt relative to MD with those potentials, while the Gij(k) = 0 GLB results with the MK

potentials seem to be in better agreement.

Fig.7 shows the kF (k) as computed with CS-GLB and the Dunn-Broyles potential for
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FIG. 7: (Color online) kF (k) vs. krS with and without LFCs for Te = 1 keV and Tp = 0.8 keV

for H. Classical-statistical potential (CS) GLB results are shown. The statistical potential is of the

Dunn-Broyles variety.

the same case as shown in Figs.5 and 6, for both Gij(k) = 0 and Gij(k) 6= 0. The F (k)

including LFCs is quite a bit larger in magnitude than the no-LFC F (k), even for rather

small k. This is because the 1 − Gei(k) appearing in Eq.20 has quite a bit of structure at

low-k and asymptotes to a value significantly greater than 1 at larger k, as shown in Fig.8.

It is this behavior of the LFCs that causes the equilibration rates to be larger than the

no-LFCs results, as we have seen in Fig.3.

We emphasize that the exercise of identifying a theoretical approach which reproduces the

results of classical MD is somewhat separate from that of constructing a theory for nature’s

true hydrogen plasma. Though we ultimately aim for the latter, it seems appropriate to

first understand the classical case, since here, MD with sufficient accuracy will provide a

benchmark for a fixed set of potentials.

Since LFCs are a result of many-body screening phenomena beyond the realm of RPA,

it is reasonable to assume that their magnitudes should depend on density. We indeed find

this to be the case. CS-GLB calculations of temperature equilibration on the Te = 1 keV

isotherm (with Tp = 800eV ) are shown in Fig.9. Dunn-Broyles potentials are used here.
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FIG. 8: 1−Gei(k) vs. krS for Te = 1 keV and Tp = 0.8 keV for H as calculated by HNC with the

Dunn-Broyles potential.

The differences between dTe/dt with and without HNC-derived static LFCs decrease as n is

decreased. Again, the no-LFC results have lower equilibration rates.

There are two possible reasons that CS-GLB with HNC-derived static Gij(k) is less ac-

curate than CS-GLB with Gij = 0: 1) The HNC approximation produces poor results for

static correlations, in comparison to MD. This is checked by comparing the radial distri-

bution functions, gij(r) for HNC and MD for a given case, and for a given set of input

potentials, vij(k). 2) The static LFC assumption is inappropriate for these applications;

i.e., one needs Gij(k, ω) rather than Gij(k). If HNC and MD gij(r) agree, the static LFC

assumption must be the culprit. Fig.10 shows HNC and MD gij(r) results for a hydrogen

plasma in equilibrium at T = 1 keV and n = 1025 1/cc, for which the Dunn-Broyles +

Deutch potentials have been used; they are nearly identical. In addition, we have demon-

strated that the use of equilibrium HNC for our non-equilibrium situations does not alter our

results for τei by enough to warrant concern. Thus, we conclude that dynamical LFCs must

play a role in determining the temperature relaxation of classical opposite-charge plasmas

with Dunn-Broyles two-body interactions, and that the assumption of static LFCs for these

plasmas leads to an overestimation of the impact of physics beyond the RPA.
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FIG. 9: Differences (including LFC vs. not including LFCs) between absolute values of dTe/dt

for H along the Te = 1 keV isotherm, where Tp = 0.8 keV. The results are those of classical

statistical-potential (CS) GLB with the Dunn-Broyles potential.

Our initial interest in exploring the use of static LFCs in the GLB calculations comes

from our reading of Ref.[10]. In this paper, the authors perform like-charge classical MD

simulations of positrons and protons interacting via the pure Coulomb interaction, which

they analyze with GLB calculations. They show that in the absence of quantum diffraction,

it is necessary to include LFCs in the GLB calculations to get a finite answer for the tem-

perature relaxation rate for this system. Otherwise, the large-k part of F (k) −→ 1/k, and

lnλei =
∫∞
0 F (k)dk diverges. Furthermore, they argue that if static, HNC-derived Gij(k)

are included for this system, the resulting lnλei integral acquires the appropriate effective

bmin ∼ b0 = e2/kBTe, the Landau length. This occurs because 1 − Gei(k) goes to zero at

roughly k = 1/b0 (see Fig.2 of Ref.[10]). In the end, their GLB results with these Gij(k)

included agree very well with their like-charge pure-Coulomb MD. We have checked that

our methodology to compute the static LFCs with HNC reproduces this result. Fig.11

shows plots of 1−Gei(k) vs. rS.k for many temperatures and at a single density, n = 1025

