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We study the variability of passive scalar diffusion via the statistics of stochastic particle dispersion
in a chaotic flow. We find that at intermediate times when the statistics of individual trajectories
start to exhibit scaling-law behaviors, scalar variance over the entire domain exhibit multi-modal
structure. We demarcate the domain based on Lagrangian coherent structures and find that the
conditional statistics exhibit strong unimodal behavior, indicating coherence of effective diffusion
among each Lagrangian partition of the flow.

Advances in nonlinear dynamical systems methods in
the past decade have enabled the objective extractions
of coherent structures from chaotic flow data that has
general time dependences. These coherent structures, ob-
tained from measures associated with the Lagrangian tra-
jectories of fluid parcels, retain kinematic properties un-
der arbitrary translation/rotation of the coordinate sys-
tem and are thus frame-independent and robust [1, 2].
Highly popularized due to its efficiency, the finite-time

Lyapunov exponents (FTLE) is one of the most used
mathematical tool to study the variability of Lagrangian
mixing [3] and identify Lagrangian coherent structures
(LCS) [1]. Roughly speaking, the FTLE field provides
the different rates at which nearby trajectories separate
over finite time. Topological properties of the FTLE are
used to study the details of LCS [4].
While theoretical developments based on FTLE help

identify barriers of Lagrangian mixing in deterministic
flow fields, little has been studied in their relations with
stochastic processes and diffusion. Experiments and ob-
servations suggest that transient-time diffusion follow
LCS [5]. An ad hoc effective diffusivity was constructed
based on FTLE [6]. A few recent studies explored the ef-
fects of random noise on FTLE [7, 8]. In considering the
LCS subject to realistic random noises in a flow model,
it is found that well and poorly mixed zones appear [8],
bounded by the most distinguished mixing barriers (La-
grangian skeletons) in deterministic studies [4].
Recent experiments [9] and theories [10] on scalar in-

termittency indicate that the existence of coherent struc-
tures leads to non-Gaussian statistics and anomalous dif-
fusion. Because of the observed alignment of concentra-
tion gradients with the LCS skeletons [5], it is promising
to associate passive scalar statistics with the Lagrangian
topology, and pin down the effect LCS has on diffusion.
The goal of this work is to analyze stochastic processes

associated with a nonlinear, chaotic flow where coherent
structures are prevalent, and obtain finite-time statistics
crucial to understandings of intermittency. By parti-
tioning the domain into different regions using FTLE,
we pinpoint the role of flow topology on the statistics.
We are aware of one prior study on conditional statistics
in chaotic flows, which doesn’t involve stochasticity, and
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used the frame dependent Lagrangian Okubo-Weiss pa-
rameter [11, 12]. Addition of random noise and use of
FTLE make the present work realistic and objective.
To make our discussion concrete, we adopt the fol-

lowing phenomenology. Coherent structures that have
long-time correlations are present and slowly evolving.
There is sufficient scale separation between the coherent
structures and sub-grid scale uncertainties, and we im-
pose a Gaussian white noise on the advection of scalars.
For easy identification and partitioning of coherent struc-
tures, we consider the kinematic model of Bickley jet [13].
Model and parameter — The Bickley jet model arises

from studies on the stability of a zonal shear flow where
the zonal velocity u ∝ sech2y. The eigen solution of
the governing equation admits two neutral waves where
by superposition with the mean shear flow, can generate
overlap regions that exhibit chaotic trajectories. As a re-
sult, vortices, jets and mixing zones coexist in this model.
Parametric dependence of the deterministic dynamics on
Bickley jet has been studied before [14, 15].
The streamfunction of the Bickley jet is given by

