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First-order transitions of system where both lattice site occupancy and lattice spacing fluctuate,
such as cluster crystals, cannot be efficiently studied by traditional simulation methods. These
methods necessarily fix one of these two degrees of freedom, but this difficulty is surmounted by
the generalized [N ]pT ensemble [J. Chem. Phys. 136, 214106 (2012)]. Here it is shown that
histogram reweighting and the [N ]pT ensemble can be used to study an isostructural transition
between cluster crystals of different occupancy in the generalized exponential model of index 4
(GEM-4). Extending this scheme to finite-size scaling studies also allows to accurately determine
the critical point parameters and to verify that it belongs to the Ising universality class.

PACS numbers: 64.70.K-, 64.60.F-, 05.70.Jk, 05.10.Ln

Models with steeply growing but soft-core repulsions
were first introduced as schematics for soft matter sys-
tems, such as dendrimers and micellar crystals [1–3]. In
contrast to models with purely repulsive hard-core inter-
actions, which simply crystallize, at high densities these
models form cluster crystals in which each lattice site is
multiply occupied. Clustering dramatically affects the
materials properties of the crystal phase, contributing to
both these model’s response functions and their elastic
properties [2, 4]. One of the cluster-crystal formers, the
generalized exponential model of index 4 (GEM-4) [5]
with a pair interaction potential

φ(r) = ǫ exp[−(r/σ)4], (1)

where ǫ and σ set the units of energy and length respec-
tively, was also found to exhibit low-temperature first-
order isostructural transitions between cluster phases
with different integer occupancy, e.g., face-centered cubic
(FCC) solids with double (FCC2) and triple (FCC3) oc-
cupancy [6]. Each of these isostructural transitions was
found to terminate at a critical temperature Tc, above
which the lattice difference between the two phases van-
ishes and particles are randomly distributed over the lat-
tice sites.
Although rather rare, isostructural transitions between

singly occupied FCC solids with different lattice spac-
ing were first observed in the cerium phase diagram over
thirty years ago [7, 8], and then in models with short-
range attractive interactions [9, 10]. No direct study
of their critical properties has been reported, but these
properties are expected to be fairly standard, except in
two dimensions, where coupling with a hexatic transi-
tion may affect the critical behavior [11]. In the case
of cluster crystals, however, the interplay between lat-
tice occupancy and lattice spacing results in additional
sources of fluctuation could impact the critical behavior,
just like they affect these system’s mechanical response.
From a numerical simulation point of view, clustering
also prevents the successful application of traditional sim-
ulation methods. In this Brief Report, we present a finite-
size scaling study of the FCC2-FCC3 CP in the GEM-4

by specially considering the lattice occupancy fluctua-
tion at equilibrium. The approach confirms the Ising
universality class of the transition and finds a minimal
role for coupling. We expect the approach could be ex-
tended to other systems where lattice occupancy plays
a central role, such as microphase formers [12], crystals
with large number of vacancies [13, 14], and binary mix-
tures [15, 16].
Simulation techniques for locating first-order transi-

tions and critical points (CP) are fairly well estab-
lished [18–21], but there exists a key problem with sim-
ulating cluster crystals. Once Nc lattice sites are ini-
tialized for a N -particle system, the average lattice site
occupancy nc ≡ N/Nc cannot generally relax to its equi-
librium value. The recently developed [N ]pT ensemble
method successfully surmounts this problem by allowing
both particle number and lattice spacing to fluctuate [4].
At temperature T and pressure p, the equilibrium occu-
pancy then coincides with the minimization of the con-
strained Gibbs free energy Gc(N, p, T,Nc) ≡ µN +µcNc,
whose exact differential form [22]

dGc = −SdT + V dp+ µdN + µcdNc, (2)

depends not only on the entropy S, the volume V , the
chemical potential of the particles µ, but also on µc, the
chemical potential-like quantity conjugate to Nc. If Nc

is fixed, as it is in simulations of a reasonable size, the
per particle free energy gc(p, T, nc) ≡ Gc/N must thus be
minimized to identify the equilibrium state at constant
T and p.