1/cc, for the classical pure-Coulomb positron-proton system. For each Te, 1−Gei(k) = 1/2

for k ∼ 1/b0. The resulting effective lnλei for these cases, as calculated by CS-GLB, be-
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FIG. 10: (Color online) Radial distribution functions, gei(r), for H at n = 1025 1/cc and Te = Tp = 1

keV. Both HNC and MD results are shown, each using the Dunn-Broyles potential.

haves as shown by the black dots in Fig.12, here plotted against the dimensionless coupling

g ≡ b0/λDebye. This is essentially equivalent to Fig.1 of Ref.[10], though we have extended

to larger g by considering lower-T .

Our opposite-charge studies with statistical potentials suggest that the use of static LFCs

produces worse results than if LFCs are set to zero, while like-charge pure-Coulomb studies

show that they are necessary and lead to accurate results. This confusing state of affairs

prompts us to consider the like-charge classical case with the statistical potentials. The red

dots of Fg.12 show the results of CS-GLB with the Dunn-Broyles potential for these same

like-charge cases. Note that they lie well below the pure-Coulomb results for small g. This

is because λth > b0 for small g, and the softening of the potential at short-range produces an

effective bmin ∼ λth. For g =19.37, λth ∼ b0, and this is where the red and black dots meet.

The interesting case of g large enough so that b0 > λth is just to the right of the results in

Fig.12. These cases are likely not amenable to treatment with CS-GLB, since they are quite

strongly-coupled. More work must be done in the future to address the limits of GLB for
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FIG. 11: (Color online) HNC results for 1 − Gei(k) for the classical positron-proton system at

n = 1025 1/cc, performed with the pure Coulomb interaction.

like-charge systems such as these. For the more physically relevant opposite-charge cases at

the equivalent couplings, the appearance of (classical) bound states would render GLB, as

presented here and in Ref.[10], completely inadequate.

The conclusion for our hydrogen studies can be summarized simply: Comparison to GLB

for weakly-coupled cases shows that classical MD with Dunn-Broyles statistical potentials

should lead to electron-ion temperature equilibration rates which are roughly 10 - 15% lower

than the pure-Coulomb quantum answers in the fusion-burning regime (n ∼ 1025 1/cc,

T ∼ a few keV). As the temperature is raised, the quantum answer is approached. The

precise nature in which it is approached at high-T is addressed in the Appendix. Statistical

potentials based on the exact quantum pair density matrix (of the Kelbg variety) should lead

to τei which are far more accurate than those produced with Dunn-Broyles potentials. The

use of classical HNC-derived static local field corrections in the Lenard-Balescu calculations

does not lead to better agreement with classical MD for these opposite-charge cases where

the statistical potentials are used.

There are still some uncomfortable unknowns which await further study: We have no

theory (analogous to GLB) which is expected to work at strong electron-ion coupling. As
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FIG. 12: (Color online) Effective lnλei for the positron-proton system (n = 1025 1/cc) vs. the

dimensionless plasma coupling, g ≡ b0/λDebye. Results are from classical GLB with the Coulomb

interaction (black points) and the Dunn-Broyles statistical potential (red points). The green curve

is a fit to the MD results reported in Ref.[10].

such, our ability to validate the MD with statistical potentials is greatly hampered there.

We have no rigorous means of estimating local-field corrections for the quantum case, thus,

we do not know the extent to which our conclusions regarding the need for dynamic LFCs

in the classical opposite-charge studies have any bearing for real quantum plasmas. Finally,

preliminary results of ours suggest that plasmas for which the species have more similar

masses may be less amenable to treatment with the GLB as presented here; MD results

(Dunn-Broyles + Deutch SPs) for mass-scaled hydrogen with n = 1025 1/cc, T ∼ 1 keV,

and mp = 10me relax a full 20% slower (!!) than the predictions of GLB for this same system,

in contrast to the nice agreement shown in Fig.3 for the physical mass case. Preliminary

studies of this system with the Fokker-Planck equation suggest that this discrepancy is due

to slight but important deviations of the velocity distributions from the Maxwellian forms

assumed in our theoretical treatment [50].

