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A new spectral element approach is introduced to determine the Floquet exponents (FEs) of
unstable periodic orbits (UPOs) stabilized by extended delayed feedback control (EDFC). The
spectral approach does not require solving time dependent eigenproblems that existing methods
require. Instead, the spectral approach determines the stability of the delay differential equations of
the system by numerical approximation. The method is capable of analyzing systems whose UPOs
arise from bifurcations other than period-doubling.

Results are presented for stabilizing UPOs in Duffing systems. The FEs calculated by the spectral
approach are compared to published results for two examples. In both cases, the spectral method
results agree well with those determined by previous methods. In addition, the spectral method
was used to analyze a high dimensional, asymmetrical system with a UPO in chaos arising from tori
doubling following a Hopf bifurcation.

PACS numbers: 05.45.-a,82.40.Bj,02.60.-x

I. INTRODUCTION

The method of using delayed feedback to stabilize un-
stable periodic orbits (UPOs) embedded in a strange
attractor was first introduced by Pyragas [1]. In this
first implementation of delayed feedback control (DFC),
a proportional feedback from a single delay was utilized
to stabilize a UPO. This method works well to stabilize
period-1 UPOs, but the method often fails to stabilize
orbits with longer periods [2]. In addition, DFC has
been used for steady-state control in chaotic systems.
However, in recent years, alternative approaches such
as multiple delay feedback control (MDFC), have been
demonstrated to be more effective in stabilizing steady-
states [3].
To improve the DFC method, Socolar introduced

the extended delayed feedback control (EDFC) method
which uses an infinite number of delays while still imple-
mented with a single delay line [4]. The EDFC method
has been demonstrated to stabilize UPOs with larger pe-
riods [2, 4]. The key to analyzing either method is to de-
termine the Floquet exponents (FEs) of the UPO while
under the influence of control. The chief method to cal-
culate the FEs in these first papers was an integration
technique by Benettin [2, 5]. The Benettin method is
used to identify the largest one or two FEs, but because
it relies on increasing the duration of integration to im-
prove accuracy, it is not ideal. In addition, the Benettin
method does not provide the imaginary part of the FE.
Advanced techniques using Floquet theory and vari-

ational methods have resulted in both approximate [6]
and exact [7] methods to determining the FEs of UPOs.
These methods greatly improve the ease of determining
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the FEs by simplifying the delay differential equations
(DDEs) into non-autonomous ordinary differential equa-
tions (ODEs) [7]. However, the resulting simplification
requires one to solve a transcendental eigenproblem. The
fact that the variation ODE has non-autonomous coeffi-
cients is an additional complication. Pyragas and Just
attempted to overcome these complications by assum-
ing the form of the FEs [6, 7]. However, this method is
mainly limited to UPOs resulting from period-doubling
bifurcations and low dimensional systems [7]. Another
recent approach using variational equations was intro-
duced by Tamasevicius [8]. In this method, the time
dependent transcendental eigenproblem is reduced to a
time independent transcendental eigenproblem by using
the time average of the stabilized UPO, but it is limited
to weakly nonlinear, symmetrical systems [8].

Rather than simplifying the DDEs to ODES, the DDEs
can be solved directly. Analytical solutions to DDEs for
weakly nonlinear systems have been developed using the
Lambert function [9]. In addition, a number of numerical
methods have recently been added to the literature in-
cluding the semi-discretization [10], collocation [11], and
spectral element [12] methods. Each of these numerical
techniques has been compared using the delayed Math-
ieu equation [13] for which analytical solutions have been
developed [14].

