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Many transcription factors bind to DNA with a remarkable lack of specificity, so that regulatory

binding sites compete with an enormous number of non-regulatory ‘decoy’ sites.

For an auto-

regulated gene, we show decoy sites decrease noise in the number of unbound proteins to a Poisson
limit that results from binding and unbinding. This noise buffering is optimized for a given protein
concentration when decoys have a 1/2 probability of being occupied. Decoys linearly increase the
time to approach steady state and exponentially increase the time to switch epigenetically between

bistable states.

PACS numbers:

INTRODUCTION

A transcription factor must bind to a specific site in the
genome to regulate the expression of a gene. This process
does not occur in isolation. Instead, actual regulatory
target sequences must be distinguished from an entire
genome of alternative possible binding sites. In prokary-
otes, the typical transcription factor binding motif is suf-
ficiently specific that a regulatory target can be distin-
guished from decoys by its binding free energy alone as a
roughly unique location in the genome [1]. Although eu-
karyotic genomes are much longer, the binding specificity
of some eukaryotic transcription factor binding motifs
can be so low that up to millions of consensus sequence
binding sites can be expected by pure chance [2]. Re-
cent experiments that measure genome-wide binding oc-
cupancy for large numbers of transcription factors across
various cell types and developmental contexts [3] make it
now possible to investigate many aspects of the nature of
transcription factor-DNA binding.

Although usually only a subset of the predicted binding
sites for a transcription factor are found to be occupied
in vivo [4], some transcription factors have been found
to bind to tens of thousands of sites, such as the muscle
differentiation factor MyoD [5]. Certain developmental
master regulators may have widespread regulatory bind-
ing because they encode positional information within
an organism, and are thus implicated in the regulation
of a majority of genes in order to modulate subtle dif-
ferences between the cells of a particular tissue [6, 7].
Estimates for the mean fraction of occupied sites in reg-
ulatory regions that are functional (as determined by evo-
lutionary conservation or gene expression assays) range
between 10-40% [6, 8]. Alternative roles for transcrip-
tion factors bound to DNA in addition to the canoni-
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FIG. 1: (Color online) A. Model of a generic auto-activating
gene where transcription factors bind to a regulatory pro-
moter site (red, prozimal to gene) as well as M identical, non-
regulatory decoy binding sites (yellow, scattered throughout
the genome) B. Since they protect bound proteins from degra-
dation, decoy binding sites do not alter the steady state mean
unbound copy number of a unimodal probability distribution,
(n), yet they decrease the variance o2. C. Similarly, the de-
terministic fixed points of a bistable system, {{a), (b), {c)} do
not change, but when decoys are added the relative stability
of the expression states, LOW (n < (b)) and HIGH (n > (b)),
is altered.

cal function of modification of transcriptional initiation
have been proposed [9], for example chromatin remodel-
ing [5, 6] or DNA repair [10]. There may be other advan-
tages to widespread transcription factor binding, such as
to specify regulatory regions [2] or to facilitate the evo-
lution of regulatory elements [11]. Decoy sites have also
been identified in repetitive non-coding regions [12]. Mu-
tations in these regions have been implicated in several
diseases, suggesting that the non-regulatory binding of
transcription factors to DNA could serve some currently
unknown function, a question that is being explored in
synthetically engineered systems [13].

Several studies have suggested that an additional con-



sequence of non-functional binding may be in maintain-
ing a large abundance of transcription factors in a cell [14,
15] and buffering noise in gene expression [9, 16, 17]. In
this paper we provide an analytical theory of how the
noise characteristics and approach to steady state of gene
expression are altered by non-regulatory binding sites,
which we call decoys, that confer stability to the system.