One might argue that classical MD with statistical potentials is not needed if one is

simply interested in determining τei for pure hydrogen in the fusion-burning regime, since
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weak-coupling theories such as the GLB and BPS can be used here instead. Indeed, it is

because we are confident of the efficacy of GLB that we are able to ”validate” the MD in the

way that we have. The practical situation is more nuanced, however: As we mentioned in

the Introduction, the real interest concerns H or DT plasmas mixed with higher-Z dopants.

When a system such as this is driven out of equilibrium, the resulting temperature relaxation

involves electrons scattering off protons, electrons scattering off the high-Z element, and

proton-high-Z scattering as well. For many plasmas of interest, the Z − Z coupling will

be rather large. In this case, it is crucial to use a method of calculation which includes all

possible many-body correlations in a time-dependent way, such as MD. The study presented

above for pure H ensures that the electron-proton piece of this coupled-rate problem will be

accurately evaluated. It is to a problem of this type that we now turn.

B. Ar-doped H

We consider a plasma consisting of hydrogen at a density of nH = np = ne = 1025 1/cc,

doped with 10 atomic percent argon. We choose the initial temperatures of the Ar ions and

protons to be 6.6 keV, and the initial temperature of the electrons to be 4.5 keV. In these

conditions, the Ar ions would be fully stripped (ZAr = +18), so the species densities are:

np = 1025 1/cc, nAr = 1024 1/cc, and ne = 2.8 × 1025 1/cc. Our simulation cell contains

560000 electrons, 200000 protons, and 20000 Ar+18 ions. We use the Dunn-Broyles potentials

with the Deutch Pauli correction for this study, though the above analysis for H strongly

suggests that Kelbg potentials would be better for reproducing the true quantum answer for

at least the e-p channel of the relaxation.

Using a standard 3-species LS treatment for this system (see below), we find that τei

is of order 2000 fs. Given the small time steps required for an accurate rendering of the

dynamics, we choose to perform the MD simulation with reduced ion masses: mp −→ αmp,

and mAr −→ αmAr, where α = 0.01. This trick has been used often for simulating 2-species

plasmas (for example, Ref.[21]), and 3-species systems in which the ions have somewhat

similar masses [23]. The idea is to take advantage of the fact that the primary dependence

of the temporal evolution on the mass ratios is in the kinematic prefactor appearing, for

instance, in Eq.1. The dependences within the Coulomb logarithms are often less important,

though they are by no means negligible, as implied in the work of Ref.[23]. Considering only
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FIG. 13: (Color online) MD results (colored thick curves) and results of LS (black thin curves) for

the scaled-mass (α = 0.01) Ar-doped H plasma. Species densities are: np = 1025 1/cc, nAr = 1024

1/cc, and ne = 2.8 × 1025 1/cc. ZAr is fixed at +18. MD was performed with the Dunn-Broyles

potential, and the LS Coulomb logarithms were chosen according to the prescription outlined in

Section 5.2 of Ref.[35].

the mass dependence in the prefactor, the true relaxation can then be obtained by dividing

the time scale by α.

Our MD results for this mass-scaled Ar-doped H plasma are shown in Fig.13. The thick

colored lines show the MD data, while the thin black lines show the results of LS with

appropriately chosen Coulomb logarithms for each pair of species [35]. Several notable

features should be mentioned: 1) The short time-scale of the equilibration (10s of fs) is

due to the mass-scaling. If the time-scale is multiplied by 100 (as per the aforementioned

prescription), something akin to the physical temperature relaxation is recovered. 2) The

final equilibrated temperature is closer to the initial temperature of the electrons than to

that of the ions. This is simply because there are ∼ 3 times as many electrons as ions,

so the heat capacity of the electron subsystem is larger [23, 24]. 3) The final equilibrated

temperature is slightly higher than that predicted by LS. This is because the Ar-Ar coupling

is somewhat high (because ZAr = 18), so potential energy is substantively lowered in the

final state in which the ions are colder- and kinetic energy must rise if the potential energy
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falls, as mandated by total energy conservation [23, 24, 35]. This is a subtle effect even for

this case, in which 10 atomic percent of a fully-stripped ion is present. We emphasize that it

is beyond the scope of not only LS, but the GLB as well (as we have presented it here), since

explicit potential energy contributions are absent in, for instance, Eq.19. Rigorous inclusion

of potential energy effects within this context have recently appeared, however [11]. 4) The p

and Ar temperatures, though chosen to be the same initially, quickly separate before coming

together again at later times. This is due to the sizable difference in mass between p and Ar,

the large ZAr, and the fact that there are many more electrons than protons, which causes

the Ar ions to be pulled toward the electrons more rapidly than the protons.

