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Granular materials, whose features range from the particle scale to the force-chain scale to the
bulk scale, are usually modeled as either particulate or continuum materials. In contrast with
either of these approaches, network representations are natural for the simultaneous examination
of microscopic, mesoscopic, and macroscopic features. In this paper, we treat granular materials
as spatially-embedded networks in which the nodes (particles) are connected by weighted edges
obtained from contact forces. We test a variety of network measures for their utility in helping
to describe sound propagation in granular networks and find that network diagnostics can be used
to probe particle-, curve-, domain-, and system-scale structures in granular media. In particular,
diagnostics of meso-scale network structure are reproducible across experiments, are correlated with
sound propagation in this medium, and can be used to identify potentially interesting size scales.
We also demonstrate that the sensitivity of network diagnostics depends on the phase of sound
propagation. In the injection phase, the signal propagates systemically, as indicated by correlations
with the network diagnostic of global efficiency. In the scattering phase, however, the signal is better
predicted by meso-scale community structure, suggesting that the acoustic signal scatters over local
geographic neighborhoods. Collectively, our results demonstrate how the force network of a granular
system is imprinted on transmitted waves.

PACS numbers: 64.60.aq, 43.25.+y, 81.05.Rm

During the past 15 years, techniques from areas of
physics such as statistical mechanics and nonlinear dy-
namics have been used to make important advances in
studying networks across myriad disciplines [1]. Con-
versely, the perspective of networks can also play impor-
tant roles in physical problems, as there is a large class
of heterogeneous systems such as foams, emulsions, and
granular materials [2, 3] for which the connectivity of the
constituent elements is an important factor in the devi-
ation of their behavior from continuum models. In fact,
the discontinuous nature of granular materials led to the
early idea of a fabric structure governing the anisotropic
behavior of such materials [4–6].

We investigate whether studying the rich and complex
dynamics of granular materials [7] using network analy-
sis can provide new insights into the underlying physics.
This treatment is a natural one, because granular mate-
rials can be represented as spatially-embedded networks
[8] composed of nodes (particles) and edges (contacts
between particles) with definite locations in Euclidean
space [9, 10]. In Fig. 1, we show a quasi-two-dimensional
(quasi-2D) granular system composed of photoelastic
disks that permits the determination of both the con-
tact network and the interparticle forces. The forces be-
tween particles in these systems are non-homogeneous,
and they form a network of chain-like structures that
span the system (see Fig. 1B). This force chain network
has the same topology as the contact network but con-
tains edges that are weighted by the inter-particle forces
(Fig. 1C). This is exciting from a networks perspective,

as it allows us to study the influence of network topology
on ‘network geometry’ in a spatially-embedded system.
From the perspective of granular materials, earlier work
suggests that force chains provide the main supporting
structure for static and dynamic loading [11, 12].

Because signal propagation in granular and heteroge-
neous materials [13] is of considerable importance to nu-
merous industrial and natural systems, it has been the
topic of many investigations. A longstanding question
is how to reconcile the failure of continuum models of
granular sound propagation [14–17], as such models fail
to quantitatively describe important heterogeneous and
nonlinear features of acoustic speed [18–21]. The pres-
ence of force chains has been suggested as a potential
confounding phenomenon that might underlie the failure
of previous physical models of sound propagation [18, 22].
Ultimately, it would be beneficial to quantify how the
pressure or strain state of a system is imprinted on trans-
mitted waves, and to understand how to use these waves
to accurately detect buried objects or reservoirs of oil.

An increasing body of work has used tools from ar-
eas like network science and computational homology to
obtain insights on the structural properties of granular
materials [9, 10, 23] and other continuous media [24]. In-
deed, a networks perspective provides a valuable comple-
ment to the standard ways of studying granular materi-
als. In the present paper, we analyze experimental data
using network analysis to investigate the role of force-
weighted contact networks in sound propagation. The
use of photoelastic particles combined with high-speed
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FIG. 1. [Color online] (A) Image of a 2D vertical aggregate of
photoelastic disks confined in a single layer. The driver posi-
tion is marked with an arrow. Several particles are embedded
with a piezoelectric sensor, for which wires are visible. (B)
The internal stress pattern within the photoelastic particles
manifests as a network of force chains. (C) The dark (blue)
lines show a weighted graph, which is determined from im-
age processing and overlaid on image (B). An edge between
two particles (nodes) exists if the two particles are in physical
contact with each other; the forces between particles give the
weights of the edges.

imaging allows us to gain insight into internal force struc-
tures and particle-scale sound propagation that are not
readily available in ordinary granular materials. We find
that geographic community structure provides a funda-
mental constraint to sound propagation, illustrating that
contact topology alone is insufficient to understand signal
propagation in granular materials.

I. EXPERIMENTS

We perform experiments on a vertical 2D granular sys-
tem of bidisperse disks confined between two sheets of
Plexiglass, which have been slightly lubricated with bak-
ing powder to reduce friction with the container walls.
The top of the container is open and the particles are con-
fined exclusively by gravity. The particles are 6.35 mm
thick and have diameters d1 = 9 mm and d2 = 11 mm,
and are cut from Vishay PSM-4 photoelastic material to
provide measurements of the internal forces. We show
example images in Fig. 1. These particles have an elastic
modulus of E = 4 MPa, and they are sufficiently dissipa-
tive that propagating sound waves experience an approx-

imately exponential decay as a function of distance from
the source. The use of such soft, dissipative particles
differs from previous work [25–29], where much harder
particles have been used. Further details about the ap-
paratus are described in Ref. [22].

We excite acoustic waves from the bottom of the sys-
tem by sending pulses of five 750 Hz sinusoidal waves
with a voice coil driver attached to a 20 mm wide plat-
form; maximum particle displacements are on the order
of 5 µm. To assess the reliability of network diagnos-
tics, we repeat the experiments for 17 different particle
configurations, each of which is obtained by manual re-
arrangement. We restrict our analysis to a region of the
system that contains just over N = 400 particles. This
subsystem corresponds to a region in which vertical force
gradients are minimized due to the Janssen effect [30].

We compute particle positions and forces using two
high-resolution pictures of the static system and one
high-speed movie that captures the system dynamics. We
took one static image without the polarizer (see Fig. 1A)
and used it to determine particle positions and contacts
[22, 31]. We take a second static image using polariz-
ers (see Fig. 1B), and we use this image to estimate
the normal forces at each contact [22]. In the vicinity
of each contact, we use a combination of the light in-
tensity (I), the square of the mean intensity gradient
(|∇I|2), and the position of the photoelastic fringes to
estimate the contact forces, by comparing them to cal-
ibration images with known forces. We measure the
amplitude and location of sound propagation using a
high-speed camera operating at 4000 Hz; the camera
records 80 frames of data (20 ms) containing both the
injection of the signal (0 < t < 40) and its dissipation
(40 < t < 80). For each particle in each frame, we com-
pute ∆I(x, y, t) = I(x, y, t)− I(x, y, t0), which measures
how much the brightness I of the particle changes with
respect to its unperturbed brightness. In earlier work
[22], we used piezoelectric sensors embedded in a subset
of the particles to determine that ∆I is proportional to
the change in stress on that particle. Using ∆I allows us
to follow the propagating signal through all particles in
the measurement region.

