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We study a reversal process in Stokes flows in the presence of weak diffusion in order to clarify 9 

the distinct effects that chaotic flows have on the loss of reversibility relative to non-chaotic 10 

flows. In all linear flows, including a representation of the baker’s map, we show that the decay 11 

of reversibility presents universal properties. In nonlinear chaotic and non-chaotic flows, we 12 

show that this universality breaks down due to the distribution of strain rates. In the limit of 13 

infinitesimal diffusivity, we predict qualitatively distinct behavior in the chaotic case. 14 

PACS numbers: 05.70.Ln, 05.45.Ac, 47.15.G-, 87.80.Qk 15 

 16 

I. INTRODUCTION 17 

A debate persists on whether dynamical chaos is the origin of irreversibility in the contexts of 18 

statistical mechanics [1-2] and transport phenomena [3-4]. On the one hand, running forward in 19 

time, chaotic systems, like the multibaker mapping exhibit loss of time correlation and diffusive-20 

like dynamics [5]. On the other hand, chaos is not intrinsically irreversible, in that, with infinite 21 

precision and in the absence of sources of random noise, chaotic trajectories will return to their 22 

original locations in phase space if the dynamics is reversed [6]. Experimental studies indicate 23 

that non-Brownian particles in oscillatory shear exhibit irreversibility and  chaotic dynamics [3-24 

4], but the relative importance of chaos and solid body contacts in preventing reversibility of the 25 

trajectories of the particles is not clear [7]. A challenge in defining the impact of chaos on 26 

irreversibility arises from the well-appreciated fact that chaotic flows accelerate the loss of 27 
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reversibility in the presence of noise or finite precision relative to non-chaotic flows. In this 28 

Letter, we adapt an analytical treatment of mixing (simultaneous convection and diffusion) put 29 

forth by Ranz [8] to scale the dynamics of diffusive tracers in a reversal experiment with respect 30 

to the characteristic rate of mixing. This approach elucidates a unity in the evolution of 31 

convective diffusive irreversibility in all linear flows and shows how this unity is disrupted by 32 

the presence of the distribution of strain rates in both chaotic and non-chaotic flows.  33 

 The reversal experiment that we consider is based on Heller’s proposal [9-10] to use diffusive 34 

irreversibility in time-reversible Stokes flows as a means to separate solutes of distinct Brownian 35 

diffusivity from a mixture. Figure 1 illustrates his proposal for a mixture of two solutes: i) stir the 36 

mixture [yellow region in Fig. 1(a)] until the distribution of the solute with higher diffusivity 37 

(green) has been largely homogenized into a carrier fluid [black region in Fig. 1(a)], ii) “unstir” 38 

(reverse the flow) to completely undo the deformation [Fig. 1(c)], and iii) collect the fluid from 39 

the original volume. The collected fluid will be partially purified of the tracers of higher 40 

diffusivity. We call this process separation by convective diffusive irreversibility, SCDI. In 41 

considering SCDI, Aref and Jones [11] defined return fraction Rf – the fraction of diffusive 42 

tracers that return to the original volume [Fig. 1(c)] – as a measure of reversibility. They showed 43 

that Rf decays faster in chaotic flows relative to non-chaotic flows for any amplitude of 44 

diffusivity and concluded that chaotic dynamics could, in this sense, enhance separation of 45 

diffusive solutes. Ottino [12] and others [13] have demonstrated experimentally this acceleration 46 

of the decay of reversibility by chaotic dynamics. 47 

We now extend this investigation to ask further how chaotic flows impact the efficiency of SCDI 48 

relative to pure diffusion and non-chaotic flows. For this purpose, we define the maximum 49 

differential reversibility: 50 
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This function is the maximum ratio of return fractions of tracers of distinct diffusivities Dhigh  and 52 