It would be tempting to conclude that the initial p-Ar temperature split is a robust result

not only for the scaled-mass system, but for the corresponding plasma with physical p and

Ar masses, once the time-scale is multiplied by 1/α = 100, since both mp and mAr were

scaled by the same factor. This, however, is not the case. Fig.14 shows simplified LS results

for this system with α = 1, in which all the Coulomb logarithms have been set to unity.

Not only is the equilibration time greater by a factor of ∼ 100, as expected, but there is no

sizable p-Ar temperature split. In contrast, Fig.15 shows the simplified lnλei ≡ 1 LS results

for the α = 0.01 system. The p-Ar temperature split is again apparent, as in Fig.13. Thus,

we see that the mass-scaling approach, while appropriate for many 2-species problems, is

highly suspect for the more complex case of multiple ion species. This is unfortunate, since

it is in precisely these cases where it is often desirable to speed up the simulation. However,

it is also reassuring that, at least for this particular Ar-doped H plasma, it might be possible

to adopt a more coarse-grained approach in which the ions are lumped together into an

”average ion”. Such a simplified picture is often invoked in continuum simulations of multi-

component plasmas. It should be noted that in multi-ion plasmas where the ion masses are

more similar, mass-scaling may still be a useful construct [23].

We end our discussion of this mass-scaled Ar-doped H plasma by comparing to 3-species

GLB calculations. As for hydrogen, we use the GLB in three modes: QC-GLB with LFCs

set to zero, CS-GLB with LFCs set to zero, and CS-GLB with static LFCs derived from

HNC calculations. There are three couplings which must be computed in any given GLB

calculation: e-p, e-Ar, and p-Ar. For the p-Ar term, we include static HNC-derived LFCs,

G(k), for each of the different flavors of GLB we use. The reason for this is that the de

Broglie wave lengths of the p and Ar are miniscule, owing to their large masses. Thus, for
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FIG. 14: (Color online) LS results for the physical-mass (α = 1) Ar-doped H plasma with Coulomb

logarithms all set to unity. Species densities are: np = 1025 1/cc, nAr = 1024 1/cc, and ne =

2.8× 1025 1/cc. ZAr is fixed at +18.

TABLE IV: Relaxation rates (in eV/fs) for scaled-mass (α = 0.01) Ar-doped H, in which Dunn-

Broyles + Deutch potentials are used. Species densities are: np = 1025 1/cc, nAr = 1024 1/cc, and

ne = 2.8× 1025 1/cc. ZAr is fixed at +18. Both MD and GLB results are shown.

MD QC-GLB CS-GLB (G = 0) CS-GLB (G)

dTAr/dt -0.0885 -0.1709 -0.0896 -0.0854

dTp/dt -0.0138 -0.0224 -0.0122 -0.0116

dTe/dt 0.011 0.0141 0.0076 0.0084

this coupling, the p-Ar Landau length is by far the dominant length-scale governing the

small distance part of the Coulomb scattering. If we omitted the Gp−Ar(k) here, the p-Ar

term, analogous to the e-i term of Eq.20, would fail to converge at large-k. The e-p and

e-Ar terms are treated, for each variant of GLB, in the manner described above for H.

The initial slopes of the species temperatures, as inferred from the MD data of Fig.13, are

listed in Table IV, along with the results of the three variants of GLB. As for hydrogen (see,

e.g., the red curve of Fig.3), the QC-GLB rates are larger than those of MD. The results of
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FIG. 15: (Color online) LS results for the scaled-mass (α = 0.01) Ar-doped H plasma with Coulomb

logarithms all set to unity. Species densities are: np = 1025 1/cc, nAr = 1024 1/cc, and ne =

2.8× 1025 1/cc. ZAr is fixed at +18.

classical (h̄ −→ 0) GLB with LFCs set equal to zero are in somewhat better agreement with

the MD, though the slope of the electron temperature is notably too small. Inclusion of

HNC-derived LFCs for every pair of species leave dTp/dt and dTAr/dt relatively unchanged

while raising dTe/dt slightly toward the MD value. So we see again that the major effect of

using classical MD with 2-body statistical potentials of the Dunn-Broyles variety is to lower

the temperature equilibration rates relative to the predictions based on quantum dynamics

and the pure Coulomb interaction.