ψ = tanh y + sech2y

2
∑

i=1

εi cos ki(x− cit), (1)

where εi, ki and ci are the amplitude, wave number and
phase speed of the waves. Parameters are chosen to be
dynamically consistent with governing equations [16]:
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hence the dynamics is given in a three-parameter fam-
ily (β, ε1,2). It has been found that for different choices
of the parameters, the phase portrait may exhibit tran-
sition between homoclinic connections and heteroclinic
connections, as well as transition between a persistent
zonal jet and the breaking of this central barrier [14]. To
retain clearly identifiable topological features, we choose
the parameters as ε1 = 0.1, ε2 = 0.3 and β = 0.6144 —
the integrable jet coexists with chaotic zones.
It is computationally unmanageable to study the topo-

logical dependence of scalar statistics on LCS from di-
rect numerical simulations (DNS) of the Fokker-Planck
equations, while maintaining a high-resolution for initial
conditions. As such, we resort to the computation of a
random displacement model (RDM) based on stochastic
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FIG. 1. (Color online) Comparison among LCS and variances, all dependent on the initial conditions and at t = 1000. a)
Forward-time FTLE based on deterministic trajectories. b) Forward-time FTLE based on stochastic mean trajectories. c)
Variance of x-displacements. d) Variance of y-displacements.

differential equations [17]. To be precise, we generate a
large ensemble of realizations governed by the equations

ẋ ≡ u = −ψy +
√
2κẆ1, ẏ ≡ v = ψx +

√
2κẆ2, (3)

where ψ is given in eq. (1), κ(=0.001 in our baseline case)
is a diffusivity that controls the magnitude of the uncor-
related random walks Ẇ . The RDM uses RK4 for the
deterministic and explicit Euler for the stochastic terms.
We use a DNS solver [18] to resolve the evolution of the

Fokker-Planck equations over time, up to when the vari-
ous moments of scalar statistics start to exhibit scaling-
law behavior. Nine of such runs are performed, with
initial conditions evenly distributed across all regions, to
determine the time of integration necessary for robust
statistics. With the parameters chosen, the numerically
determined time of integration t = 1000. In the baseline
case, this corresponds to a time scale at which diffusion
will take a concentrated scalar to spread over a unit area.
The RDM eq. (3) is solved for the nine initial condi-

tions to determine the number of realizations needed in
any of the regions. 50,000 realizations per initial condi-
tion are chosen such that the probability density function
generated by DNS and RDM match well for all cases. A
sampling grid of 144×64 in the x and y directions is cho-
sen to fit on a 14-node, 224-CPU cluster.
Finally, to speed up the computations, the integration

time step for RDM is chosen as ∆t = 0.01. This time-
stepping is insufficient for accurate deterministic trajec-
tories because of the large integration time and sensitive
dependence on initial conditions, but is sufficient as far
as convergence in probability density is concerned. How-
ever, much smaller tolerance and time steps are chosen
for deterministic trajectories to obtain the FTLE field.
After generating all realizations, various moments of

scalar dispersion are computed based on the ensemble of
displacements that originate in the same initial condition
or the same LCS to study the topological dependence.
Analyses — Defining the finite-time deformation ten-

sor of the flow as ∂x(x0, t0; t0+t)/∂x0, the largest eigen-

value λ(x0, t0; t0+ t) can be obtained from singular value
decomposition. The FTLE is then σ = ln(λ)/t for spa-
tially and temporally dependent λ.

We compare the flow topology and variability of scalar
variances in Fig. 1. Fig. 1a shows the deterministic
forward-time FTLE field after integration time t = 1000
at a resolution of 576×256. By parameter selection we
preserve the central barrier region, seen as the wavy
structure with relatively low FTLE values around y = 0.
On both sides of this region we find the boundaries of the
jet, which take smooth transition of FTLE values, up to
highlighting FTLE ridges which separate the jet bound-
aries from the chaotic zones. Inside the chaotic zones,
the FTLE values appear to be very random. This indeed
is due to the fine structures of the heteroclinic tangles
[14], which are not resolved at this resolution. Outside of
the chaotic zones, we find the structures separating them
from a shear-dominant exterior flow.