Previously we have shown [18] that when DNA-bound
transcription factors are protected from degradation,
which may be the case for several eukaryotic transcription
factors including MyoD [19], the mean steady state con-
centration of unbound transcription factors, (n), does not
change as decoys are added. Instead, the total number
of transcription factors, N, adjusts to satisfy the binding
to decoys and thus decoys do not change the determin-
istic behavior of the system. Here we exploit timescale
separation to isolate and compare the properties of two
contributions to the noise in transcription factor expres-
sion. The first is the intrinsic noise from production and
degradation of transcription factors which is buffered by
decoys. The second source of noise results from binding
and unbinding of transcription factors to DNA, which
becomes Poissonian for large numbers of decoy binding
sites. We show that the optimum noise buffering decoys
for a given concentration of transcription factors have a
binding affinity that ensures they have an equal proba-
bility of being occupied and not occupied. Additionally,
decoy binding affinity can alter the probability of occu-
pancy of expression states in systems that exhibit multi-
stability. For simplicity, we choose to study a ubiquitous
network motif of an auto-regulated gene, but our results
have a wide-ranging applicability to many biological sys-
tems.

THE MODEL

To elucidate the general effect of decoys on gene ex-
pression we model an auto-activated gene surrounded by
a collection of M identical decoy binding sites that do not
themselves directly regulate transcription but do protect
bound proteins from degradation (Fig. 1). To describe
this system we consider a master equation (Eqn. 1) for
the time evolution of the joint probability distribution of
the promoter occupancy, ¢ € {unbound (0), bound (1)},
the number of occupied decoys, m, and the number of
unbound proteins, n:

8tpi,m,n = |:gipi,m,n71 _gipi,m,ni|

+ {k(n + 1)pi,m,n+1 - knpi,m,n}

+(—1)17in(TL + qi)pO,m,nJrqi
+(_1)prp17m7n—q(l—i)

+ {Hd(n +q) (M —(m— 1))pi,m—1,n+q
—Hgy(n) (M - m)pi,m,ni|
+fa [(m + 1)pi,m+1,n—q — mpi,m,n:| . (1)

The reactions represented in the master equation in-
clude protein production n 25 n + 1, degradation n LN
Hp(n)(1-1) .

promoter unbinding, (i,n) ELIN (i—1,n+¢q), decoy bind-
Ha(n)(M—m)
binding, (m,n) Jam, (m—1,n+ q). The binding process
encoded in the function H is described for z € {p,d}
as H;(n) = h,n for binding of monomers (¢ = 1) and
H,(n) = 3hyn(n — 1) for binding of dimers (¢ = 2).
We define a site equilibrium constant ni = f,/h, for
q = 1 and nl = \/2f,/h, for ¢ = 2 that corresponds
to a binding free energy E, such that nf = e#F+ where
8= (kBT)fl.

We solve this master equation numerically by ma-
trix diagonalization to study properties of the steady
state probability distribution over unbound copy num-
bers, p, = Zi7mp,-7m,n(t = 00). To illustrate the in-
variant scalings it is convenient to introduce a factor
S so that we write the production and promoter bind-
ing terms as g; = ¢;S and n;f, = ﬁ;f,S. This results in

n — 1, promoter binding, (4,n)

ing, (m,n) (m+ 1,n — q), and decoy un-

(n) =>, npn =~ (/n\>S. The equilibrium probability that
a site is occupied is thus a Hill function,

()
(nk)1 + (n)a

which can also be written in terms of energy, such that
0, =1/ (1 +exp[B¢AE]), where AE = E, — p and p =
kT In(n).

Dimensional reduction. We focus on the limiting
case where binding and unbinding are both much faster
than production and degradation; the case of so called
“adiabatic” genes. We take advantage of this separa-
tion in timescales to treat separately the fast fluctuations
in unbound copy number—due to binding and unbind-
ing events—rom the slow fluctuations in unbound copy
number—due to production and degradation events. In
this limit we are able to collapse the master equation
(Eqn. 1) to a single dimension in terms of the slowly
changing variable of the system, the total number of tran-
scription factors, N = n + qi + qgm:

02 ((n)) = (2)



dpy = |G(N = Dpy-1 ~ G(N)px|
+[K(N + Doy - KWVpw], ()

which we write in terms of effective rates for the pro-
duction, G(N), and degradation, K (N), of transcription
factors. These rates are defined self-consistently as func-
tions of the slowly varying component of the unbound
transcription factors, n, which depends on the total num-
ber of transcription factors, N:

N = n(N) 4 qM0a[n(N)], (4)

In Eq. 4 we neglect the term corresponding to binding
of transcription factor proteins to the promoter, since we
will be mainly interested in the limit of many decoy sites
where the contribution of this term is small compared to
the decoy binding term.