To determine which particles are in contact, we use the
positions of the particle centers, which are determined
from the static image of the system using a Hough trans-
form. If the distance between two particle centers is less
than 1.05 times the sum of their radii, we treat the par-
ticles as being in contact. This method overcounts the
number of true contacts. However, the effect of such over-
counting is minimized by the fact that false contacts are
assigned a force value of almost zero when we apply our
image-processing techniques to find the contact forces.
Accordingly, they do not contribute to the structure of
the weighted network.

For each experimental run, we construct both an un-
weighted (binary) and a weighted network, which corre-
spond respectively to an underlying contact network and
a force-chain network (see Fig. 1). In each type of net-
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work, the nodes represent the particles in the system. In
the binary network A, an edge exists between node i and
j (i.e., Aij = 1) if node i is in contact with node j; oth-
erwise, Aij = 0. The weighted network W contains the
same edges, but each element Wij now has a value that
is given by an estimate of the normal force fij between

particles i and j, normalized by the mean force f of all
contacts: Wij = fij/f .

II. RESULTS

We assess the global organization of the networks using
21 candidate diagnostics for A and 8 candidate diagnos-
tics for W. We define each diagnostic in Appendix A,
where we also include descriptions to provide intuition
about what each of them measures, as well as their pos-
sible physical significance to the granular system that we
study. We examine the reliability of these diagnostics
across experimental runs in Appendix B, and we com-
pare the binary-network diagnostics to those in a null
model constructed using an ensemble of random geomet-
ric graphs (RGGs) [32] in Appendix C. We examine 4 di-
agnostics (clustering coefficient, geodesic node between-
ness, optimized modularity, and global efficiency) in fur-
ther detail. Each diagnostic can be defined for both bi-
nary and weighted networks, and each is helpful for ob-
taining insights into a particular type of spatial structure
in the system: particles (cluster coefficient), curves (be-
tweenness), meso-scale domains (via community struc-
ture determined from modularity optimization), and the
entire system (global efficiency). We describe our results
in the sections below.

A. Scale Sensitivity of Network Diagnostics

A key advantage of using network tools to study granu-
lar materials is that different network diagnostics (which
we define and discuss in detail in Appendix A) are sensi-
tive to different system scales, and this is especially help-
ful for spatially-embedded systems like granular packings
(see Fig. 2). Our results indicate that the global efficiency
Ew [see Eqs. (5) and (23)] is a system-level property
with smallest values along the perimeter of the system
and largest values in the center. Community structure
and its associated community label X [see Eqs. (15) and
(27)] and intracommunity strength z-score [see Eq. (3)]
is a meso-scale property and can be used to probe inter-
mediate structural features. We find that geodesic node
betweenness Bw [see Eqs. (6) and (25)] can be thought of
as a one dimensional property in these materials because
it is sensitive to curve-like structures in the network. Fi-
nally, we find that clustering coefficient Cw [see Eqs. 13
and 24)] is sensitive to particle-scale features of the net-
work. In a later section, we report how each of these
network diagnostics correlates with sound propagation
through the granular material.
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FIG. 2. [Color online] Example distributions of several net-
work diagnostics for a sample granular packing. The net-
work characteristics that we examine include (A) global effi-
ciency Ew, (B) community structure, which we visualize us-
ing the quantity X2(z + 5), where X is the community label,
(C) geodesic node betweenness Bw, and (D) clustering coeffi-
cient Cw. This figure illustrates their respective sensitivities
to system-scale (2D), domain-scale (2D), curve-scale (1D),
and particle-scale (0D) structure, respectively. The quantity
X2(z + 5) allows us to visualize both the community label
(X) and the intracommunity strength z-score z [see Eq. (3)]
simultaneously; we chose the constant 5 purely for visual clar-
ity.

B. Identifying a Characteristic Size Scale

An ongoing challenge in the study of granular systems
is identifying and measuring characteristic size scales
within granular materials, from the perspective of either
particles or force chains [2, 3, 33]. Network modularity
provides a novel means to measure such size scales via the
identification of community sizes. We find that the op-
timal value of modularity is a reliable diagnostic for the
structure of both the binary and weighted networks (see
Appendix B). To seek characteristic community sizes, we
also examine community structure as a function of a res-
olution parameter γ [34–36]. The modularity index is
[37]

Qw =
∑
ij

[Wij − γPij ]δ(gi, gj) , (1)

where node i is assigned to community gi, node j is as-
signed to community gj , δ(gi, gj) = 1 if gi = gj and it
equals 0 otherwise, and Pij is the expected weight of the
edge connecting node i and node j under a specified null
model. We used the usual Newman-Girvan null model, in
which the expected strength distribution of the network
is preserved but ends of edges are rewired uniformly at
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FIG. 3. (A,B) Modularity index Qw, (C,D) number of com-
munities, (E,F) mean size of communities in number of par-
ticles, and (G,H) variance of community size as a function
of (A,C,E,G) the resolution parameter γ and (B,D,F,H) the
effective fraction of antiferromagnetic edges ξ(γ). Error bars
indicate the standard deviation over the 17 experimental runs.

random [37, 38]. We employed the Louvain locally greedy
algorithm to optimize modularity [39], and we varied the
resolution parameter γ from 0.001 to 100. Low values of
γ probe large spatial scales, and high values probe small
scales. When we increase γ, the number of communities
increases (as expected), and the modularity decreases.
See Fig. 3A,C.

One can think of the term Jij(γ) = Wij − γPij in
Eq. (1) as a particular choice of interaction strength be-
tween a pair of spins in a Potts model [34, 37, 40]. We
exploit this analogy with the Potts model to transform
the resolution parameter γ so that it measures the effec-
tive fraction of antiferromagnetic edges ξ(γ) in a network
[41]. We define lW (γ) to be the number of negative ele-
ments of J(γ). The transformed resolution parameter is
then

ξ(γ) =
lW (γ)− lW (Λmin)

lW (Λmax)− lW (Λmin)
∈ [0, 1] , (2)

where Λmin is the largest number of negative entries
Jij(γ) for which an N -node network forms a single com-
munity and Λmax is the smallest number for which the
network still forms N communities of size 1.