V. CONCLUSIONS

We have used non-equilibrium classical MD with 2-body statistical potentials to simulate

temperature equilibration in pure hydrogen and Ar-doped hydrogen plasmas. We discussed

the way in which the 2-temperature simulations are equilibrated, the method for extracting

the relaxation times, issues of convergence (system size, time-steps), and the statistical

potentials used. Results of the MD were found to be in accord with expectations gleaned
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from the Landau-Spitzer theory, though a more quantitative understanding of these results

was made possible by appealing to a many-body theory devoid of some of the approximations

inherent in the Landau-Spitzer treatment.

By performing generalized Lenard-Balescu calculations in both quantum and classical

modes, it was shown that classical MD with statistical potentials should yield the quan-

tum result in the limit of sufficiently weak coupling. This means that the salient features

of quantum diffraction, crucial for the short-distance part of Coulomb scattering at high-

temperatures, are captured in these approaches. However, our results also suggest that

the specific potentials we used should give rise to temperature equilibration rates which

are between a few percent and greater than 10 percent lower than those of the true quan-

tum system in the fusion-burning regime. We demonstrated that statistical potentials of

the Kelbg variety, derived from the exact 2-body thermal density matrix, are substantially

better than Dunn-Broyles potentials, in that they reproduce the quantum pure-Coulomb

result more accurately at all temperatures. Inclusion of static local-field corrections in the

Lenard-Balescu calculations produced, for pure hydrogen, worse results, when comparing

to the MD, than GLB calculations which neglected LFCs altogether. This suggests that

a full understanding of the classical attractive-potential temperature equilibration problem

awaits the further study of dynamical LFCs. In this way, the work presented here serves

to: 1. better define the limits of applicability of quantum statistical potentials in simulating

dynamical phenomena, and 2. clarify the limits of our understanding of the many-body

phenomena important for the determination of temperature equilibration rates for hydrogen

in the fusion burning regime.

Finally, study of a hydrogen plasma doped with fully-stripped Ar demonstrated that

mass-scaling in the MD can be a dangerous proposition, while comparisons with GLB cal-

culations reaffirm the above conclusions regarding both the utility and the limits of classical

MD with statistical potentials. It will be important and interesting in the future to di-

rect attention to the significantly more complex problem of high-Z dopants which are not

fully-stripped during the course of temperature equilibration, as well as to electron-ion tem-

perature equilibration in the presence of radiation.
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Appendix: Classical and quantum T -equilibration rates should approach each other

as 1/ log(T )

Here we show that the temperature equilibration rate computed classically with a SP

(such as in the MD calculations we describe) should approach that of the true quantum

rate as temperature is increased. We consider hydrogen at weak enough coupling so that

the generalized Lenard-Balescu theory presented in Ref.[10] and discussed in Section III A

is thought to be valid. Using this theory, we show that:

lim
T−→∞

[
νie(QC)− νie(SP)

νie(QC)

]
∝ 1

log(T )
, (A.1)

where νie = 1/τie. QC indicates the quantum result with the pure Coulomb interaction, and

SP indicates the classical (h̄ −→ 0) result with some set of statistical potentials.

We make the following assumptions: 1) At the density we consider, the electron temper-

ature, hereafter simply denoted T , is high enough so that the Debye screening length, λD, is

much larger than the electron thermal de Broglie wavelength, λth. 2) meTproton/mprotonT <<

1; this is certainly satisfied for the physical mass ratio when, for instance, Tproton = 0.8T . It

is then possible to simplify Eq.20 by invoking the f-sum rule for the ions that eliminates the

integral over ω [10]. 3) The density and temperature are such that the quantum electron

distribution function is Maxwellian. 4) The Fourier transform of the SP is of the form:

vei(k) =
4πe2

k2
K

(
k

kth

)
, (A.2)

where kth = 1/λth is the thermal de Broglie wave vector, and K(x) = 1 for x much less

than 1, while K(x) −→ 0 for x much greater than 1; this is satisfied, for instance, by the

Dunn-Broyles and modified-Kelbg potentials we have used in this study.