Coexistence densities. Given an external field G̃N and
a particle number window [Nmin, Nmax], the [N ]pT en-
semble samples N with probability

P(N) ∼ eβG̃Ne−βGc, (3)

and iteratively determines gc within that window [4].
Convergence of the algorithm, which is identified by

P(N) being flat, provides G̃N differing from Gc by a con-
stant. This constant can then be determined by a single
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FIG. 1: (Color online) Converged gc (black (thick) solid line)
from [N ]pT GEM-4 simulations with Nc = 1372 at T = 0.045
and p = 1.97. After reweighting to p = 1.9702 (red (thin) solid
line), the two wells are at the same depth, which indicates that
crystals at these two densities have the same chemical poten-
tial µeq (dotted line). Note that the gc has an intrinsic error
of 0.0003, due to thermodynamic integration, which gives the
pressure uncertainty of O(0.001) and the optimized particle
number uncertainty of O(1).

thermodynamic integration, neglecting the trivial ther-
mal wavelength contribution [4, 23]. Because the mini-
mum of gc corresponds to the equilibrium lattice occu-
pancy, with µc = 0, the [N ]pT ensemble method can
also locate the coexistence densities of an isostructural
transition by adjusting the temperature and pressure so
that the two minima of gc have the same depth, i.e., the
same µeq (Fig. 1). If the simulated pressure differs from
the coexistence pressure at the chosen temperature, his-
togram reweighting over pressure to equate the two wells
is used [4]. By histogram reweighting over T and p, one
can also obtain coexistence densities at neighboring phase
points [4, 24].
We first perform [N ]pT simulations of a system with

Nc = 1372 at T = 0.045 and p = 1.97. The pair po-
tential φ(r) is truncated at a cutoff distance of 1.7σ, be-
yond which the potential energy is treated in an average
way [23]. In addition to standard particle and logarithmic
volume Monte Carlo (MC) moves [23], particle insertions
(+) and removals (−) are used with the acceptance ratio

acc± = min
{
1, η±eβ∆G±−β∆E±

}
, (4)

where ∆G± = G̃N±1 − G̃N, η+ = V/(N + 1), η− =
N/V , and ∆E± is the energy cost of inserting/removing
a particle [4, 25]. The free energy from thermodynamic

integration is used as initial guess for G̃N. For a particle
window of width ∆N = 800, 107 MC cycles are sufficient
to obtain well-averaged quantities. The resulting and
reweighted gc curves are shown in Fig. 1. Although an
intrinsic error in gc of the order O(1/N) is introduced
by the thermodynamic integration, the minimum of the

gc curve is only affected by δN ∼ O(1) [4], which also
sets the error bar on the coexistence pressure. With this
scheme, we determine a series of coexistence densities
for the FCC2-FCC3 isostructural transition close to the
critical point (Fig. 4).
Critical point. The accurate determination of the crit-

ical point involves a finite-size scaling approach based
on renormalization group [26]. At the apparent critical
temperature Tc(L) of a finite system of linear size L, the
distribution of the order parameter adopts a universal
form [20, 27], once properly rescaled, that allows to ex-
trapolate Tc to the thermodynamic, i.e., infinite system
size, limit. Note that under this definition, the distri-
bution of order parameter still exhibits a double peak
at the apparent critical temperature. In order to locate
the GEM-4 FCC2-FCC3 isostructural critical point, we
thus need to calculate the distribution P(ρ) of density
ρ ≡ N/V . We show below that one can obtain P(ρ)
from Gc = gcN by carefully considering the statistical
mechanics of cluster crystals.
At fixed N , p, and T (β ≡ 1/kBT , where kB is the