The effective production rate is a function of the prob-
ability that the promoter is occupied:

G(N) = go (1= 0, [0(N)]) + 926, [(N)]  (5)

The effective degradation rate is proportional to the
net unbound copy number, which excludes the mean
number of transcription factors bound to the promoter:

K(N) = k((N) = g6, [a(N)]). (6)

NUMERICAL RESULTS

To gain intuition we first numerically solve the master
equations for two cases that are known to have qualita-
tively different dynamical and noise properties without
decoys: monomer (¢ = 1) and dimer (¢ = 2) binding (see
caption of Fig 2 for details). We compare the numer-
ical solutions for the full and reduced model in Fig. 4.
Dimer binding allows for bistability and switching be-
tween the two attractors, whereas in the adiabatic limit
monomer binding yields a unimodal distribution easily
characterized by simple measures such as the Fano fac-
tor for noise (02/(n)) and the mean relaxation time to
steady state. In Fig 2 we see that adding decoys with a
fixed binding energy (we use decoys that are half bound
at steady state [28]) quantitatively affects the gene ex-
pression properties. However when the number of decoys
is rescaled by the mean number of unbound proteins, the
results for different choices of S collapse onto a common
plot (see Fig 2 insets) indicating general principles that
we explore below.
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FIG. 2: (Color online) Comparison of numerical (solid curves)
and analytical (dashed curves) results for gene expression
properties as decoys are added for systems with varying mean
unbound numbers of protein copies, (n). A. The Fano fac-
tor; B. The probability for the bistable system to be in the
HIGH protein expression state, 1; C. time for the mean total
copy number to reach half the steady state value; D. epi-
genetic escape time. Numerical results in A are calculated
by projecting the solutions of the 3D master equation for
Pn = Zi,m Di,m,n, Whereas the 1D master equation for py is
accurate for the results plotted in B, C, D (see Fig. 4 for
details). Analytical calculations follow from Eqns. 18, 21, 22,
and 23 using numerical calculations for a gene without de-
coys. Parameters: g1 = 100S, go = 8S, k =1, nL = 53.25
for ¢ = 1 which gives (n) = 50S. For ¢ = 2, 19 = 0.5 is fixed
such that n} = 10.3 for S = .2, n}fg = 21.0 for S = 1, and
n}, = 106.8 for S = 2.

We plot the dependence of the noise and dynamical
properties of the system on the binding free energy of
decoys F,; in Fig 3. In prokaryotic genomes, there is typ-
ically a free energy penalty of 1 to 2kgT per mismatch
with respect to the consensus binding motif. When there
are 4 to 5 mismatches the binding becomes characteris-
tic of background DNA [1]. Since most decoys will have
a weaker binding affinity than the promoter, we concen-
trate on discussing the large M, large nIl limit [15].

Noise Buffering. The steady state unbound Fano

factor, 02/(n), plotted in Fig. 2A approaches Poisson

noise as decoys are added, such that o2 Moo, (n). In

the limit of large numbers of decoys the slow fluctuations
in unbound copy number resulting from production and
degradation events are dominated by an effective birth-
death process in which a relatively small number of parti-
cles bind and unbind to a large reservoir of sites. We see
that systems having smaller mean numbers of proteins
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FIG. 3: (Color online) Comparison of numerical (solid curves)
and analytical (dashed curves) for the same properties as in
Fig. 2 as a function of the decoy binding energy FEjq4, for fixed
numbers decoys, M. The vertical dashed lines indicate the
energies that correspond to the fixed points of the system, as
illustrated in Fig. 1B and C. Parameters are the same as in
Fig. 2 for (n) = 50.