If the plasma coupling is sufficiently weak, the thermal de Broglie wavelength is well

above the Landau length and LFCs can be neglected. Thus, we set Gei = Gee = Gii = 0,
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and Eq.20 plus the application of the ion f-sum rule leads to [10],

νie = − 1

3π2ni

∫ ∞
0

dkk4 |vei(k)|2

|εe(k, 0)|2
∂χ0

e(k, ω = 0)

∂ω
, (A.3)

where εe(k, 0) = 1 − vee(k)χ0
e(k, 0). This expression applies for both classical-SP (SP) and

quantum-Coulomb (QC) cases. We will assume that the static electron dielectric function

can be approximated by,

εe(k, 0) = 1 +
k2
D

k2
, (A.4)

where kD = 1/λD is the Debye screening wave vector. Though not exact, this approximate

relation holds quite well for both SP and QC in the weak-coupling cases we consider. For

QC, vei(k) = 4πe2/k2, and [10]

∂χ0
e(k, ω = 0)

∂ω
= − ne

(kBT )3/2

√
πme

2

1

k
f

(
k

2

)
, (A.5)

where

f

(
k

2

)
=

3
√
π

4

(
kBT
EF

)3/2

1 + exp
(

h̄2k2F
8mekBT

)
exp(−βµ)

. (A.6)

We here consider spin-less electrons, so the EF in the above numerator is h̄2(6π2ne)
2/3/2me.

Furthermore, the assumption of Maxwellian electrons allows us to assert,

exp(−βµ) =
1

neλ3
th

=
1

ne

(2πmekBT )2/3

h3
>> 1 (A.7)

This gives us

νie(QC) =
16e4ne

3ni(kBT )3/2

√
πme

2

∫ ∞
0

dk

k

exp
[
− 1

16π

(
k
kth

)2
]

(
1 +

k2D
k2

)2 . (A.8)

For SP, we take the interaction of Eq.A.2 and use the classical (h̄ −→ 0) result [10],

∂χ0
e(k, ω = 0)

∂ω
= − ne

(kBT )3/2

√
πme

2

1

k
, (A.9)

which then yields,

νie(SP) =
16e4ne

3ni(kBT )3/2

√
πme

2

∫ ∞
0

dk

k

K2( k
kth

)(
1 +

k2D
k2

)2 . (A.10)

The only difference between νie(QC) and νie(SP) is the exponential factor in the former

case and the K2(k/kth) in the latter, both of which are functions of k/kth. To simplify the
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FIG. 16: (Color online) The GLB k-integrand divided by the LS prefactor, F (k), multiplied by k

for both QC and SP (Dunn-Broyles) cases for hydrogen at n = 1025 1/cc, T ≡ Te = 100,000 eV,

and Tp = 0.8Te. The vertical dotted lines are located at k = a and b, respectively, and define low-k,

middle-k, and high-k regions (see text). Between the dotted lines, F (k) ∼ 1/k. As T is increased

further, the middle-k region expands at the expense of the outer regions. QC and SP F (k) only

differ in the high-k region.

equations that follow, we define the exponential factor in the QC case to be H(k/kth) =

exp[−(1/16π)(k/kth)
2], thereby exhibiting the formal similarity to the SP case,

νie(QC) =
16e4ne

3ni(kBT )3/2

√
πme

2

∫ ∞
0

dk

k

H( k
kth

)(
1 +

k2D
k2

)2 . (A.11)

Since both K2(x) and H(x) approach 1 for x much less than 1, it is immediately apparent

from Eqs.A.10 and A.11 that the k-integrands for SP and QC are identical for k << kth.

This is shown in Fig.16, in which the GLB integrands, multiplied by k, are plotted for SP

(Dunn-Broyles potentials are used here) and QC for hydrogen with n = 1025 1/cc, Te =

100,000 eV, and Tp = 80,000 eV. In such a weakly-coupled case, there is a large range of

k where the integrands divided by the LS prefactor, denoted F (k) as in the main text, are

equal to 1/k; this is the range: kD < k < kth. In order to estimate the T -dependence of these

integrals, we break them into three distinct regions, also indicated in Fig.16 (we define F (k)
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to be the integrands appearing in Eqs.A.10 and A.11, excluding the common prefactors to

the left of the integral signs):

νie
P

=
∫ akD

0
dkF (k) +

∫ bkth

akD
dkF (k) +

∫ ∞
bkth

dkF (k), (A.12)

with

P =
16e4ne

3ni(kBT )3/2

√
πme

2
.