We examine community structure as a function of the
transformed resolution parameter ξ(γ), which we vary
between 0 and 1. The optimized modularity, the mean
size of communities, and the variance in community size
all change gradually for most of the ξ(γ) range (see
Fig. 3B,F,H), although abrupt changes are evident for
very low and very high values of ξ(γ). The gradual
change hints at an interesting size scale, which occurs in
partitions that contain about 50–250 communities (with
a characteristic size of roughly 2–8 particles). One possi-
bility is that this size corresponds to the width of a shear
band, which arise in a variety of materials with particu-
late structure [42]. Another possibility is that this size
corresponds to the ‘cutting’ length scale `∗ [43], which
is set by a community size at which the excess (over-
constrained) number of contacts in the bulk of a region
is equal to the number of contacts around the perimeter.
If this latter association is correct, then the mean number
of particles per community would scale with the confining
pressure. Future experiments can test this hypothesis.

C. Geography of Community Structures

Using modularity optimization [36–38, 44], we find
that the force-chain network exhibits geographically-
constrained community structure: groups of particles in
close spatial proximity are more likely to be a part of
the same community (i.e., to contact one another with
a large force) than particles that are farther apart. We
examine this local neighborhood structure over a vari-
ety of size scales by varying the resolution parameter γ.
We show representative results for large spatial scales in
Fig. 4A,B,C. We also note that the communities that we
identify in granular force networks resemble those in spa-
tial entities like states or countries, whose borders are de-
termined in part by physical boundaries between neigh-
boring geographic domains.

Importantly, because the optimization of Q is NP-hard
[45], one does not expect an optimization algorithm to
give a global optimum of Q. Instead, we harness numer-
ous near-degeneracies [46] among good local optima of
Q by estimating Q 100 times. We find that the these
100 values of Q for a given run at a given γ vary by
approximately 1 × 10−14, and the similarity in particle
assignments to communities is approximately 0.98. We
quantify this using partition similarity [47, 48], which
ranges from 0 (not similar at all) to 1 (identical). These
results indicate that the local geographic structures that
we are identifying in the 2D granular system are robust,
suggesting the potential for identifying reproducible 2D
‘geographic’ regions.

To probe the role of each particle in the community
structure of a force-chain network (see Fig. 4D), we use
the NEWintracommunity strength z-score zi to measure
how well connected a node is to other particles in its
community and the participation coefficient Pi to mea-
sure how the connections emanating from a particle are
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spread among particles in the different communities [49].
The intracommunity strength z-score is

zi =
Sgi − S̄gi
σS̄gi

, (3)

where Sgi denotes the strength (i.e., total edge weight)
of node i’s edges to other nodes in its own community gi,
the quantity S̄gi is the mean of Sgi over all of the nodes
in gi, and σSgi

is the standard deviation of Sgi in gi. The
strength of node i is denoted by Si and gives the total
force of all contacts on particle i.

The participation coefficient is [49]

Pi = 1−
Nm∑
g=1

(
Sig
Si

)2

. (4)

where Sig is the strength of edges of node i to nodes in
community g [49].

In Fig. 4E,F, we show the intracommunity strength
z-score and participation coefficient for the community
structure depicted in Fig. 4A. Particles that are geo-
graphically central to a community tend to have higher
values of zi and lower values of Pi than particles at the
geographic periphery of a community. From a physi-
cal perspective, zi tends to be highest in particles with
many force chains passing through them (compare, e.g.,
Figs. 4D and 4G) and high values of Pi are associated
with the boundaries between communities (where there
are few force chains).

We test whether the observed properties of commu-
nity structure in our granular systems are related sta-
tistically to the inter-particle forces that constitute the
force-chain structure (see Fig. 4D,G) by examining the
relationship between intracommunity strength z-score zi,
participation coefficient Pi, the normalized node strength
S′i = Si/N , (i.e., the mean force of all edges emanating
from a node) and the amplitude of the acoustic signal ∆I
using the Spearman rank correlation coefficient ρ, which
is defined as the Pearson correlation coefficient between
ranked variables. We use the Spearman coefficient rather
than the Pearson coefficient due to the non-normal dis-
tributions of ∆I values over particles.

We find that the mean force of all contacts on a particle
(i.e., S′i) is significantly positively correlated with zi (see
Fig. 4H). The mean value of the Spearman rank correla-
tion coefficient ρ over experimental runs and resolution-
parameter values is ρ ≈ 0.71± 0.02 (where 0.02 gives the
standard deviation over experimental runs). This strong
positive correlation indicates that particles at the centers
of communities are likely to have more or stronger force
chains running through them. We also find that S′i is
negatively correlated with P (Fig. 4I). The mean ρ over
experimental runs and values of the resolution parameter
is ρ ≈ −0.05 ± 0.04, where we again take the standard
deviation only over experimental runs. This negative cor-
relation indicates that inter-community boundaries occur
at particles with fewer or weaker force chains. Note addi-
tionally that a large fraction of the particles have P = 0.

This is a consequence of the fact that the communities
are geographically constrained such that the majority of
particles have contacts only within their own community.

The relationship between z, P , and S′ is expected
mathematically. For example, if the edges of node i
all lie within its own community, then S′ and z are re-
lated linearly according to the following equation: Si =
zi×σSgi

+S̄gi , where Sgi is the strength of edges of node i

to other nodes in its community gi, and S̄gi is the mean of
Sgi over all of the nodes in gi. This linear relationship is
evident for the four communities that we show in Fig. 4H.
Nodes whose connections span more than one community
(so-called ‘boundary nodes’, for which the value of P is
greater than 0) are not so simply related.

D. Signal Propagation on Force-Weighted Contact
Networks

Previous work in Ref. [22] has shown that the propa-
gation of acoustic signals is facilitated along strong force
chains in granular materials, via the increased contact
area at strong contacts. With this in mind, we test
whether the geographic community structure of force-
chain networks is related to signal propagation. As the
example shown in Fig. 5A indicates, we found that z,
which we measured over a range of size scales associ-
ated with resolution-parameter values γ ∈ [0.001, 100],
is significantly correlated with the signal amplitude ∆I.
(For this example run, ρ ≈ 0.57 and the p-value is
p ≈ 2.1 × 10−45.) The statistical correlation between
network structure and signal amplitude exists not only in
the highly heterogeneous signal injection phase, in which
sound propagates from the driver to nearby particles, but
also in the more homogeneous scattering phase, in which
sound reverberates throughout the system. In Fig. 5B,
we show the results at γ = 0.1. Figure 5C shows that the
mean ρ over runs, γ values, and time is 0.34± 0.06. This
suggests that similar dynamic principles underlie sound
propagation in both injection and scattering phases. We
discuss the dynamics within the two phases in more detail
in the next section.