approach the Poisson limit for smaller values of M (com-
pare blue and green curves in Fig. 2A) than those with
larger mean protein numbers. Figure 3A shows that noise
buffering is optimized for a particular value of the decoy
binding energy, E; = p. This corresponds to the case
where decoys are half bound at steady state (n:ri* = (n)).
Intuitively, the potential to buffer noise is maximized at
E} = p since binding and unbinding events are most
probable when sites are on average half-occupied.

Approach to Steady State. Although the mean
steady state unbound protein copy number, (n), remains
constant, adding decoys increases the mean steady state
total protein number, (N) = (n) + M04((n)). The relax-
ation time, 7/, (the time to reach (N(7y/2)) = (N)/2,
from an initial condition of (N (0)) = 0) increases linearly
as decoys are added (Fig 2C) due to the time required
to produce the proteins needed to satisfy binding equi-
librium. Strongly binding decoys (Eq << u) increase
T1/2 the most because more proteins must be created
(Fig 3C).

Epigenetic Escape. In a bistable system where pro-
teins bind as dimers, the addition of decoys does not al-
ter the three deterministic fixed points corresponding to
the stable low expression, unstable intermediate expres-
sion, and stable high expression levels, n = {{a), (b), (¢)}.
However, decoys are able to influence the ability of
the system to stochastically transition between the sta-

ble global phenotypic states which we call the LOW
and HIGH expression states (See Fig 1C). The bind-
ing affinity of the decoys determines the change in the
likelihood of observing the different expression states.
In Fig. 2B we see that decoys with a binding energy
E; = pe = kpTln{c) increase the probability to be
in the HIGH protein copy expression state by prefer-

entially decreasing fluctuations in the protein buffer in

the vicinity of n = {(c¢), such that v M2 1 where

P = Zn><b> Pn-  On the other hand, decoys with a
binding energy Ey = u, = kpTIn{a) will act to sta-
bilize the LOW protein copy number expression state,
such that v — 0. We see that the epigenetic escape
times, defined as the mean first passage times between
the two steady states, 7, : n = {(a) — n = (¢) and
Tea M = {¢) = n = (a), increase exponentially as de-
coys are added (Fig. 2D). The variation of ¢ with decoy
binding energy (Fig 3B) shows that decoys with bind-
ing energy E4 = up stabilize neither state, however, they
significantly increase the epigenetic escape rate by effec-
tively stabilizing the transition state (Fig 3D).

ANALYTICAL RESULTS

Noise Buffering. To understand the numerical ob-
servations in Figs. 2 and 3 we note the variance in the
unbound protein concentration depends on both fast
and slow fluctuations through the law of total variance,
ol = J%7sl0w + U’?L,fast’ where the slow fluctuations are
due to production and degradation events and the fast
fluctuations are due to binding and unbinding events.

The slow contribution to the variance can be obtained
by approximating the master equation for py (Eqn 3) by
a Fokker-Planck equation:

9 -9

o™ T T oN

with the drift, v(N) = G[a(N)]— K[n(N)], and diffusion,

D(N) = G[a(N)]+ K[n(N)]. The steady state probabil-
ity distribution of Eq. 7 is given by:

] : (8)

N /N ,20(N)
exp dN

D) l o D)

Within a Gaussian approximation around N = (N),

Eqn. 8 yields the variance in the total protein copy num-
ber:

[U(N) - D(N)} N, (7)

p(N) =

D(N) ’
“208 o] |y gy

One can obtain the variance in the slowly varying com-
ponent of the unbound protein copies, i, by performing a

9)

UJQV:‘



change of variables on Equation 9 from N to n. The drift
and diffusion functions evaluated for 7 are equivalent to
that of a gene without decoys (vg(72) and Dg(72)). The
derivative, J(n) = ON/0n, is calculated from Eqn. 4
[29]:

i
1+ M Tndf,z, forg=1
R S I (U
+ ((n;)2+ﬁ2)2’ or q =
After the change of variables,
Do(n)/J (n) i
2 0 0
On,slow = = = ’ (11)
ol ’-—25%[v0<n/] ey T())

where o2 is the variance of the gene without decoys [30].