Dlow with respect to stirring time. This differential reversibility measures the sensitivity of 53 

reversal to differences in diffusive noise (a higher value of φ  indicates greater sensitivity) and 54 

can serve as a figure of merit for its efficiency for SCDI; φ  also provides a rate independent 55 

observable with which to compare the reversal process in the presence and absence of chaos. 56 

II. RANZ MODEL 57 

We first consider SCDI in three simple cases – (i) no flow such that the tracers evolve by pure 58 

diffusion; (ii) pure extensional flow such that the fluid undergoes deformation at an exponential 59 

rate; and (iii) simple shear flow such that the fluid undergoes deformation at an algebraic rate. 60 

Pure extension and simple shear are linear flows [14]. The work of Ranz [8] indicates that, for 61 

weak diffusion, mixing of a periodic array of bands of solute in linear flows [Fig. 2(a)] can 62 

capture mixing in the more general nonlinear flows because 1) the folding by a general flow 63 

typically results in an approximate spatial periodicity ( )λ  in the concentration field over short 64 

distances, and 2) the flow is approximately linear over short distances. In the case of pure 65 

extension, the evolution of these periodic strands represent mixing by the baker’s transformation, 66 

a canonical model of chaotic dynamics [15]. These strands, when observed in the local frame of 67 

reference ( )yx ′′,  [Fig. 2(a); in which we translate and rotate with the strand] experience an 68 

effective rate of extension along y′ of  ( ) ( ) ( )( )[ ] dtstsdt 0ln, −=γα  where s(t) is the width of the 69 

strand at time t and γ  is the actual strain rate in the flow. For simple shear flow, ( )[ ]21 tt γγα +=  70 
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and for extensional flow, γα = . In this local frame ( )yx ′′, , the convection diffusion equation 71 

has the form:  72 
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We non-dimensionalize time and position using the Ranz transformation:  74 

 ( )tsx′=ξ and ( )∫ ′′=
t

tstDd
0

2τ . (3) 75 

The mixing time for extension extτ , simple shear ssτ , and pure diffusion dτ  are 76 
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Physically, the mixing time, τ  represents the time required for a distribution of solute 78 

undergoing pure diffusion to reach the same state as the distribution would in the flow under 79 

consideration after a dimensional time, t. 80 

The non-dimensionalization in Eq. (3) reduces the convection-diffusion equation (2) to a 81 

transient diffusion equation:  82 

 
2
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The transformation to Eq. (5) indicates that the full dynamics of convection-diffusion in linear 84 

flows can be captured by a purely diffusive process in the ξτ -domain with a non-dimensional 85 

diffusivity of one.  86 

We can treat SCDI in these flows in a simple manner: using Eq. (5), we model the stirring phase 87 

by tracking the evolution of the initial distribution, ( )0, =τξc  for ( )Dtstirstir ,γτ , and the un-88 
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stirring phase by tracking the evolution of the stirred distribution, ( )stirc τξ, for an additional 89 

( )Dtunstirunstirunstir , γτ . Using the conditions for complete un-stirring, unstirstir tt  =  , and γγ −=unstir90 

, we find that ( ) ( ) ( )γαγαγα ,,, stirstirunstirunstir ttt −=−= . Upon integrating Eq. (3), we find that91 

unstirstir ττ = . Hence the final distribution after stirring and un-stirring is simply ( )stirc τξ 2, . Figure 92 

2(b) shows analytical solutions of Eq. (5) during the evolution of the initial square wave 93 

distribution. We evaluate ( )stirfR τ  in the ξτ -domain as the ratio of the integrated concentration 94 

( )stirc τξ 2,  [shaded area in Fig. 2(b)] within the interval ( )5.05.0 ≤≤− ξ  to the integrated initial 95 

concentration ( )0, =τξc  within the same interval. Further, ( )lowhigh DD ,φ  can be evaluated from 96 

Rf with Eq. (1). Given the same initial condition and governing equation, the solutions and 97 

measures of reversibility are the same for all linear flows. Thus, using the Ranz transformation 98 