Figure 1c, d show the variances of scalar displacement
in the x- and y-directions, respectively. The variances
are computed based on the initial conditions given. For
a set of realizations released at x0, varx(x0, t0; t) =
∑50000

r=1
[xr(x0, t0; t)−xr(x0, t0; t)]

2. The overline denotes
average based on initial conditions, and the bold font xr

denotes the computation of variance separately for x and
y. As seen, the contour map indicating variability of vari-
ances correspond very well with the deterministic flow
topology, except for low-value patches inside the chaotic
zone, indicating low dispersion. In this zone, although
deterministic trajectories are chaotic, the ensemble of
stochastic trajectories behave quite regular after suffi-
cient time. At the core of the chaotic zone, the cluster of
nearby ensembles separate much less than trajectories on
the edge of the chaotic zone. This low separation is also
seen in Fig. 1b on FTLE based on the mean trajectories.

A common feature of these contour maps is the al-
most uniform value of variances in each of the partition
of LCS (except for the chaotic zone). This behavior in-
dicates that the diffusion process is coherent within each
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FIG. 2. (Color online) Conditional statistics of variances and FTLE in different partitions of the flow. a) Outer barriers that are
hyperbolic. b) Inner barriers that transition from hyperbolic to parabolic structures. c) Chaotic zone between the hyperbolic
barriers. d) Parabolic central jet region. e) Partitioning of domain superimposed on FTLE.

individual coherent structure. Motivated by this obser-
vation, we show conditional statistics of the variances in
Fig. 2. We partition the domain using the determinis-

tic FTLE since we hope to relate diffusion processes to a
priori knowledge of coherent structures without having
to compute the stochastic differential equations. Parti-
tioning of the domain is based on locating the contours
corresponding to the largest slopes in the FTLE field and
eliminating spurious results in the chaotic zone via visual
inspection. Fig. 2e shows the deterministic FTLE along
with the partitions. The white points denote the parti-
tion of jet in the center and the chaotic zones on the two
sides. The black points denote the two inner barriers sep-
arating the jet and the chaotic zones, and the two outer
barriers separating the chaotic zones and the exterior.
The probability density function (pdf) of variances of

displacements are given in the top panels Fig. 2a-d, with
a) the two outer barriers that exhibit hyperbolic behav-
ior, b) the two inner barriers that mark transition be-
tween hyperbolic and parabolic regions, c) the chaotic
zones between the hyperbolic regions and d) the central
jet. Because of the difference in the number of sampling
points, the histogram in different regions encloses differ-
ent areas under the curves. In these panels, the black
solid (gray dashed, blue online) curves associate with
the black (gray, blue online) axes, corresponding to the
variances in x (y). As expected, in all except for the
chaotic zone, variances exhibit unimodal behavior with
relatively narrow width, indicating high probability in a
small range of diffusivity. The residence time of trajecto-
ries in the center of the chaotic zone is longer than those
close to the hyperbolic barriers, a continuous transition
of initial conditions from the center towards the edge of
this zone gives rise to the relatively flat and wide pdf in
variances as seen in Fig. 2c.
In order to measure the effective diffusion in each of

the LCS, we study conditional statistics across all realiza-

tions that start in the same zone and their temporal evo-
lution. Pdf of relative displacement from the mean is con-
sidered. For each initial condition x0 in the same LCS,
we compute the pdf of δxr = xr(x0, t0; t)− xr(x0, t0; t),
where overline denotes average at time t of all realizations
originating from x0. As such, δxr has a zero mean.
As time progresses, it is found that the pdf approaches

a self-similar profile. The histograms for δxr are shown in
Fig. 3 for the different partitions, with proper rescaling.
The hyperbolic zone in Fig. 3a corresponds to the com-
bination of the two boundary regions (Fig. 2a,b). The
chaotic (Fig. 3b) and parabolic (Fig. 3c) zones cover the
same regions as Fig. 2c,d. The histogram over the entire
domain is shown in Fig. 3d. Again, the black (gray, blue
online) curves and axes associate with the x (y) statis-
tics. They are shifted horizontally for more clarity. The
lonely solid curves in each panel correspond to t = 100
and those fall onto the self-similar profile are t = 700
(dashed), 800 (dotted), 900 (dash-dot) and 1000 (solid).
These four curves are almost indistinguishable in Fig. 3,
with only small variabilities due to a slow relaxation to
a Gaussian.
The δy statistics appear to be symmetric and rela-