In this paper, a new method for determining the FEs
of UPOs stabilized by EDFC is introduced which is an
adaptation of the spectral element method. The spectral
element method approximates the infinite dimensional
solution to delay differential equations (DDEs) with a
finite dimensional solution. The spectral approach does
not require any assumptions regarding the form of the
FE, determines both the real and imaginary parts of the
FEs, and can be applied to highly nonlinear and high-
dimensional systems. In addition, the spectral method
can be used to analyze systems whose UPOs arise from
bifurcations other than period doubling. The spectral
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approach requires numerical integration over the period
of the UPO but utilizes quadrature weights which are
calculated only once.
This paper is organized in the following way. The first

section provides a brief overview of the EDFC method fol-
lowed by a section describing the implementation of the
spectral element method. Simulated examples are then
presented using an experimental approach to demon-
strate how the EDFC and the spectral element method
can be implemented for experiments. Finally, the con-
clusions are presented.

II. EXTENDED DELAYED FEEDBACK

CONTROL

In many chaotic systems, the EDFC method is capa-
ble of stabilizing UPOs by applying proportional delayed
feedback. The power of the feedback approaches zero
once the desired UPO is stabilized [7]. A nonlinear sys-
tem can be defined by

ẋ = f(x, t) , (1)

where x is a vector of d states and f is a function of those
states and time.
In order to predict whether a particular UPO can be

stabilized using the EDFC method, the nonlinear equa-
tions must be represented in the variational form

δẋ = A(t)δx , (2)

A(t) = Df(xo(t), t) , (3)

where xo(t) is the UPO, δx is the deviation from the
UPO, and A is the d × d Jacobian. Both the UPO and
the Jacobian are periodic with period T that is x0(t) =
x0(t + T ) and A(t) = A(t + T ), respectively. Using
Floquet theory, the deviation δx can be represented by

δx = u(t)eλt , (4)

where u(t) = u(t+ T ) is a periodic solution and λ is the
FE [7]. An UPO has at least one positive FE.
The feedback is applied by an external feedback F(t)

defined by

δẋ = A(t)δx + F(t) , (5)

F(t) = K

[

(1 −R)

∞
∑

r=1

Rr−1
x(t− rτ) − x(t)

]

, (6)

where K is the matrix of proportional gains and R deter-
mines the influence of previous delays on the feedback [2].
Note that if R = 0, EDFC reduces to DFC in which only
a single delay affects the control. The matrix K can in-
clude feedback from and apply control to all the states;
however, in many cases control is applied using only one
state.
The EDFC method may have difficulty stabilizing

UPOs with an odd number of FEs with positive real

parts; however, it has been demonstrated that this is not
a true limitation of the EDFC method [15, 16]. Adding
an additional FE with a positive real part has been shown
to overcome this difficulty [8]. Hövel et al. [17] demon-
strated limitations of the EDFC method in the presence
of latencies in the delay signal. The EDFC method is
not strictly limited to stabilizing systems with small Lya-
punov exponents, but the range of gains that stabilize
systems with large Lyapunov exponents can be very lim-
ited [18].

III. SPECTRAL ELEMENT METHOD

The spectral element method is a numerical technique
of approximating the infinite dimensional solution of
DDEs by a finite dimensional system [12]. The method
is based on the method of weighted residuals and is a
convenient way of determining the stability of delay sys-
tems.
A general DDE for a linearized or variational system

with multiple delays is given by

ẋ(t) = A(t)x(t) +

nτ
∑

r=1

Br(t)x(t − τr), (7)

where x(t) is a column vector of d states, A(t) is the d×d
Jacobian, τr is the duration of the rth delay, the delay
matrices Br(t) are the dependencies of the states on the
delayed states x(t− τr), nτ is the number of delays, and
τnτ

is the duration of the longest delay. In general, the
Jacobian A(t) will be a function of the UPO of interest
which makes the DDE non-autonomous. In addition, the
Jacobian and the delay matrices Br are periodic so that
A(t) = A(t + T ) and Br(t) = Br(t + T ). When con-
trol is implemented for more than one state or for cross
coupling, the matrix K will have more than one non-zero
entry. In either of these cases, the Jacobian will include
gain terms in more than one element, and the delay ma-
trices are created by premultipling a matrix of the delay
terms on the diagonal with the matrix K. The second
example in Section IV demonstrates this more general
case.
The stability of a UPO can be determined from the

eigenvalues of the monodromy operator of the system.
The monodromy operator maps the delay states from
the segment [−τnτ