[Eq. (3)], we elucidate a unity in the decay of reversibility, Rf and of the maximum differential 99 

reversibility, ( )lowhigh DD ,φ  in all convection-diffusion processes that are governed by Eq. (5). To 100 

appreciate the impact of the Ranz transformation, figures 2(c) and 2(d) show the rapid decay of 101 

return fraction as a function of total strain tγ  in an extensional flow relative to that in a simple 102 

shear as observed by Aref and Jones [11]. Transforming to the τ -domain in figure 2(e) [using 103 

Eq. (4)], the decay of Rf collapses into a single master return curve and this collapse results in a 104 

single master curve for differential reversibility [Fig. 2(f)]. We conclude that the exponential 105 

separation and the resulting sensitivity to noise in chaotic flows accelerate the decay of 106 

reversibility, but do not, on their own, disrupt the universality observed with the Ranz 107 

transformation or change differential reversibility relative to other linear flows. 108 

 109 
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III. NUMERICAL SIMULATION 110 

We  will now study SCDI in nonlinear velocity fields using the chaotic sine flow [16] and the 111 

non-chaotic steady Taylor-Green vortex flow [17] as examples (Fig. 3). In the chaotic case [Fig. 112 

3(b), first row], the flow switches between two orthogonal sine flows with a period, Tcyc  ≡ 1 as 113 

given in Eqs. (6) and (7); in the non-chaotic case [Fig. 3(b), second row], the two sine flows 114 

operate continuously as given in Eq. (8).  115 

 ( ) ( ) ...2,1,0 ; 12 5.0 ; 0; 2sin75.1 =+<≤== nTntnTuxu cyccycyx π  (6) 116 

 ( ) ( ) ( ) ;  1 12 5.0 ; 2sin75.1; 0 cyccycyx TntTnyuu +<≤+== π   (7) 117 

 ( ) ( ) ( ) ( ); cossin6125.0; cossin6125.0 xyuyxu yx ππππ ==  (8) 118 

The flows evolve forward [stirring, Fig. 3(b)] for a time, t (number of cycles for chaotic case) 119 

and then backward [un-stirring, Fig. 3(d)] for the same time, t. We note that this chaotic sine 120 

flow does not contain any non-chaotic islands. We simulate the evolution of the concentration 121 

profiles of a mixture of solutes of different diffusivities [Fig. 3(a)] with Lagrangian diffusive 122 

particle tracking as shown in figure 3. Briefly, the Lagrangian diffusive particle tracking method 123 

involves the following [18]: (a) populate the domain [Fig. 3(a)] using 106 particles randomly; (b) 124 

track the positions of the particles x  in the chaotic and non-chaotic flows by solving for the 125 

particle trajectories )(tBu
dt
xd += , where u  is the velocity [as shown in Fig. 3(b) and 3(d)], and 126 

)(tB  is the stochastic contribution to the velocity that represents diffusion; (c) obtain the 127 

concentration profiles [Fig. 3(a)] by binning particle positions at chosen times.  128 

 129 
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IV. RESULTS AND DISCUSSION 130 

A. Comparison with the Ranz model 131 

In figures 4(a) and 4(b), we plot ( )DtR f ,γ  calculated with respect to the original volume 132 

bounded by the dashed white lines in figure 3(e) for each flow. Noting the similarity in 133 

( )DtR f ,γ  in figures 4(a) and 4(b) (chaotic and non-chaotic flows) and figures 2(c) and 2(d) 134 