In quantifying the relationship between the intracom-
munity strength z-score z (a property of the algorith-
mically computed community structure) and the signal
propagation amplitude ∆I, we note that the correlation
between these two variables is decreases as γ increases
(see Fig. 5C). The strength of the relationship between
network structure and signal propagation for small γ
suggests that partitions with a few large communities
achieve better estimates of the propagation behavior. In-
deed, as demonstrated in Fig. 5D, when the network
forms a single community (for very low γ values), the
correlation between z and ∆I is similar to that between
the mean force per particle (S′) and ∆I.

The retention of a correlation between z and ∆I for
larger values of γ, for which the network is partitioned
into more (and smaller) communities, stems from the
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FIG. 4. [Color online] The geographic sizes of communities tend to decrease as the resolution parameter γ is increased from
(A) low (γ = 0.1 to (C) high γ = 1 values. We color particles according to their community label. One can examine community
structure of the (D) force-chain network using geographic location, (E) intracommunity strength z-score zi, (F) participation
coefficient Pi, and (G) mean force per particle S′i. Example scatterplots for a single experimental run showing that mean force
S′i on particle i is (H) positively correlated with the intracommunity strength z-score (the Spearman correlation coefficient
for this run is ρ ≈ 0.96 and the p-value is p ≈ 1.9 × 10−283) and (I) negatively correlated with the participation coefficient
(ρ ≈ −0.18 and p ≈ 1.8× 10−5). In panel (H), nodes assigned to communities 1 through 4 and whose participation coefficients
are equal to 0 are displayed using different colored markers. Nodes in any of the 4 communities whose participation coefficients
are greater than 0 (so-called ‘boundary nodes’) are displayed using dark (purple) markers. The mean correlations for z and P
over experimental runs and values of the resolution parameter are ρ ≈ 0.87± 0.08 and ρ ≈ −0.16± 0.05, respectively. We show
the results for one experimental run (#2) in this figure, and the results for the other runs are similar.

strong correlation between intracommunity strength z-
score and the mean force (normalized strength) of a
particle (see Fig. 4H), the latter of which is a particle-
scale measurement and is independent of spatial resolu-
tion. The relationship between the meso-scale (commu-
nity structure) and particle-scale (mean force on a parti-
cle, which is equal to a node’s normalized strength) net-
work properties stems from the physical embedding of
the granular system in R2. A particle that is located
geographically inside of a community has all of its con-
nections to other particles in its community because it is
constrained to connect only to its geographic neighbors
(i.e., there can be no long-range contacts). This is unlike
most investigated real-world networks [36, 37], in which
communities tend to be highly interconnected and most
nodes have at least some connections to nodes in other

communities.

To assess whether community structure is unique in its
ability to predict signal amplitude, we also examine other
weighted network diagnostics that are sensitive to differ-
ent system dimensionalities (see Fig. 2). Our results sug-
gest that community structure (see Fig. 2B) is a better
predictor of signal propagation than system-scale (e.g.,
global efficiency; see Fig. 2A), curve-scale (e.g., geodesic
node betweenness; see Fig. 2C), and particle-scale (e.g.,
clustering coefficient; see Fig. 2D) network diagnostics.
See Appendix A for mathematical definitions and intu-
itive descriptions. In particular, clustering coefficient and
∆I are not strongly correlated, so triangles of contacts
do not appear to be important for signal propagation.
See the comparison in Fig. 5D.
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FIG. 5. [Color online] (A) An example scatterplot between
logarithms of the intracommunity strength z-score [log10(z +
5)] and the amplitude of the acoustic signal [log10(∆I] at
t = 1 for a single experimental run (j = 2) and resolution-
parameter value (γ = 0.1). The constant 5 was added to z to
ensure that all values were positive prior to taking the loga-
rithm. The Spearman rank correlation coefficient is ρ ≈ 0.57
and the p-value is p ≈ 2.1 × 10−45. (B) Correlation between
log10(z + 5) and log10(∆I) for all 17 runs as a function of
time: t < 40 is the acoustic signal injection phase, and t > 40
is the acoustic signal scattering phase. In the bottom part
of panel (B), we show a trace of the voltage V of a piezo
particle; the injected signal has an amplitude of 0.5V. (C)
Correlation between log10(z + 5) and log10(∆I) as a function
of γ, where γ ∈ [0, 2] is increased in increments of 0.1. We
averaged the correlation over all 80 time points at which ∆I
was measured, and the mean ρ over runs γ values, and time
was 0.34 ± 0.06. Box plots show the variability over experi-
mental runs. (D) Correlation between log10(∆I) and a vari-
ety of network diagnostics: intracommunity strength z-score
z = z(γ) for γ = 0.001, γ = 10, and γ = 100; and weighted
(white background, left of the figure) and unweighted (light
gray background, middle of the figure) versions of global ef-
ficiency [Ew(i) and E(i)], geodesic node betweenness [Bw(i)
and B(i)], and clustering coefficient [Cw(i) and C(i)]. For
completeness, we also show results for the mean force S′ (left
of the figure), which was the variable previously reported to
be correlated with ∆I [22].

E. Phase Sensitivity of Network Diagnostics

Although the correlation between z and signal ampli-
tude is strong in both injection and scattering phases for
small γ (i.e., large community size), it is higher in the
scattering phase than in the injection phase when aver-
aged over all resolutions (γ ∈ [0.001, 100]; see Fig. 6B,E)
We do not observe such sensitivity to phase for the mean
force per particle (see Fig. 6A,D). Interestingly, the signal
propagation during the injection phase is more strongly

correlated with the global efficiency than it is during
the scattering phase (see Fig. 6C,F), suggesting that the
acoustic signal propagates over the shortest weighted
paths during the injection phase. These results illus-
trate insights from network analysis that one cannot ob-
tain from particle-scale measurements: signal propaga-
tion during injection is well characterized by shortest
paths that span the system, whereas it is characterized
by local neighborhood structure during scattering. An
interesting question is whether the amplitude of the in-
jected signal affects the size of the geographic neighbor-
hood through it propagates.

We also examine the sensitivity of the relationship be-
tween z and ∆I to the injection and scattering phases
as a function of the resolution parameter (see Fig. 7A).
The correlation between z and signal amplitude is con-
sistently higher in the scattering phase than in the injec-
tion phase throughout γ ∈ [0.001, 100]. Furthermore, the
largest difference in the Spearman correlation between z
and ∆I for the scattering versus injection phases occurs
for partitions with approximately 50− 100 communities,
corresponding to community sizes of roughly 5 − 8 par-
ticles (see Fig. 7B). This is similar to the size scale that
we identified previously when using the transformed res-
olution parameter.