To calculate the fast contribution to the variance in the
number of unbound protein copies due to binding and un-
binding of monomers, 0721’ Fast> W€ consider a master equa-
tion indexed over the number of unbound transcription
factors, n, given a constant total number of transcription

factors, N:

dpn\N
dt

= fd[(N —n+ 1)pp_1n
_(N_n)pn\N}
+ hd{(n +1)(M =N +n+1)ppyn

—n(M = N + n)pn| (12)

We neglect binding and unbinding to the promoter be-
cause we are interested in the limit of large numbers of
decoy sites, M — oo. The steady state probability dis-
tribution is found by recursion:

ot F(N =)

Dn|N = POINZ[[O R+ 1) (M -N+£+1)
. NI M — N)!
= PO|N(”T) nl(N = n)! (]\2 - N +)n)!
= exp[F(n)] (13)
~ exp (F(n))exp E (n— ﬁ)Q 27‘72: n—n} .(14)

In the last step we Gaussian expand F for large M, N,
and n within a Stirling expansion. Setting 8/dn [F(n)] =
0 recovers the deterministic result for the mean number
of unbound protein copy numbers, n ~ ) np,n for
n >> 0, given in Eqn. 4. The variance in the number of
unbound protein copy numbers is:

on?

-1
n_n>

MnL
(n:; + ﬁ>2 + Mn},
[1 - j(ln)} . (15)

The fast contribution to the unbound fluctuations is
found by averaging over the probability distributions of
the total copy number, py, which is the steady state
solution of Eqn. 3 :

I
3

M”Iz
2
(n:; - ﬁ) + Mn],

3

2\

2 — E
Un,fast -
N

an _
(n:; + <n>>2 + Mnil_
= ) |- 75 ()

where we have approximated the average of the func-
tion by the function of the average, which is valid for

[(n:; + <n>)2 - Mn:;] >> 1.

Combining the slow (Eqn. 11) and fast (Eqn. 17) con-
tributions to the variance yields

Q

(n) (16)

(vh+ )

(n:; + <n>)2 + Mn:;

o2~ (o8 — () +(n)  (18)

This formula agrees well in the appropriate limits with
numerical solutions of the full master equation, as shown
in Figs. 2A and 3A, and also holds for a model that
includes translational bursting (see Appendix B). From
Eq. 18 in the large M limit, we obtain the observed Pois-
son noise, 02 — (n). Noise reduction is proportional to
the deviation from Poisson noise in a system without de-
coys. Decoys will decrease noise for o > (n) [31]. Eq. 18
is minimized for n* = (n). Eq. 18 can be written as
a function of M/(n) and AFE which results in the data
collapse shown in the inset of Fig. 2A.

To describe the noise buffering efficacy we quan-
tify the number of decoys needed to reduce the super-
Poissonian noise by a half, M;,,. We find M, =
2(n) (1 + cosh AFE) is independent of o2. For decoys with
optimum buffering capacities (AE* = 0), M,/ = 4(n)
and M, /o asymptotically doubles for every binding en-
ergy increase of kg7 In2 (or doubling of nji)



Approach to Steady State. The time to reach
half of the mean steady state expression, 7,5, starting
from a mean of zero protein copies is found from the
deterministic equation for the mean total copy number,
di(N(t)) =v(N) =vg [n(N)], to be:

(N)/2 1
/2 :/0 N (19)

Performing a change of variables from N to 7 yields:

n({N)/2) 7
0

vo(n)

where the upper boundary is the mean unbound copy
number 7 such that Eqn. 4 is evaluated for N = (N)/2
for binding of monomers. In the limit of weak decoys,
Eq > p, we find

7'1/2:T0’1/2+MAT1/2 (21)

where A7)y is a correction due to adding the decoys,
recovering the linear increase of 71 /o with decoys seen in
Fig. 2C. For very weak decoys, Eq >> p, (or n:; >> (n)),
J(n) = 1+M/nji = const. Hence A1y /o ~ T1/270/’I’LL (see
Appendix C for details).