Boltzmann constant), the constrained Gibbs free energy
Gc(Nc) = Gc(N, p, T,Nc) as a function of Nc is effec-
tively a Landau free energy with order parameter Nc

e−βGc(Nc) =
∑

ν

e−βGνδ(Nν
c −Nc), (5)

where
∑

ν is a sum over all microstates indexed by ν
subject to the constant NpT constraint. The Kronecker
delta function δ(x) is unity when x = 0 and zero oth-
erwise. The equilibrium Gibbs free energy G(N, p, T )
therefore satisfies

e−βG =
∑

Nc

e−βGc(Nc) ≃ e−βGc(N
eq
c ), (6)

where the last approximation holds when the term with
equilibrium N eq

c dominates the sum. Analogously, we

can define Landau free energy GV (V ) and G̃(Nc, V )

e−βGV (V ) =
∑

ν

e−βGνδ(Vν − V ), (7)

and

e−βG̃(Nc,V ) =
∑

ν

e−βGνδ(Nν
c −Nc)δ(Vν − V ), (8)

which are related by

e−βGV (V ) =
∑

Nc

e−βG̃(Nc,V ) ≃ e−βG̃(NV

c ,V ). (9)

Here again, for a given volume V , there exists a specific

NV
c , such that e−βG̃(NV

c ,V ) dominates the sum over Nc.
For a N -particle system, density fluctuations result from
changes in both V and Nc. Yet because a single specific
NV

c dominates each V , we can consider that the density
fluctuations are essentially along the Nc = NV

c contour
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FIG. 2: (Color online) The sampling distribution P(N, ρ) at
T = 0.045 and p = 1.97 peaks at N0 for each density. On
the ρ-N plane, the most sampled N0 (blue circles) is approx-
imately equal to N = ρ〈V 〉 (red (thick) solid line).

of the two-dimensional G̃(Nc, V ) surface. In other words,
the density fluctuation is governed by the Landau free

energy GV (V ) ≃ G̃(NV
c , V ) for fixed NpT .

In [N ]pT ensemble simulations, Nc is fixed while N
fluctuates. The density distribution is then governed by
a Landau free energy G(N0(ρ), ρ) similarly defined as in
Eq. 8, where N0 is the most probable particle number
for a given density ρ. If we consider the [N ]pT ensemble
simulation to be a series of NpT simulations, then for
each N ∈ [Nmin, Nmax] there exists an average volume
〈V 〉. We can show that if densities are binned under the
definition ρ = N/〈V 〉 for each N , then N ≈ N0 for that
density, with a relative error of the order O(1/N). In the
[N ]pT ensemble, the conditional probability of observ-
ing a particle number N given the density ρ, P(N |ρ) ∼
P(N, ρ) ∼ NP(N, V ), where the joint distribution
P(N, V ) ∼ eβGc(N,p,T,Nc)e−βpV e−βFc(N,V,T,Nc) [4]. We
can thus formally write

P(N, V ) ∼
e−β(pV+Fc(N,V,T,Nc))

e−βGc(N,p,T,Nc)
=

e−βG̃(Nc,V )

e−βG̃(Nc,〈V 〉)
. (10)

Given ρ1, there exists N1 such that ρ1 = N1/〈V1〉. The
relative probability of observing another N2 = ρ2〈V2〉 at
ρ1 is then

P(N2, ρ1)

P(N1, ρ1)
=

N2

N1

P(N2, N2/ρ1)

P(N1, 〈V1〉)
≃

e−βG̃(Nc,N2/ρ1)

e−βG̃(Nc,〈V2〉)
≪ 1

(11)
if the linear increase in probability due to the factor
N2/N1 is negligible compared to the exponential suppres-
sion. This condition is here obeyed because the standard
deviation of N2 from N1 is O(1) (Fig. 2). The most prob-
able particle number N0 for a given density ρ = N/V is
thus approximately the particle number under the def-
inition N = ρ〈V 〉, within a relative error of the order
O(1/N), as checked numerically in Fig. 2. We can there-
fore use the Landau free energy G(N, ρ = N/〈V 〉) =
Gc(N = ρ〈V 〉, p, T,Nc) to analyze the density fluctua-
tions.