III. DISCUSSION

A networks perspective provides a useful framework
in which to study the material and dynamic properties
of granular materials. Network diagnostics vary in their
sensitivity to scales of the granular system: the particle-
scale can be probed with a clustering coefficient, the
curve-scale can be probed with geodesic node between-
ness, the domain-scale can be probed with community
structure, and the system-scale can be probed with global
efficiency. Moreover, one can identify potentially inter-
esting length/size scales in the system using meso-scale
network features such as community structure. As we
show in Appendix C, one can also obtain physical in-
sights into the geographic organization of the material
by comparing the features of the actual networks to a
null model consisting of an ensemble of random geomet-
ric graphs.

The dynamics of signal propagation on a network are
best characterized by weighted diagnostics derived from
the granular force-chain network, suggesting that the
topology of the underlying (unweighted) contact network
alone is not sufficient to explain signal propagation. In
other words, one must also consider network geometry.
This result underscores the important relationship be-
tween signal propagation and force-chain organization
(see Fig. 5D). Similar phenomena are likely relevant for
a variety of energy transport problems (e.g., in sound,
heat, and electricity) in a broad class of amorphous ma-
terials. Although real 3D granular systems are not pho-
toelastic, recent advances in tomography [50, 51] have
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FIG. 6. [Color online] Spearman correlations between signal
amplitude ∆I and (A) the mean force per particle S′, (B)
the intracommunity strength z-scorez for γ = 2, and (C) the
global efficiency Ew. Our data encompasses all experimen-
tal runs and for all times, including both injection (left) and
scattering (right) phases. We show the Spearman correlations
between signal amplitude ∆I and the three diagnostics shown
in panels (A)–(C) in box plots: (D) mean force per particle
(ρS′), (E) intracommunity strength z-score z (ρz), and (F)
global efficiency (ρEw ). We have averaged the correlations
that we show in the box plots over the injection (left) and
scattering (right) phases. For (E), note that we also average
the correlations over the resolution parameter γ. Using MAT-
LAB notation, the precise values of γ that we considered are
[0.001 : 0.001 : 0.009, 0.01 : 0.1 : 1, 2 : 3, 4 : 0.1 : 20, 30 :
10 : 100, 200 : 100 : 1000]. The reported p-values indicate
the results of 2-sample t-tests.

begun to provide data on contact forces within packings
of deformable spheres. As these techniques mature, it
will be possible to apply network analyses to laboratory
3D systems.

The algorithmic detection of communities is particu-
larly useful in quantifying the effect of meso-scale net-
work structure on signal propagation. We find that com-
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FIG. 7. [Color online] (A) Spearman correlations between sig-
nal amplitude ∆I and the intracommunity strength z-score z
averaged over the injection (lower; black) and scattering (up-
per; red) phases as a function of the resolution parameter γ.
(B) Difference between the correlation in the scattering (ρsz)
and injection (ρiz) phases as a function of the number of com-
munities in the partition. We find the greatest sensitivity to
phase for partitions with approximately 50 − 100 communi-
ties (i.e., for communities containing roughly 5− 8 particles),
which corresponds to the upper end of the size scale that we
identified as potentially interesting using the transformed res-
olution parameter.

munity structure is a better predictor of signal ampli-
tude over the range of propagation phases than system-
scale, curve-scale, or particle-scale measurements. Fur-
thermore, by contrasting signal behavior during injection
and scattering phases, we are able differentiate the sensi-
tivities of system-wide and meso-scale network structure
to sound propagation. Community structure seems to be
a better predictor of signal propagation in the scattering
phase than in the injection phase, suggesting that the
sound scatters in local geographic neighborhoods. How-
ever, global efficiency predicts signal propagation bet-
ter in the injection phase than in the scattering phase,
suggesting a more system-wide dynamic distribution of
sound.

Studying community structure allows one to investi-
gate the meso-scale architecture of the granular packing.
In addition to the intracommunity strength z-score pre-
dicting particle sound amplitude, the identification of ge-
ographic communities provides a quantifiable size scale,
which may be useful for seeking the diverging length
scale that is expected at the jamming transition [2, 3].
The meso-scale nature of the sound propagation might
be related to other meso-scale phenomena in granular
physics, such as the spatial eigenmodes for soft (low-
energy) modes, which are observed in simulations to
take the form of localized swirls [52, 53]. Our approach
also provides a framework to relate 1D structures (force
chains) to 2D structures (geographic domains). It there-
fore might also prove useful in other settings — such as
in the study of crystalline solids, where domain structure
is critical to system function.

The presence of correlated regions such as geographic
communities in a granular material is reminiscent of
shear transformation zones (STZs [54]), in which local-
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ized regions throughout a sheared material have a higher
propensity to deform under shear. Importantly, how-
ever, the community structure that we compute spans
the system, whereas STZs are relatively small structures
dispersed throughout system. Also of interest is a com-
parison with the results of Ref. [55], which illustrated
that vibrational modes can identify soft spots in sheared
systems.

In conclusion, using network analysis to study granu-
lar materials can be extremely useful, as it can help char-
acterize particle, curve, domain, and system-scale prop-
erties of such materials. In particular, the algorithmic
detection of communities provides a means to identify
potentially interesting characteristic size scales in such
systems. When combined with time-resolved acoustic
measurements [22], such a networks perspective can il-
luminate the meso-scale structures within which sound
travels preferentially. We found that particles that are
well connected to their community have larger-amplitude
signals passing through them. Our results also suggest
that signals scatter in local geographic neighborhoods
but propagate more systemically during signal injection.
Investigation of both weighted and unweighted networks
demonstrates that a weighted network is a better predic-
tor of sound propagation, suggesting that the force-chain
structure of the granular material is an important compo-
nent in sound propagation. Our results demonstrate that
one cannot examine only system-scale or local-scale net-
work features to understand how sound travels through
a granular material. Importantly, one achieves a better
description of sound propagation when one includes how
the particles relate to their neighbors in a network.
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IV. APPENDIX A: DEFINITIONS OF
NETWORK DIAGNOSTICS

Diagnostics Applied to Unweighted Contact
Networks

To characterize structure of the binary (contact) net-
works, we examined 21 diagnostics: number of nodes,

number of edges, global efficiency [56], geodesic node be-
tweenness centrality [57][58], random-walk node between-
ness [59], geodesic edge betweenness [60], eigenvector cen-
trality [61], closeness centrality [62], subgraph centrality
[63], communicability [64], clustering coefficient [65], lo-
cal efficiency [56], modularity optimized using two differ-
ent algorithms [37–39, 44], hierarchy [66], synchronizabil-
ity [67], degree assortativity [68], robustness to targeted
and random attacks [69], the Rent exponent [70], and
mean connection distance [71].

In our descriptions below, we give for each diagnostic
(i) a mathematical definition, (ii) an intuitive description
of the term, and (iii) a comment on its possible physical
significance for the granular system that we study. We
also computed node-specific values for the following di-
agnostics: geodesic betweenness, global efficiency, and
clustering coefficient. (See the discussions below.)