(extension and simple shear), we plot Rf as a function of the mixing time, τ . For this purpose, 135 

we use ><γτ  defined for linear flows in Eq. 4 ( extτ  for chaotic and ssτ  for non-chaotic flows, with 136 

two parameters, the mean strain rate, γ  that we calculate independently and the initial strand 137 

thickness, 0s as an adjustable fitting parameter). Figure 4(c) shows that ( )><γτfR  appears to 138 

collapse for each class of flow for a range of diffusivities ( )107 107.5107.5 −− ×−×=D , but not 139 

onto the master return curve for linear flows [black line replotted from Fig. 2(e)]. We also find 140 

that the evolution of ( )lowhigh DD ,φ  in chaotic flows and that in non-chaotic flows are distinct 141 

from each other and from that in linear flows [Fig. 4(d)]. The universal behavior of Rf and φ  142 

observed for linear flows does not generalize to nonlinear flows. Interestingly, the maximum 143 

differential reversibility is the smallest for the chaotic case. This observation indicates that, while 144 

chaos accelerates the absolute rate of decay of reversibility due to diffusion, it reduces the 145 

sensitivity to differences in diffusivity for nonlinear flows. 146 

B.  Modified Ranz model 147 

We search for the origin of the distinct evolution of reversibility in linear and nonlinear flows 148 

seen in figures 4(c) and 4(d) in the character of the nonlinear flows. Strands in nonlinear flows 149 
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experience a distribution of local strain rates which lead to a distribution of local mixing times 150 

( )τg . We generate the distribution of Lagrangian strain rates as follows: We track the length r  151 

of 104 line elements (with initial length 10 ≡r ) in these nonlinear flows by solving ur
dt
rd ∇= .  152 

along the trajectory of the center of the line elements. The Lagrangian strain rate is extracted for 153 

each line element using its relation to growth of line element in an extensional flow, 154 

( ) ⎟⎟
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chaotic flows. The distribution of strain rates at any time is extracted from the ensemble of 156 

Lagrangian strain rates at that time. Finally, using Eq. (4) ( extτ  for chaotic and ssτ  for non-157 

chaotic flow), we calculate the distribution of mixing times ( )τg . Figure 5(a) presents g(τ) for 158 

the chaotic and non-chaotic cases. We note that the width of ( )τg  grows exponentially with 159 

decreasing diffusivity in the chaotic flow whereas ( )τg  reaches an asymptotic form in the non-160 

chaotic flow.  161 

To account for the impact of the distribution of strain rates on the decay of reversibility, we 162 

propose a modified Ranz model wherein we compute the weighted average return fraction 163 

( ) ( ) ( )∫
∞

>< =
0

ττττ γ dgRR ffMR . Figures 5(b) and 5(c) indicate that the modified Ranz model 164 

captures the observed decay of ( )><γτfR  for both flows over an extensive range of diffusivities. 165 

Thus, the modified Ranz model provides a unified treatment of both chaotic and non-chaotic 166 

flows. We note that return fraction in a chaotic flow with islands would decay faster initially due 167 

to exponential stretching of the chaotic regions as predicted above, followed by slower diffusive 168 

decay due to the islands [19]. 169 
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C. Distinction in the zero diffusivity limit 170 

To understand if there is a fundamental distinction between chaotic and non chaotic flows in the 171 

context of SCDI, we explore the evolution of return fraction in chaotic and non-chaotic flows 172 

using the modified Ranz model in the limit 0→D . Exploration of this limit is motivated by the 173 

observation that, while RfMR in non-chaotic flows has already reached an asymptotic curve 174 

(distinct from the master return curve of linear flows) for 10107.5 −×=D  [Fig. 5(c)], the 175 

dependence of RfMR on ><γτ  in chaotic flows becomes increasingly weak [Fig. 5(b)]. Based on 176 

our modified Ranz model, we can identify the origin of this distinction of the nonlinear chaotic 177 

flow in the persistent growth of the tails of ( )τg ; this growth arises from the strong exponential 178 

dependence of the local mixing time extτ  on the strain of the fluid element. As a result of these 179 

tails, RfMR of the global flow is the combined effect of many fluid elements that are fully mixed, 180 

many that are unmixed for any finite D, and a small fraction (vanishingly small in the limit 181 