, 0] to the current period [0, T ], and
the operator’s eigenvalues are the Floquet multipliers of
the UPO. However, the monodromy operator acts on an
infinite dimensional state space so it is impractical to
deal with the operator directly [12]. The spectral ele-
ment method approximates the infinite dimensional mon-
odromy operator with a finite dimensional monodromy
matrix U [12]. The monodromy matrix maps a finite
number of states by

xm = Uxm−1 , (8)

where U maps the states xm−1 from the time segment
[−τnτ

, 0] onto the states xm which includes the period
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[0, T ] [12]. The spectral approach requires that the equa-
tions of the system be arranged in a variational form so
that each state is the deviation from the UPO, and the
monodromy matrix then becomes a function of the UPO.
The eigenvalues of the monodromy matrix in this form
U(t,x0(t)) are the Floquet multipliers of the UPO which
includes both real and imaginary terms. The Floquet
multipliers are related to the FEs by

µ = exp(λT ) , (9)

where λ is the FE and x0(t) is the UPO.
The first step in applying the spectral element method

to EDFC is to approximate the solution using polynomial
trial functions φi given by

xj(t) =

n+1
∑

i=1

xj,i φi(η), (10a)

xj(t− rτ) =

n+1
∑

i=1

xj,i−rn φi(η) , (10b)

where φi is the trial function, η is the local time normal-
ized from 0 to 1 for the element j, r is a particular delay,
and τ is the delay equal to the period of the UPO [19].
The vector xj,i(t) is the value of the states of the jth el-
ement at the ith node [12]. A total of n+1 interpolation
nodes are used for each element. In general, the spectral
element method can be implemented with an arbitrary
delay, but for forced systems the delays will be multiples
of the forcing period. The solution can also be broken
into multiple elements of arbitrary duration. However,
while the notation for multiple elements is included in
this paper, the examples will be implemented with one
element.
We have selected the Legendre-Gauss-Lobatto (LGL)

points for the interpolation nodes. The LGL nodes are
computed from the roots of the polynomial (1−u2)L′

n(u)
where Ln(u) is the nth order Legendre function, L′

n(u)
is the first derivative of Ln(u) with respect to u, and
u is on the segment [−1, 1] [12]. The LGL nodes must
therefore be shifted to be on the segment [0, 1] in order
to be compatible with Eq. (10). The trial functions φi
can be found using the barycentric Lagrange formula

φi(t) =

ρi

t−ti
n+1
∑

j=1

ρj

t−tj

, (11)

and the barycentric weights ρi given by

ρi =
1

n+1
∏

k=1,k 6=i

(ti − tk)

, k = 1, 2, . . . , n+ 1 , (12)

where ti and tk represent time at the ith and kth nodes,
respectively [20]. The barycentric Lagrange interpolation
used in Eq. (11) improves the numerical stability of larger

meshes when compared to the more commonly used La-
grangian interpolation [21]. The trial functions have the
useful property

φi(tk) = δi,k , tk ∈ {ti}
n+1
i=1 , (13)

which means the combined term xj,i φi(η) is the value
of the states at each node. The derivatives of the trial
functions can also be calculated using the barycentric
formula as

φ′i(tk) =











ρi/ρk

ti−tk
, i 6= k

n+1
∑

i=0,i6=k

−ρi/ρk

ti−tk
, i = k.