1. Number of nodesN : (i) The diagnosticN is defined
as the number of nodes in a network. (ii) It is used
as a measure of the size of a system. (iii) In this
study, N is the number of particles in the system.
It provides a consistent but dynamically uninter-
esting characterization of the network because it is
identical at all points in time.

2. Number of edges D: (i) The diagnostic D is defined
as D =

∑
ij Aij , where A is an unweighted (binary)

network with components Aij . Nodes are particles,
and an edge exists between particles i and j (i.e,
Aij = 1) if and only if particles i and j are in con-
tact with each other (otherwise, Aij = 0). (ii) The
quantity D is simply the total number of edges in
the system. (iii) The number of edges D is related
to the mean contact number, which is denoted by
z in the granular-materials community. The mean
contact number of the system is equal to z = D

2N .
The diagnostic D provides a consistent but uninter-
esting characterization of the network because the
number of contacts scales with pressure [2] (which
is the same for all experimental runs).

3. Global efficiency E [56]: (i) Let dij be the shortest
(geodesic) number of steps necessary to get from
node i to node j. The global efficiency is then de-
fined as

E =
1

N(N − 1)

∑
i 6=j

1

dij
. (5)

(ii) Global efficiency can be interpreted as a mea-
sure of how well a signal is transmitted through
a network. (iii) One can expect the global effi-
ciency to be small in 2D granular packings because
particles that are not geographically close to one
another are separated by multiple contacts (edges)
and therefore by a long path length (low efficiency).
As one can see in Table III, this is indeed the case.
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4. Geodesic node betweenness B [57]: (i) Geodesic
node betweenness is defined for the ith node in a
network G as

Bi =
∑

j,m,i∈G

ψj,m(i)

ψj,m
, (6)

where all three nodes (j, m, and i) must be differ-
ent from each other, ψj,m is the number of geodesic
paths between nodes j and m, and ψj,m(i) is the
number of geodesic paths between j and m that
pass through node i. The geodesic betweenness of
an entire network B is defined as the mean of Bi
over all nodes i in the network. (ii) Geodesic be-
tweenness can be interpreted as a measure of traffic
flow on a network. (iii) One might expect the ma-
jority of geodesic paths that link any node of the
packing to any other node to pass through the mid-
dle of the system. Indeed, we find that the largest
values of betweenness occur in the center of the sys-
tem and the smallest values along the edges of the
packing.

5. Random-walk node betweenness Brw [59]: (i) For
an adjacency matrix A and diagonal matrix D, let
Mt = At · D−1

t be the matrix M with the row
and column t removed (and At and Dt are defined
analogously). The probability that a walk starts
at s, takes n steps, and ends up at some node i
(which cannot be t because t has been removed)
is given by element is of Mn

t ; denote this element
by [Mn

t ]is. Walks end up at v and w with prob-
abilities [Mn

t ]vs and [Mn
t ]ws. Fractions 1/kv and

1/kw of these walks subsequently pass along the
edge (v, w) in one direction or the other, assuming
that such an edge exists. (Note that kv is the de-
gree of v and kw is the degree of w.) Summing over
all n shows that the mean number of times that a
walk of any length traverses the edge from v to w
is k−1

v [(I −Mt)
−1]vs. The random-walk between-

ness of a node is the mean of this quantity over all
edges emanating from that node, and the random-
walk betweenness of the entire network is the mean
of the random-walk betweenness of all nodes in the
network. (ii) Random-walk betweenness can be in-
terpreted as a measure of information flow or signal
flow in a network. (iii) Similar to geodesic node be-
tweenness, one might expect the random-walk node
betweenness to be highest in the center of the sys-
tem and lowest on the edges of the system. This is
indeed the case.

6. Geodesic edge betweenness Be [60]: (i) Inspired by
Freeman’s geodesic node betweenness, the geodesic
edge betweenness of an edge is defined as the num-
ber of shortest paths between pairs of nodes that
run along it. For the edge connecting nodes j and

m, the geodesic edge betweenness is given by

Be(j,m) =
∑
i,k

ψi,k(j,m) , (7)

where ψi,k(j,m) is the number of shortest paths
between i and k that pass through the edge con-
necting nodes j and m. (ii) One can interpret edge
betweenness as a measure of the influence of an
edge on traffic flow through a network. (iii) In a 2D
granular packing, edge betweenness might indicate
the influence of a contact on a hypothetical flow
through the network. In our system, we find that
edge betweenness is largest in the center of the sys-
tem and smallest on the edges of the system. This
is consistent with the results for the geodesic node
betweenness.

7. Eigenvector centrality Ce [72]: (i) The eigenvector
centrality Ce(i) of node i is proportional to the sum
of the centralities of the nodes connected to it:

Ce(i) =
1

λ

∑
j∈M(i)

Ce(j) =
1

λ

∑
j

AijCe(j) , (8)

where M(i) is the set of nodes that are neighbors of
i (i.e., which are connected to i directly via an edge)
and λ is the largest eigenvalue of A. From Eq. (8),
one can deduce that Ce(i) is the ith component of
the leading eigenvector (each entry of which is pos-
itive by the Perron-Frobenius theorem [1]) of the
adjacency matrix. (ii) Eigenvector centrality can
be used to measure the importance of a node in a
network based on its direct connection to important
nodes. (iii) In a 2D granular packing, one would ex-
pect eigenvector centrality to be large for a particle
that has many contacts or for a particle whose im-
mediate neighbors have many contacts. Indeed, we
find that eigenvector centrality is highest in a local
region of the system in which high-degree nodes are
most concentrated.

8. Closeness centrality Cc [62]: (i) We use a version
of closeness centrality that is appropriate for both
connected and disconnected graphs [73]. It is de-
fined as

Cc(i) =
∑
j∈V/i

2−ψG(i,j) , (9)

where ψG(i, j) is the geodesic distance between
nodes i and j (i.e., the length of the shortest path
connecting i and j) and the notation V/i indicates
that V is the connected network component reach-
able from i and does not include i. (ii) Closeness
centrality can be used as a measure of the impor-
tance of a node in a network. (iii) For 2D granular
systems, one might expect closeness centrality to
be small given the lattice-like topology of a contact
network. However, as shown in Table III, closeness
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values are somewhat larger than those for random
geometric graphs (RGGs; see the discussion in Ap-
pendix VI

9. Subgraph centrality Cs [63]: (i) We first note that
the number of closed walks of length k starting and
ending at node i is given by the kth local spectral
moment µk(i), which is defined as the ith diagonal
entry of the kth power of the adjacency matrix A:

µk(i) = [Ak]ii . (10)

The subgraph centrality of node i is then defined
as

Cs(i) =

∞∑
k=0

µk(i)

k!
. (11)

(ii) Subgraph centrality characterizes the participa-
tion of each node in all subgraphs in a network. (iii)
For 2D granular systems, one might expect sub-
graph centrality to be small because nodes partici-
pate in few subgraphs other than their own, as their
connectivity is strongly constrained to their local
geographic neighborhood. Indeed, as indicated in
Table III, the subgraph centrality has a value that
is less than 1/3 that of the value that we computed
for a corresponding ensemble of RGGs (see our later
discussion).