In Eq.A.12, a is larger than 1 and b is less than 1, ensuring that the middle region (see

Fig.16) defines a range in which F (k) ∼ 1/k. Clearly, both the low-k and middle-k pieces of

Eq.A.12 will be equal for QC and SP cases, so νie(QC)− νie(SP) is completely determined

by the differences in their high-k pieces. We have

∫ ∞
bkth

dkF (k) =
∫ ∞
bkth

dk

k
Q

(
k

kth

)
=

=
∫ ∞
b

dx

x
Q (x) ≡ Ith(b), (A.13)

where Q denotes either H (QC) or K2 (SP). Since b is a constant independent of T , we

have demonstrated that νie(QC) − νie(SP) ∝ T−3/2, which is not surprising given the T -

dependence of the LS prefactor shown in Eq.1. The factor multiplying T−3/2 in this difference

is determined by the prefactor shown in Eqs.A.10 and A.11, as well as by the difference

between the QC and SP integrals represented in Eq.A.13, IQC
th (b)− ISP

th (b).

In order to form the quotient of Eq.A.1, we must estimate the rest of the integral as well,

which is equal for SP and QC. For the low-k piece, we have

∫ akD

0
dkF (k) =

∫ akD

0

dk

k
(

1 +
k2D
k2

)2 =

=
∫ a

0

dx

x
(
1 + 1

x2

)2 ≡ ID(a). (A.14)

For the intermediate-k piece, we have simply

∫ bkth

akD
dkF (k) =

∫ bkth

akD

dk

k
=

= log

(
bkth
akD

)
= [log(T ) + A] , (A.15)
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FIG. 17: The reciprocal of the fractional difference between QC and SP (Dunn-Broyles) rates,

νie(QC)/[νie(QC)− νie(SP)] as a function of T = Te for the n = 1025 1/cc isochore of hydrogen as

computed by GLB (LFCs= 0). The semi-log plot is linear for high-T , indicating that the reciprocal

of the fractional difference asymptotes to log(T ).

where A is a constant; here we have used the fact that kth/kD ∝ T . Combining all the pieces

gives
νie(QC)− νie(SP)

νie(QC)
=

IQC
th (b)− ISP

th (b)

ID(a) + log(T ) + A+ IQC
th (b)

, (A.16)

which approaches 1/ log(T ) as T −→ ∞. Fig.17 shows the GLB (LFCs set to zero) predic-

tions for the fractional differences in QC and SP equilibration rates on the n = 1025 1/cc

isochore, plotted in such a way as to exhibit the approach to this 1/ log(T ) behavior at

high-T .

The main point is that weak plasma coupling guarantees that the differences between

quantum and classical energy transfer rates are confined to large-k as long as the SP used

in the classical calculation is Coulombic for large separations, and is regularized at small

separations within a thermal de Broglie wavelength. These differences depend on the precise

form of the SP; we have seen in Section IV A that they are smaller for modified-Kelbg than

for Dunn-Broyles, for instance. Yet since these large-k quantum and classical portions are

both proportional to T−3/2, the T -dependence of the magnitude of the fractional differences
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in the rates is governed by the large intermediate-k piece which is common to both. This

fractional difference is then nothing more than the Coulomb logarithm itself, log λei =

log(λD/λth) = log(kth/kD) = log(T ) + constant.

Finally, we note that for plasmas satisfying the various criteria outlined at the start of

this section (sufficiently weak coupling, large e-p mass ratio for similar temperatures, etc.) it

is possible to define a statistical potential for which a classical simulation of T -equilibration

should return the exact quantum answer: Examination of Eqs.A.8 and A.10 reveals that

νie(QC) = νie(SP) if we choose

K

(
k

kth

)
= exp

− 1

32π

(
k

kth

)2
 . (A.17)

It is doubtful, however, that the resulting e-i potential,

vei(k) = −4πe2

k2
exp

− 1

32π

(
k

kth

)2
 , (A.18)

would be in any way appropriate to use for reproducing the correct static properties of

the quantum plasma, such as gei(r), for instance. Optimization of such static properties

is precisely what was used to derive the SPs we have used in this work (Dunn-Broyles,

modified-Kelbg).
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