(14)

For a matrix D with elements Dki = φ′i(tk), the deriva-
tive of a vector of states z on a mesh of LGL nodes is
given by z

′ = Dz [12].
A nonlinear DDE in variational form can now be ap-

proximated with polynomial test functions by substi-
tuting Eqs. (10)(13)(14) into Eq. (7). The method of
weighted residuals is then used to minimize the error
of the polynomial approximation by setting the approx-
imate DDE to zero and integrating over the duration of
each element [12]. The method of weighted residuals re-
quires multiplication of the approximate solution by a
test function for which we have selected Legendre poly-
nomials. The resulting integration is given by

1
∫

0

(

1

tj
xj,i φ

′
i(η)−A(tη)xj,i φi(η)

−

nτ
∑

r=1

Br(tη)xj,i−rn φi(η)

)

ψp(η) dη = 0,

(15)

where ψp(η) is the p
th Legendre polynomial, η is the nor-

malized time in each element, and tη = (η + j − 1)tj.
The speed of the integration is increased by using by

using quadrature weights rather than symbolic integra-
tion. The numerical integration of a function by quadra-
ture weights is given by

1
∫

0

f(η) dη ≈

n+1
∑

k=1

wkf(ηk), (16)

where wk is the quadrature weight and ηk is the local-
ized time at the node k. For a grid of LGL points, the
quadrature weights [22] are given by

wk =

{

2
n(n+1) k = 1, n+ 1

2
n(n+1)(Ln(ηk))2

, otherwise .
(17)

Quadrature weights are calculated in advanced and
reused for each integration.
Implementing the method of weighted residuals with

quadrature rates results in Eq. (18) on the next page.
The matrices N and P are sub-matrices of matrices H
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(18)

andG, respectively. The sub-matrix I is the d×d identity
matrix. These elements are defined by

N
p
j,i =

n+1
∑

k=1

( 1

tj
Iφ′i(ηk)ψp(ηk)wk

)

−A(tη)ψp(ηi)wi

(19a)

P
p
j,i−rn = Br(tη)ψp(ηi)wi (19b)

where all elements are d× d matrices [12]. The indexes j
refers to the jth element, i to the ith node, and p to the pth

order Legendre polynomial. The N matrices are defined
by the upper half of Eq. (15) on the period [0, T ], and
the P matrices are defined by the lower half of Eq. (15)
on the delay periods. Equation (18) can be simplified to

Hxm = Gxm−1 , (20)

where xm includes only the states in the period [0, T ] and
G and H are of unequal size if more than one delay is
included.
The final step to determine the FE of the DDEs in

Eq. (7) is to construct the monodromy matrix U from
Eq. (8). Using the matrices G and H and mapping iden-
tical states results in

U(x0(t), t) =

[

0D3×d·E·n ID3×D3
0D3×d

H
−1

G

]

(21)

where D1 = d(1 + n · E), D2 = d(nτ · E · n + 1), D3 =
D2 −D1, and the size of H−1

G is D1 ×D2. The vector
xm includes states in the period [0, T ] and enough delay
states to be of equal length as xm−1. The added delay
states in xm is required to make the monodromy matrix
square. The additional states are mapped directly to
the identical states in xm−1 through the identity matrix
ID3×D3

.

IV. EXAMPLES

The analog implementation of the EDFC method in-
corporates an infinite number of delays for values of
R > 0 using a single delay line. However, when ap-
plying the spectral approach to approximate a system

with EDFC, only a finite number of delays is practi-
cal. The limitation of a finite number of delays is not
intractable since the influence of longer delays decrease
exponentially.
Keeping with an experimental approach, we chose the

number of grid points n + 1 and number of delays nτ

for each example using the following strategy. Starting
with the case R = 0 where only one delay is required,
we increased the number of grid points until the plot
of the maximal FE versus the gain no longer changed
with additional grid points. At the maximal number of
grid points, the approximation was considered converged.
This number of grids points for plots were used for cases
where R > 0. For each value of R, we increased the
number of delays nτ until the maximal Floquet exponent
curve no longer changed with additional delays.
An experimental approach was also selected for ex-