10. Communicability Co [64]: Because of the direct
relationship between the powers of the adjacency
matrix A and the number of walks in a network,
one can define the communicability between nodes
i and j as

Coij =

∞∑
k=0

[Ak]ij
k!

. (12)

The communicability Co of a network is then the
mean of the communicabilities of each pair of (non-
identical) nodes. (ii) Communicability was devel-
oped to measure the ease of communication or
transmission in terms of passage between different
nodes in a network, and it is specifically based on
walks rather than paths [64]. (iii) For 2D granular
systems, one might expect the mean communica-
bility to be small because the geographic nature of
the contacts creates a lattice-like topology. Indeed,
as indicated in Table III, its value is less than 1/4
than the value that we computed for a correspond-
ing ensemble of RGGs.

11. Clustering coefficient C [65]: (i) The diagnostic C
is defined by supposing that a node i has ki neigh-
bors, so a maximum of ki(ki− 1)/2 edges can exist
between these neighbors. The local clustering co-
efficient Ci is the fraction of these possible edges
that actually exist:

Ci =

∑
mj AmjAimAij

ki(ki − 1)
. (13)

The clustering coefficient C of an entire network is
then defined as the mean of Ci over all nodes i. (ii)
The clustering coefficient C can be interpreted as a
measure of local clustering properties in a network.
(iii) One can expect C to be large in 2D granular
packings because particles that are geographically
close to one another are also near each other in a
network. This ought to yield a large number of
connected triples and hence a high value of C. As
shown in Table III, we do indeed observe reasonably
large values [74] for clustering coefficients in the 17
experimental runs (the mean value over all runs is
C ≈ 0.26), but interestingly the mean value of C in
the corresponding RGG ensemble is twice as high.

12. Local efficiency El [56]: (i) The the local efficiency
of node i is defined as

El(i) =
1

NGi(NGi − 1)

∑
j,k∈Gi

1

dj,k
, (14)

where Gi is the subgraph consisting of all nodes
connected to node i along with all of their edges
between each other, and dj,k is the minimum path
length between nodes j and k in this subgraph. The
local efficiency El is the mean value of El(i) over
all nodes i. (ii) Local efficiency El can be inter-
preted as a measure how well a signal is transmitted
through a subgraph. (iii) One might expect local ef-
ficiency to be large in 2D granular packings because
particles that are very close to each other geograph-
ically lie in one another’s subgraphs. However, as
we show in Table III, we obtain values that are only
about half of those for corresponding RGGs. The
mean granular-network value of 0.33 is comparable
in value to some communication networks [56].

13. Modularity index Q [36–38]: (i) Networks can be
partitioned into communities (or modules) in which
nodes inside the same community are more densely
connected to each other than they are to nodes in
other communities. The modularity of a network
partition is defined as

Q =
1

2D

∑
ij

[
Aij −

kikj
2D

]
δgi,gj , (15)

where ki is the degree of node i, D is the total
number of edges in the network, δij is the Kro-
necker delta, and gi is the community to which
node i has been assigned. With the standard null
model Pij = kikj/(2D), Eq. (15) is sometimes
called ‘Newman-Girvan modularity.’ One uses one
of numerous possible computational heuristics to
maximize Q in the space of all network partitions,
and one can then report the maximum value ob-
tained for Q. However, it is important to note
that the optimization of Q is NP-hard [45], so one
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cannot expect the output of an optimization algo-
rithm to be a globally optimal partition of a net-
work. In this light, we use two different compu-
tational heuristics to optimize Q: Newman’s spec-
tral algorithm [44] (which yields a modularity value
that we denote Qs) and the Louvain locally greedy
method [39] (yielding a modularity value that we
denote QL). (ii) The optimal value of Q is a mea-
sure of how well a network can be partitioned into
cohesive communities. (iii) In a 2D granular sys-
tem, one might expect communities to be localized
geographically because connectivity between nodes
in potential communities is constrained geographi-
cally. Indeed, as shown in Table III, the values of
Qs and QL are both extremely high [36, 37].

14. Hierarchy h [66]: (i) A sense of hierarchical struc-
ture in a network can be characterized by the coeffi-
cient h, which is used to quantify a putative power-
law relationship between clustering coefficient Ci
and the degree ki of all nodes in the network [66]:

Ci ∼ k−hi . (16)

(ii) Networks in which clustering coefficient has a
power-law scaling with degree possess a hierarchy
in which hubs (i.e., high-degree nodes) tend to have
low local clustering and low-degree nodes tend to
have high local clustering. The parameter h gives
a precise scaling of such effects when (16) holds,
and it can perhaps indicate a looser sense of hierar-
chy in more general situations. (iii) It is not clear
a priori whether 2D granular packings have some
hierarchical characteristics, though the authors of
Ref. [66] have suggested that geographic networks
are not very hierarchical. Our calculations (see Ta-
ble III) provide some support for this claim, as we
observe significant scaling between Ci and ki and
obtain h ≈ 0.76. It is noteworthy, however, that
this value is roughly three times what one obtains
in a corresponding RGG ensemble (see Table III).

15. Synchronizability s [67]: (i) The synchronizability
is defined as

s =
λ2

λN
, (17)

where λ2 is the second smallest eigenvalue of the
Laplacian L of the adjacency matrix and λN is the
largest eigenvalue of L [67]. (ii) The synchronizabil-
ity of a network characterizes structural properties
of a network that hypothetically enable it to syn-
chronize rapidly. (iii) One might expect that the
synchronizability of the contact network in a 2D
granular packing is small due to the lattice-like na-
ture of the network topology. Indeed, as shown in
Table III, the value for s for our system is tiny.

16. Degree assortativity a [68]: (i) The degree assor-
tativity of a network (which is often called simply

‘assortativity’) is defined as

a =
E−1

∑
i jiki −

[
E−1

∑
i

1
2 (ji + ki)

]2
E−1

∑
i

1
2 (j2

i + k2
i )−

[
E−1

∑
i

1
2 (ji + ki)

]2 , (18)

where ji and ki are the degrees of the nodes at
the two ends of the ith edge (i ∈ {1 , . . . , E} [44].
(ii) Degree assortativity measures the preference of
a node to connect to other nodes of similar degree
(leading to an assortative network, for which a > 0)
or to nodes of very different degree (leading to a dis-
assortative network, for which a < 0). (iii) It is not
clear a priori whether 2D granular packings should
display degree assortativity. Our calculations indi-
cate that the degrees exhibit some mild positive as-
sortativity (a ≈ 0.14), but the corresponding RGG
ensembles have a significantly higher positive as-
sortativity of a ≈ 0.56. (See Table III.)