Epigenetic Escape. Within the Fokker-Planck ap-
proximation the epigenetic escape time can be found by
expanding the effective potential about the fixed points
to second order. In the limit that the barrier height is
sufficiently large one finds:

Tea = Tea0V/ J2((€)) T2 ((b))eM o0, (22)

where 7,40 is the escape time without decoys and (. is a
correction to the escape path action due to a single decoy
(see Appendix D for details). An analogous expression
holds for escape from (a) to {(c). The escape times in-
crease exponentially for large M as decoys are added.

Since the moel has been reduced to one dimension, the
bimodal system obeys an effective detailed balance such
that 7, = (1 — ¥)7Tcq, where 1 is the probability to
be in the HIGH protein copy number expression state.
Using the previous results for the escape times,

o= lﬁo\/meMCac -

When nfS(0), CaeS0 such that ¢ =% 9. Thus the

binding affinity of the decoys can determine which ex-
pression state is favored.

DISCUSSION

In summary, when there is a sufficient separation of
timescales between slow protein production-degradation
and fast binding-unbinding to the DNA, we have shown
that decoys buffer gene expression noise. The fluctua-
tions in binding and unbinding act as an effective birth-
death process that imposes the Poisson limit on noise re-
duction. Noise buffering is optimized for decoys that are
half-occupied at the appropriate protein concentration.

Not all gene regulatory systems function in the fully
adiabatic limit explored here [20-22]. If binding and un-
binding to decoys is much slower than the fluctuations
in total copy number, decoys are unable to influence the
steady state unbound protein expression. If binding and
unbinding to the promoter become much slower than the
fluctuations in total copy number, there are effectively
two gene states with constant production rates. In this
case the decoys have no impact on the steady state un-
bound protein expression.

ACKNOWLEDGMENTS

We thank Thierry Mora, Vincent Hakim, and Marc
Santolini for helpful discussions, and support from the
Center for Theoretical Biological Physics sponsored by
the NSF (PHY-0822283), the D.R. Bullard-Welch Chair
at Rice University, and the ICAM Junior Travel Grant.

APPENDIX A: VALIDATION OF DIMENSIONAL
REDUCTION

In the limit that binding and unbinding are much faster
than production and degradation we can reduce the mas-
ter equation to a one dimensional master equation in-
dexed over the total number of transcription factors. We
verify that the validity of the dimensional reduction in
Fig. 4 by comparing solutions of the reduced master
equation for the probability distribution of the total copy
number N (Eqn. 3, black dashed curves) to solutions of
the three dimensional master equation indexed over the
total copy number, N (Eqn. 1 colored curves).

APPENDIX B: TRANSLATIONAL BURST NOISE

Another source of noise in gene expression comes from
multiple translation events of a single mRNA copy, so
that proteins are effectively produced in bursts rather
than one at a time [23]. Although our model does not
include mRNA, we mimic the effects of bursting by spec-
ifying that each production event results in an instan-
taneous burst of B transcription factors with a reduced
production rate of transcription factors, g — g/B, such
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FIG. 4: (Color online) Validation of Dimensional Re-
duction. Here we compare calculations from the full master
equation indexed over total copy number, Eqn. 1, (colored
curves) with calculations from the one dimensional master
equation, Eqn. 3, (black dashed curves). We see that the di-
mension reduction breaks down for small system size, (n), or
strong decoys, Eq << p. Parameters: g1 = 1005, go = 85 =
and in panels A and B, S =1, n; = 53.2 ”Zz = 10, in panels
C,D, E, and F n}, = 10.3 for S = .2,n} = 21.0 for § = 1,
and n,, =106.8 for S =2, with n:; = fle.