tracting the UPOs from the simulated results. The equa-
tions were simulated for 5×105 units of time and sampled
100 times per forcing period. Potential UPOs were iden-
tified by using a procedure similar to the one proposed
by Lathrop and Kostelich [23]. The absolute value of the
difference of the states between the beginning and end of
an orbit period where compared to a percentage of the
maximum variation in each state. These comparisons
were carried out for each data point for a subset of the
total simulation. In cases where the difference of each
state was less than 5% of the total range for each state,
the time span was identified as a potential UPO. Identi-
fied UPOs were grouped by shape and period. The UPOs
in each group were approximated by a Fourier series and
the coefficients of the series were averaged. The resulting
averaged Fourier series provided good approximations of
the UPOs in each example.
It should be noted that the spectral element approach

for EDFC is not limited to the Duffing equation. We
chose systems based on the Duffing equation because
they are well known and are common in physical sys-
tems. The equations for a Duffing system under EDFC
control is given by

ẋ = y (22a)

ẏ = −µy + β1x− β3x
3 + a cos(Ωt) + F (x, y, t) (22b)

where µ is the damping; β1 and β3 are the restoring force
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coefficients; a is the forcing amplitude; and Ω is the forc-
ing frequency.
The first example is a Duffing system used by Pyra-

gas [2] to demonstrate the capability of EDFC to stabilize
orbits that could not be stabilized by DFC. The control
input for this example is

F (x, y, t) = K

[

(1−R)
∞
∑

r=1

Rr−1y(t− rτ) − y(t)

]

,

(23)
where the control is based solely on the state y. The
Jacobian A and the delay matrices Br are given by

A =

[

0 1
β1 − 3β3x

2
0(t) −µ−K

]

, (24a)

Br =

[

0 0
0 KRr−1(1−R)

]

, (24b)

where x0(t) is the position of the desired UPO and r is
the number of periods T in each delay. In Figs. 1a and 1b,
the maximal Floquet exponent is plotted versus the gain
K with R = 0, 0.2, 0.4, 0.6, and 0.8 for a period-1 and
period-3 UPO, respectively. A total number of 55 nodes
were used for the period-1 UPO and 60 nodes for the
period-3 UPO. The UPO is plotted as an insert in the
upper right corner of each figure with x as the indepen-
dent variable and y as the dependent variable. Both fig-
ures show excellent agreement with Pyragas [2]. The
control parameters that stabilized both UPOs are listed
in Table I. The stable gains were taken from Fig. 1 and
rounded to the nearest hundredth. Note that for the
period-1 example, the maximum gain ofK = 2 is listed in
Table I to correspond to the largest gain considered, but
the maximum stable gain is larger for values of R = 0.2
and greater.

TABLE I. Control parameters which stabilized the period-1
and period-3 UPOs in Example 1. Stable gains were taken
from Fig. 1 and rounded to the nearest hundredth. Note
that for period-1, the maximum gain of K = 2 is listed to
correspond to the largest gain considered, but the maximum
stable gain is larger for values of R = 0.2 and greater.

Period-1

R 0.0 0.2 0.4 0.6 0.8

K 0.27-1.99 0.32-2.00 0.37-2.00 0.43-2.00 0.48-2.00

Period-3

R 0.0 0.2 0.4 0.6 0.8

K 0.38-0.43 0.43-0.56

The second example is taken from Tamasevicius [8] for
which the period-1 UPO has an odd number of Floquet
multipliers greater than unity. Tamasevicius introduced
a clever method for adding an unstable mode by adding
an additional state to the system [8]. The updated state
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FIG. 1. (Color online) Example 1: Maximal Floquet exponent
λ of the stabilized period-1 orbit in figure (a) and the period-3
orbit in figure (b) versus the gain K. The parameters for the
system are β1 = 1, β3 = 1, µ = 0.02, a = 2.5, and Ω = 1.

equations are given by

ẋ = y , (25a)

ẏ = −µy + β1x− β3x
3 + a cos(Ωt)−KW + F (x, y, t) ,

(25b)