tively simple. At t = 100, all regions appear to be non-
Gaussian with a flatter peak and slightly fatter tail. The
self-similar profile already approaches Gaussian. It takes
the form of P (δy, t) = t−γ/2f(ξ), ξ = δy/tγ/2, where f
is a scaling function, ξ a scaled coordinate and γ the ex-
ponential decay rate. It is noted that γ = 1 indicates
normal diffusion, γ < 1 indicates subdiffusion and γ > 1
indicates superdiffusion. The exponent γ is found to take
values of 0.75, 0.82, 0.62 and 0.66 for panels a-d, respec-
tively. In all cases the y-dispersion is subdiffusive. The
central barrier region has the least decay rate, consistent
with the fact that barriers inhibit cross-jet transport.
For δx statistics, the rate of decay in the central peak

and the rate of expansion in the two tails are some-
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FIG. 3. (Color online) Conditional statistics on scalar dispersion in different partitions of the flow.

FIG. 4. (Color online) Dependence of zonal variance on diffusivity and time.

what different. The self-similar profile takes the form of
P (δx, t) = t−α/2g(η), η = δx/tβ±/2. Here g is a scaling
function, α is the exponential decay rate, β± correspond
to the expansion of tails in positive and negative branches
of δx. The differential expansion rate is due to the bias
in zonal transport: scalars caught in the jet displace at
different speed as those in the chaotic and outer shear
zones. Relatively, the parabolic jet moves in the posi-
tive x-direction, the chaotic and shear zones move in the
negative x-direction, leading to different growth rates in
the positive and negative tails. For scalars initially in
hyperbolic and chaotic zones, significant amount of real-
izations diffuse into the outer shear zone, leading to the
peaks in pdf at negative values of η in Fig. 3a,b. In the
parabolic zone not as many realizations get trapped in
the center of the chaotic zone because of the jet bound-
aries serving as transport barriers, hence no similar peak
can be found. In any region the zonal pdf are strongly
non-Gaussian. The expansion rates β+ in the positive
branch are 1.75, 1.75, 1.8, 1.8; the expansion rates β−
in the negative branch are 1.9, 1.6, 1.45, 1.6 and the de-
cay rates α are 1.75, 2, 1.4, 2 for Fig. 3a-d, respectively.
Henceforth, the zonal transport is superdiffusive with the
respective decay rates.

We also study the dependence of statistics based on
variable diffusivity κ. Because of the linearity in the dif-

fusion problem, such dependence varies almost linearly
— when κ reduces in half the topological features of the
variances at t = 1000 is similar to those of the original
κ at t = 500. However, the actual value of variances
varies differently among different partitions. In particu-
lar, variances in the central barrier vary as κ−2 because
of the ballistic style trajectories. In order to reveal such
dependence, we show in Fig. 4 three values of κ, from left
to right, each reduced in half, κ = 0.001, 0.0005, 0.00025,
and three values of t, from left to right, each increased
twice, t = 100, 200, 400. As seen, the geometry of these
structures are very similar, except that the scalar vari-
ance grow with different exponents in respective parti-
tions. As such, one can study the κ dependencies based
on Lagrangian partitions of the coherent structures and
the respective growth rates within each partition. Not
shown in Fig. 4, at very large κ, variance structures do
not associate with FTLE topology because of the strong
homogenization across all zones.

Conclusions — Finite-time statistics of scalar diffu-
sion associate well with FTLE. A simple partition of
the domain based on FTLE values already reveals the
almost uniform capability of individual LCS in diffus-
ing a scalar. This suggests the use of LCS in studying
anomalous diffusion, because of their objectivity in struc-
ture classification. Our results confirm the importance of
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studying coherent structures in zones in addition to fo-
cusing on finding the location of the barriers. Applying
the recent results of geodesic LCS theory [19] or using the
probabilistic approach based on transfer operators [20] to
improve the objectivity in domain partitions may bring
further insights on the statistics we obtain here. Such
studies will be reported elsewhere.
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