Another challenge with [N ]pT simulations is that both
N and V are allowed to fluctuate, resulting in an ex-
ponential growth of the probability distribution P(ρ =
N/〈V 〉) ∼ e−βGc(N=ρ〈V 〉,p,T,Nc), because of the increase
in number of states with N . Although gc = Gc/N shows
a double well, the shape of Gc is dominated by the linear
increase withN , and the wells are nearly invisible on that
scale. We can correct for this trivial exponential growth
by normalizing the distribution with e−βµeqN , where µeq

is the minimum of gc and thus the coexistence chemical
potential. For a given system size L, the distribution
of density is therefore PL(ρ = N/〈V 〉) ∼ eβ(µ

eqN−Gc),
where Gc = gcN is the converged field in the [N ]pT sim-
ulation. This approach is formally equivalent to running

[N ]pT simulation with G̃N = µeqN without iterative up-
dating (see Eq. 3). This alternative strategy is, however,
numerically inefficient if µeq is not known in advance or
if the free energy barrier between the two minima is high
and the sampling efficiency is low. This simulation ap-
proach can thus be seen as one where the order parameter
fluctuates at constant coexistence temperature, pressure
and chemical potential.

The linear system size L truncates the correlation
length in a finite simulation box. In d-dimensional con-
stant volume simulations, L is unambiguously defined as
V 1/d. When V fluctuates, such as in constant NpT sim-
ulations, the fixed extensive quantity N is used as a mea-
sure of length scale L ∝ N1/d [28], but in [N ]pT simula-
tions, neither N nor V are fixed. As mentioned earlier,
the [N ]pT simulation can be thought of a series NpT
simulations at various N ’s. One may thus be tempted
to propose N1/d as the linear size for each ρ = N/〈V 〉.
Yet the resulting collapse is not good, because in cluster
crystals the system size does not straightforwardly scale
with N , due to clustering at fixed Nc. We instead make

an ansatz that L ∝ N
1/d
c .

Finite-size scaling simulations. We perform [N ]pT
simulations for systems with Nc = 500, 864, 1372 at tem-
peratures close to their Tc(L)’s. For different system

sizes L ∝ N
1/3
c , the distributions PL(ρ = N/〈V 〉) ∼

eβ(µ
eqN−Gc) at their apparent critical temperature Tc(L)

as a function of the scaling variable, x = ALβ/ν(ρ −
ρc(L)), collapse onto a universal function P(x), if the
correct critical parameters Tc(L), ρc(L) and β/ν are cho-
sen [26]. We use the Ising universality exponent β/ν =
0.518 and the corresponding distribution P(x) [29]. At
Tc(L), the ratio of the peak value of P(x) to its value at
x = 0 is about 2.173(4) [29]. With histogram reweight-
ing, we identify the system-size dependent critical con-
ditions (Table I), which result in good scaling behaviors
(Fig. 3). The nonuniversal normalization factor A is ar-
bitrarily chosen as unity for the GEM-4 distributions,
but other normalization conventions are also used in the
literature [26]. Obtaining consistent data collapse using
the empirical formula in Ref. [29], thus takes A = 0.132
for the Ising results. The infinite-system critical temper-
ature and density can then be extracted from the scaling
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FIG. 3: (Color online) Finite-size scaling of the GEM-4
isostructural transition. The density distribution with ap-
propriate critical values (Table I) for the system of linear size

L ∝ N
1/3
c , with Nc = 500, 864, 1372, collapses onto the Ising

universality function (β/ν = 0.518) [29]. Insets: the apparent
critical temperature (left) and density (right) extrapolate to
the infinite system size limit (Eq. 12).

TABLE I: (Apparent) critical quantities for various system

sizes L ∝ N
1/3
c .