Ẇ = λcW − bF (x, y, t) , (25c)

where W is the added state, b is an additional control
gain, and λc is the positive, real FE due to the added
state [8]. The addition of an unstable Floquet exponent
is one strategy to stabilize the UPO using EDFC. The
control input F (x, y, t) is given by

F (x, y, t) = K

[

(1−R)

∞
∑

r=1

Rr−1x(t− rτ) − x(t)

]

,

(26)
where the control is influenced by the delays of state x.
The implementation of the matrix K is given by

K =





0 0 0
K 0 0

−Kb 0 0



 , (27)
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and the Jacobian A and the delay matrices Br are given
by

A =





0 1 0
β1 − 3β3x

2
0(t) −µ −K

0 0 λc



−K , (28a)

Br =K





Rr−1(1−R) 0 0
0 Rr−1(1 −R) 0
0 0 Rr−1(1−R)



 .

(28b)

Note that in this case of multiple gains and cross-
coupling, the delay matrix Br is created by premultipling
the delay states with the matrixK. Also note that in this
example the gain K is used both as a coupling parame-
ter in the Jacobian A and as a gain in the delay matrix
Br. In Fig. 2 the three largest Floquet exponents are
plotted versus the gain K with R = 0.9 for a period-1
UPO. A total number of 30 nodes were used in the spec-
tral approach analysis. In this case the period-1 UPO is
elliptical and is not shown. There is excellent agreement
between the spectral element approach and the averaged
UPO approach used by Tamasevicius [8].
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FIG. 2. (Color online) Example 2: Maximal Floquet exponent
λ of the stabilized period-1 orbit of the Duffing oscillator ver-
sus the gain K. The parameters for the system are β1 = 0.3,
β3 = 0.3, µ = 0.3, a = 0.27, Ω = 1, λc = 0.1, b = 0.2, and
R = 0.9.

The third and last example was selected to demon-
strate the capability of the spectral approach to find the
FEs of a UPOs for which previous methods are not fully
capable of analyzing. For instance, the UPO in this ex-
ample occurs in chaos arising from tori doubling which
occurs after a Hopf bifurcation. Since a Hopf bifurcation
does not tend to occur in a simple Duffing system [24],
we selected a system with two identical, coupled Duffing
oscillators studied by Kenfack [25] which also makes it a
higher order system. The UPO, as shown in Fig. 3, is
also non-symmetrical.
The equations for the identical coupled oscillators have

the same form used in Eq. (22) with the first oscillator

having the states x1 and y1 and the second oscillator
having the states x2 and y2. The only difference is a
linear coupling element C between states x1 and x2. The
implementation of the Jacobian A and the delay matrix
Br are given by

A =







0 1 0 0
α1 −µ−K C 0
0 0 0 1
C α2 −µ 0






(29a)

Br =







0 0 0 0
0 KRr−1(1 −R) 0 0
0 0 0 0
0 0 0 0






, (29b)

where α1 = β1−3β3x
2
10(t)−C, α2 = β1−3β3x

2
20(t)−C,

x10 is the path of the UPO for state x1, and x20 is the
path of the UPO for state x2. Forcing and control are
applied to the state y1.
The stabilization of the period-1 UPO is show in

Fig. 3 with the UPO for the states x1 and y1 plotted
as an insert in the lower right corner. For this ex-
ample the UPO was estimated from the system under
EDFC. The maximal FE is plotted versus the gain K
with R = 0, 0.2, 0.4, 0.6, and 0.8. A total number of 38
nodes were used in the spectral approach analysis. No
changes to the spectral approach were required to ac-
commodate the additional states or even the asymmetry.
The control parameters that stabilized the period-1 UPO
are listed in Table II. Note that the maximum gain of
K = 2 is listed in Table II to correspond to the largest
gain considered, but the maximum stable gain is larger
for each value of R. The stable gains were taken from
Fig. 3 and rounded to the nearest hundredth.
In addition to the spectral approach, the Benettin

method was used to analyze the case with R = 0.6. Re-
sults for gains stepped by 0.1 were plotted as stars in
Fig 3. A total number of 200 to 400 delay states were re-
quired for the Benettin method to approach convergence
at each gain, and the equations had to be integrated for
at least 250 periods. Figure 3 shows good agreement be-
tween the spectral approach and the Benettin method.