0→D ) with an intermediate state of mixing that is sensitive to the precise value of D . When 182 

this weak dependence RfMR on ><γτ  for chaotic flows is expressed in terms of differential 183 

reversibility [lines labeled A,B,C,D,E in Fig. 5(d)], the trend indicates that the efficiency of 184 

reversal becomes completely insensitive to differences in diffusivity (i.e, 1→φ  as 0→D ). In 185 

comparison, the asymptotic form of the RfMR curve for non-chaotic flows results in an 186 

asymptotic form of differential reversibility [red line labeled NC in Fig. 5(d); different from the 187 

master differential reversibility curve (black line labeled Master)] at finite values of diffusivity. 188 

Thus, in the limit of infinitesimal diffusion, the underlying chaotic dynamics leads to complete 189 

insensitivity to different levels of diffusion, in distinct contrast to the non-chaotic case. 190 

 191 
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V. CONCLUSION 192 

We have shown that, beneath the dramatically different rates of decay of reversibility observed 193 

in chaotic and non-chaotic flows, there exists significant unity in the evolution:  i) all linear 194 

flows lead to a universal decay of reversibility (Rf) when viewed in an appropriately scaled time 195 

domain, and ii) a simple analysis that accounts for the distribution of strain rates successfully 196 

captures the decay in both chaotic and non-chaotic, nonlinear flows. Interestingly though, in the 197 

limit of infinitesimal diffusion, our analysis predicts a qualitative distinction between chaotic and 198 

non-chaotic, nonlinear flows with respect to differential reversibility. We emphasize that the 199 

distinction in this asymptotic behavior arises due to the interplay of dynamics, the distribution of 200 

rates, and diffusion, and not due to chaos acting as an intrinsic source of irreversibility. Finally, 201 

we note that our study indicates that a baker’s transformation (with a single rate of strain) would 202 

be the optimal flow with which to implement Heller’s separation strategy with respect to both 203 

rate and efficiency. 204 
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Figures and Captions: 238 

 239 

FIG. 1. (Color Online) Schematic representation of Separation by Convective Diffusive 240 

Irreversibility (SCDI). Concentration profiles of a one-to-one mixture (yellow) of two solutes of 241 

different diffusivities (green = high diffusivity, red = low diffusivity) (a-c) State of mixture (a) 242 

initially segregated from miscible carrier fluid (black) before stirring,  (b) after stirring in a 243 

Stokes flow and (c) after reversing the flow (“unstirring”). The white dashed line in (c) 244 

represents the original volume occupied by the mixture in which return fraction Rf is evaluated. 245 

High diffusivity solute is distributed uniformly over the domain in (c). 246 

  247 
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 248 

 249 

FIG. 2. (Color Online) SCDI in linear flows. (a) Initial concentration distribution of a diffusive 250 

solute (red) in the frame of reference of the strand ( )yx ′′, . (b) Concentration profile ( )τξ ,c  251 

predicted by the Ranz model [Eq. (5)] initially ( 0=τ ; violet curve), after stirring, ( 02.0=stirτ  ; 252 

gray curve), and after unstirring ( 04.0=unstirτ  ; orange curve). Return fraction Rf is defined as 253 

the area of shaded region. (c-d) Decay of Rf for (c) extension (solid lines) and (d) simple shear 254 

(dash dot  lines) as a function of total strain, tγ , for four different diffusivities [from left to right, 255 

5.7x10-7 (green), 5.7x10-8 (brown), 5.7x10-9 (blue), 5.7x10-10 (red)]. (e) The master return curve 256 

( )stirfR τ for all linear flows and pure diffusion. (f) The master curve of maximum differential 257 

reversibility,φ   [Eq. (1)] for all linear flows plotted as a function of the ratio of diffusivities. 258 
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 259 

FIG. 3. (Color Online) SCDI in nonlinear Stokes flows. Evolution of concentration profiles of a 260 

one-to-one mixture of two tracers of different diffusivities 7107.5 −×=highD  (green) and 261 