Nc Tc(L) ρc(L) pc(L) µeq(L)
500 0.04555(10) 1.2387(3) 1.971(1) 2.9264(3)
864 0.0461(1) 1.2386(3) 1.972(1) 2.9298(3)
1372 0.0464(1) 1.2385(3) 1.973(1) 2.9316(3)
∞ 0.0471(2) 1.2382(12)

relations

Tc(L)− Tc(∞) ∼ L−(θ+1)/ν

ρc(L)− ρc(∞) ∼ L−(1−α)/ν ,
(12)

where the Ising universality class exponents are θ = 0.54,
α = 0.11 and ν = 0.629 [19] (Table I). This analysis un-
ambiguously assigns the GEM-4 isostructural transitions
to the Ising universality class, and the accuracy of the
critical point location is improved by an order of magni-
tude (Fig. 4).
In the liquid-vapor transition, due to the lack of

particle-hole symmetry observed in the Ising model, den-
sity ρ is not an appropriate order parameter to compare
with the symmetric Ising model magnetization, so a lin-
early transformed density operator M = ρ−su

1−sr with pa-
rameters s and r, where u is the energy density, is needed
[26]. For the GEM-4 isostructural transition, we find the
symmetry of ρ to be quite good close to Tc. The rela-
tively small density gap between the FCC2 and FCC3
phases (10-20%), compared to the orders of magnitude
difference between vapor and liquid supports this obser-
vation.
In conclusion, we connect the constrained Gibbs free

energyGc(N, p, T,Nc) with a Landau free energyG(N, ρ)
to extract the information about the density fluctuations
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FIG. 4: (Color online) GEM-4 First-order FCC2-FCC3
isostructural transition. Previous thermodynamic integration
(TI) results [6] are shown for comparison. [N ]pT simulations
with histogram reweighting and finite-size scaling estimate
Tc(∞) = 0.0471(2) and ρc(∞) = 1.2382(12).

of cluster crystals in the [N ]pT ensemble. At fixed p,
T and Nc, the system can achieve a given density ρ by
various combinations of N and V , corresponding to lat-
tice occupancy and spacing fluctuations. Our analysis
is based on the finding that a particular particle num-
ber N0 dominates at a given density and N0 can be ap-
proximated by N = ρ〈V 〉. If the distribution P(N, ρ)
shown in Fig. 2 were to have broader peak over N , the
lattice occupancy and thus density fluctuation would be-
come stronger. In that case, one would need to perform
random sampling in the [N ]pT ensemble under a two-

dimensional field G̃(N, V ) to identify the minimum free
energy contour, but the rest of the analysis would be sim-
ilar as above. It would also possible to sample the lat-
tice occupancy fluctuation by adapting the phase switch
method [31] to the simulation of systems with fluctuating
Nc [32]. This approach, however, does not allow to fine-
tune the particle occupancy – only planes of sites can be
added or removed– which limits its accuracy, especially
close to the critical point.

The method and formalism above could also be applied
to the study of binary mixtures of similar components,
such as hard spheres whose diameter ratio σ1/σ2 . 1.2.
In their crystal form, these hard sphere mixtures exhibit
first-order demixing between two FCC solids above a crit-
ical pressure [15–17]. Although liquid-liquid criticality
can be studied using standard MC techniques [30], the
fixed number of lattice sites in binary solids results in
a problem similar to that of cluster crystals, where both
the mole fraction of each component and the lattice spac-
ing must allowed to fluctuate. Particle insertion/removal
moves can be straightforwardly replaced by particle iden-
tity changes under the Gibbs free energy per particle

g(x) = G̃N/N = xµ1+(1−x)µ2 as a function of mole frac-
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tion x, with the chemical potential of the two species µ1

and µ2 mapped onto µ and µc. Given T and p, the coex-
istence is identified by the common tangent construction
of the double-well g(x) curve. At the moment, the key
difficulty in studying these systems is the low acceptance
of growing small particles into large ones if the simula-
tions are not sufficiently close to the critical point, but

an improved initial guess for G̃N could help solve this
technical difficulty.
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