Figure 4 provides a root locus plot of the period-1 orbit
for the system in Eq. (29). The crosses indicate select
FEs with gains of K = 0, and the unstable FEs have the
value of λ = 0.041 ± i0.32. The maximum gain used in
the plot is K = 500, and select FEs determined from this
gain are indicated by large dots.
A continuous simulation of the coupled Duffing system

was performed with a value of R = 0.6. In the simulation,
the gain K was discretely stepped by 0.01 from 0 to 2
with 2000 units of simulation time between each step.
The results in Fig. 5 show excellent agreement with the
spectral element method. The spectral element method
indicated a gain of about K = 0.14 was required for
control. The simulation required a gain of K = 0.151 for
control which was determined using a second, extended
simulation with a single gain.
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FIG. 3. (Color online) Example 3: Maximal Floquet expo-
nent λ of the stabilized period-1 orbit of the Coupled Duffing
oscillators versus the gain K. The coupled oscillators have
the identical parameters of β1 = 1, β3 = 1, µ = 0.1, C = 5,
a = 15, and Ω = 1.12.
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FIG. 4. (Color online) Example 3: Root Locus plot for the
case R = 0.6 and period-1 orbit. Crosses show the location
of roots for gains of K = 0, and large dots indicate roots
for K = 500. The initially unstable FEs (K = 0) begin at
ℜ(λ) = 0.041 and ℑ(λ) = ±0.32.

V. CONCLUSIONS

The spectral element approach was introduced which
is a new method to determine the FEs of UPOs sta-
bilized by EDFC. The spectral approach approximates
the infinite dimensional monodromy operator with a fi-
nite dimensional monodromy matrix. The eigenvalues of
the monodromy matrix are the Floquet multipliers from
which the FEs can be determined. The advantage of the
spectral approach is that DDEs can be solved directly
without the complications that occur when the DDEs
are simplified into ODEs. Unlike the existing analytical
method used by Pyragas [7], the spectral approach does

TABLE II. Control parameters which stabilized the period-1
UPO in Example 3. Stable gains were taken from Fig. 3 and
rounded to the nearest hundredth. Note that the maximum
gain of K = 2 is listed to correspond to the largest gain
considered, but the maximum stable gain is larger for each
value of R.

R 0.0 0.2 0.4 0.6 0.8

K 0.15-2.00 0.13-2.00 0.13-2.00 0.14-2.00 0.15-2.00
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FIG. 5. (Color online) Example 3: Time response of the
coupled Duffing oscillators versus the gain K for R = 0.6
and period-1 orbit. Figure (a) shows all values of K stepped
by 0.01 from 0 to 2, while figure (b) shows the critical region
between 0.12 and 0.18. The upper graphs show the response of
the first oscillator sampled ten times per forcing period. The
lower graphs show the absolute value of the control averaged
over each period.

not require any assumptions regarding the form of the FE
and can be applied to highly nonlinear and high dimen-
sional systems. The spectral approach also provides both
the real and imaginary parts of the FE unlike the exist-
ing Benettin numerical method. Most importantly, the
spectral element method can be used to analyze systems
whose UPOs arise from bifurcations other than period-
doubling.

The spectral approach was applied to Duffing system
examples including UPOs stabilized by both DFC and
EDFC. Also, an example of an UPO with an odd num-
ber of unstable FEs was stabilized after adding an un-
stable FE. The FEs calculated by the spectral approach
were compared to results published using previously es-
tablished methods. In both cases, the spectral method
results agreed well with the previously published results.
Finally, the spectral element method was used to ana-
lyze a higher dimensional, asymmetrical system with a
UPO in chaos arising from tori doubling. The resulting
analysis agreed well with the numerical simulation.
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