10107.5 −×=lowD  (red), (diffusion is non-dimensionalized by [ ]cycTH 2 , where H is the height of 262 

the flow domain, Tcyc is the time period of the chaotic flow) in the chaotic (first row) and the 263 

non-chaotic (second row) flows. (a) Initial concentration profile with mixture in the lower half of 264 

the domain. (b) Schematic representation of the velocity fields used for stirring. (c) 265 

Concentration profile after stirring for t cycles ( 3=t for chaotic, 73=t  for non-chaotic) 266 

equivalent to the same mixing time τ  of 0.24 and 0.00024 for the two diffusivities in both flows. 267 

(d) Velocity fields used for un-stirring. (e) Concentration profiles after un-stirring for the t 268 

cycles. The white dashed line indicates the region where the solutes were present initially in (a). 269 

(f-g) Individual concentration profiles after unstirring of (f) low diffusivity solute and (g) the 270 

high diffusivity solute. These distributions in (f) and (g) add up to give (e). 271 
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 272 

FIG. 4. (Color Online) Characteristics of SCDI in nonlinear Stokes flows. (a-b) Rf as a function 273 

of total strain (the mean strain rate >< γ  is 2.07 for the chaotic flow and 2.275 for the non-274 

chaotic flow) for (a) the chaotic flow [D=5.7x10-7( ), 5.7x 10-8 ( ), 5.7x 10-9( ), 5.7x 10-275 

10( )] and (b) the non-chaotic flow [D=5.7x10-7( ), 5.7x 10-8 ( ), 5.7x 10-9( ), 5.7x 10-276 

10( )]. (c) Rf as a function of mixing time ><γτ  [with mean strain rates as in (b) and adjusted 277 

strand widths s0 =0.375 H for the chaotic ( 99.02 >r ) and 1.25 H for the non-chaotic flow (278 

99.02 >r )]. (d) Maximum differential reversibility φ  as a function of the ratio of diffusivities 279 

for pure diffusive case [black line, same as Fig. 2(e)], chaotic flow ( ), and non-chaotic flow 280 

( ).  281 
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 282 

FIG. 5. (Color Online) SCDI in the limit of infinitesimal diffusion using the modified Ranz 283 

model. (a) Mixing time distribution ( )τg  in the chaotic flow for two diffusive solutes (D = 5.7 x 284 

10-16 ( ), D = 5.7 x 10-31 ( )) and in the non-chaotic flow for a diffusive solute (D = 5.7 x 10-16 285 

( )), for 024.0=><γτ . (b-c) Return fraction Rf obtained from numerical simulation as a function 286 

of mixing time ><γτ  for (b) the chaotic flow (diffusivities 5.7 x 10-7 ( ), 5.7 x 10-16 ( ) and 5.7 287 

x 10-31 ( )) and (c) the non-chaotic flow (5.7 x 10-4( ), 5.7 x 10-7( ), 5.7 x 10-10( )). 288 

Comparison with the return fraction based on modified Ranz model ( )><γτfMRR  is shown using 289 

solid lines of the corresponding color for each diffusivity and flow [s0 values in Fig. 3(c)]. In 290 

addition, in (b), return fraction ( )><γτfMRR  corresponding to diffusivities D = 5.7 x 10-65 (–;D) 291 

and D=5.7 x 10-257 (–;E) are plotted indicating the trend in Rf as 0→D . (d) Maximum 292 

differential reversibility φ  as a function of ratio of the diffusivities. The master φ  curve for pure 293 

diffusion (–; Master) , the asymptotic φ  curve for non-chaotic flow as predicted by the modified 294 
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Ranz model (–; NC), and trends for the chaotic case for Dhigh of  5.7 x10-7 (–;A), 5.7 x10-16(–;B), 295 

5.7 x10-31 (–;C), 5.7 x10-65 (–;D) and 5.7 x10-257 (–;E)) as predicted by the modified Ranz model.  296 