that the average unbound number of transcription factors
(n) does not change even though the variance increases.
For a constitutively produced gene (where gy = g1) the
variance without decoys becomes 03/(n) = (B + 1)/2
[24]. Decoy binding sites that protect transcription fac-
tors from degradation have the opposite effect on the
variance to bursts — they decrease the variance without
changing the mean expression (n). The noise buffering
formula derived above for 02 = afl’slow + ai’fast can be
applied to a constitutively produced bursty gene as fol-
lows:

on = (06— () T ((n) + (n)

o |(554) o] @y

There are similar opposing effects between decoys and
bursts when one considers the bimodal probability dis-
tribution. Large bursts can eliminate bimodality by de-
creasing the typical number of production events needed

reach the transition state from a fixed point [25], such
that the probability of the HIGH state decreases. Adding
decoys that stabilize the HIGH state (nzl > (b)) can re-
store bimodality in a bursty bimodal system. Similarly,
bursts exponentially decrease the time to escape between
states [26], whereas decoys exponentially increase the
time to escape between states.

APPENDIX C: APPROACH TO STEADY STATE

In this appendix we further discuss the limiting be-
haviour of the approach to steady state for the cases of
weak and strong decoys.

Limit of weak decoys. For weak decoys (nz >>
(n)), approximating 04(7) ~ i/n} in Eqn 4 results in
N ~ n(1 —&-M/ng) and J(n) = ON/On =1 —|—M/n:; =
const. In this limit the upper boundary of the integral
becomes n((N)/2) ~ (n)/2 and 71,5 = 7190 + MAT )2
where A7y /y & 7'1/2,0/TLT.

Limit of strong decoys. For strong decoys (ng <<

(n)), Eqn. 4 becomes N ~ n + M(1 — n'/n), and
Jn)~1+M nfi /72, Therefore, unlike weak decoys that
influence 7y /5 independently of 71, strong decoys have the
most significant effect of increasing the time to reach the
steady state (compared to the gene with no decoys) when
7 is small.

In the limit of extremely strong decoys, each transcrip-
tion factor that is produced binds to a decoy site and re-
mains bound. As a result, until all decoys are saturated,
the unbound copy number will be zero. There will be no
transcription factors available to bind to the promoter
and the production will be fixed at the basal production
level, gg. After saturation, however, strong decoys no
longer influence the dynamics of the system. Therefore
the time to approach steady state can be broken up into
a basal production stage and an isolated gene stage.

For M > (n), the time to reach half of the steady
state number of proteins happens before the decoys are
saturated - in the regime when transcription factors are
produced with a rate go per unit time,

e 0 M)

, for M > (n >>nl. C1
- () >>nk. (C1)

APPENDIX D: EPIGENETIC ESCAPE

To calculate the epigenetic escape times in Eq. 22,
we define fixed points in total copy number, N =
{(A),(B),(C)}, that correspond to the fixed points in
unbound copy number, n = {(a), (b), (c)}. The mean
escape time from N = (A) to N = (C) is [27]:



(C) Y a7
TAC :2/<A> dY exp [W(Y)] ; ﬁexp[ W (Z)],
(D1)
where
N 20N
W(N):—/O dN DIV (D2)

Within a Gaussian approximation about N = (A) and
N = (B), Eqn. D1 becomes

B 2u(N)
e~ Jeay Ny

e 2T \/ D({4))D((B)
D((A)) | Tore((A) 10w o ((B))

Performing a change of variables from N to 7, the es-
cape time becomes

Tac = Tac,0 j(<a>)j(<b>)€_MCGb7 (D?’)

where T4.0 is the mean escape time without decoys and
Cap is the decoy perturbation to the action over the in-
terval [(a), (b)]:
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