17. Robustness R [69]: (i) One can define robustness
in terms of different types of attacks on a net-
work. In the most commonly studied type of tar-
geted attack, nodes are removed (one by one) in
descending order of their degree; in a random at-
tack, nodes are removed in random order. Each
time a node is removed from a network, we re-
calculate the size S (i.e., number of nodes) of the
largest connected component. One can examine ro-
bustness by plotting S versus the number of nodes
removed n [75–77]. One can then define a robust-
ness parameter R as the area under the curve in
the plot of S = S(n). More robust networks retain
a larger connected component even when several
nodes have been removed; this is represented by
a larger area under the curve and hence by larger
values of R. (ii) Robustness indicates network re-
silience to either targeted (Rt) or random (Rr) at-
tacks. (iii) Robustness tends to be most interesting
for networks with highly heterogeneous degree dis-
tributions, so it might not be very insightful for
2D granular packings. We note, however, that we
find values of Rt and Rr for our granular networks
that are more than 3 times as large as those for the
corresponding RGG ensemble. (See Table III.)

18. Rent exponent p [78]: (i) Rent’s rule, which was
first discovered in relation to computer chip design,
defines a scaling relationship between the number
of external signal connections (edges) e to a block
of logic and the number of connected nodes n in
the block [78]:

e ∼ np , (19)

where p ∈ [0, 1] is the Rent exponent. (ii) The
Rent exponent measures the efficiency of the phys-
ical embedding of a topological structure. (iii) Due
to the physical constraints of a 2D granular pack-
ing, we expect to observe Rentian scaling with a
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relatively low Rent exponent (similar to that of a
lattice). The theoretically expected minimum of
the Rent’s exponent for a 2-dimensional physical
lattice is pt = 1−1/DE [79–81] where DE is the Eu-
clidean dimension of the space (e.g., 2), and there-
fore pt = 0.5, which is consistent with empirical
results on memory circuits [82]. However, the ex-
pected value of the Rent exponent might further
depend on the type of physical lattice under study
(e.g., a rectangular or hexagonal lattice).

19. Mean connection distance mcd: (i) An edge’s es-
timated connection distance Lij is defined as the
Euclidean distance between the centroids of par-
ticles i and j. (ii) The mean connection distance
mcd is defined as the mean of all Lij values in the
network. (iii) The mean connection distance in a
2D granular packing is related to the number of
particles, the area of the system, and particle size.

Diagnostics Applied to Force-Weighted Contact
Networks

To characterize the structure of the force-weighted
networks, we used 8 diagnostics: normalized strength
[83, 84], diversity [85], path length [86], geodesic node be-
tweenness [57, 84], geodesic edge betweenness [60], clus-
tering coefficient [84], transitivity [87], and optimized
modularity [38].

1. Normalized Strength S′ [83, 84]: (i) The strength of
node i is given by the column sum of the weighted
adjacency matrix:

Si =
∑
j

Wij , (20)

and the strength of an entire weighted network
W is the mean of Si over all i. The normalized
strength S′ is

S′i =
Si
N
, (21)

where N is the total number of nodes. (ii) Strength
is a measure of how strong the connections are in
a network. (iii) In the present context, normalized
strength provides a measure of the mean contact
forces between particles, and we therefore expect
this diagnostic to be correlated with sound propa-
gation. Indeed, we observe this in our calculations.

2. Diversity V [85]: (i) The diversity of node i is de-
fined as the variance of the edge weights for the set
of all edges connected that are connected to it. It
is given by

Vi =

 1

N

∑
j

(Wij − 〈Wi〉)2

1/2

. (22)

The diversity of an entire weighted network is the
mean of Vi over all i. (ii) Diversity is a measure of
the variance of connectivity strengths in a network.
(iii) In the present context, diversity is a measure
of the variance of contact forces between particles,
and it has a high positive correlation with normal-
ized strength.

3. Global efficiency Ew [56]: (i) Let dwij = max(Wij)−
Wij be the weighted shortest path between nodes
i and j. The global efficiency of node i is then
defined as

Ew(i) =
1

N − 1

∑
j 6=i

1

dwij
. (23)

The global efficiency Ew is the mean value of Ew(i)
over all nodes i. (ii) One can interpret global ef-
ficiency as a measure of how efficiently a signal is
transmitted through a network. (iii) We expect the
global efficiency of the force-weighted contact net-
work to be large in the center of the packing and
small on the edges of the packing because parti-
cles that are not geographically close to each other
do not exert forces on one another. Indeed, this is
what we observe.

4. Clustering coefficient Cw [84]: (i) One can define a
weighted clustering coefficient Cw(i) of node i using
the formula

Cw(i) =
1

Si(ki − 1)

∑
j,k

(Wij +Wik)

2
AijAikAjk , (24)

where Si is node i’s strength, ki is its degree, W is
the weighted adjacency matrix, and A is the under-
lying binary adjacency matrix. (ii) The weighted
clustering coefficient Cw(i) measures the strength
of local connectivity. (iii) It is constrained by the
underlying contact network structure, so we expect
it to have a high positive correlation with the bi-
nary clustering coefficient C(i). Indeed, the Pear-
son correlation coefficient between the binary and
weighted clustering coefficients over the experimen-
tal runs is r ≈ 0.94 (with a p-value of p ≈ 2×10−9).
Both diagnostics tend to attain their highest values
on the edges of the packing, where nodes’ immedi-
ate neighbors are most likely to also be connected
to one another.

5. Geodesic node betweenness Bw [88]: (i) Geodesic
betweenness is defined for the ith node in a network
G as

Bw(i) =
∑

j,m,i∈G

ψ̃j,m(i)

ψ̃j,m
, (25)

where all three nodes (j, m, and i) must be dif-

ferent from each other, ψ̃j,m denotes the number
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of geodesic weighted paths between nodes j and
m, and ψ̃j,m(i) denotes the number of geodesic
weighted paths between j and m that pass through
node i. (As with weighted global efficiency, the
weighted shortest path between nodes i and j is
dwij .) The weighted geodesic betweenness of an en-
tire network Bw is defined as the mean of Bw(i)
over all nodes i. (ii) One can interpret weighted
geodesic betweenness as a measure of traffic flow on
a network. (iii) We expect betweenness in weighted
networks to correlate positively with strength, just
as betweenness in binary networks correlates posi-
tively with degree [59]. In a 2D granular packing,
we expect particles in the center of the system to
have high values of weighted betweenness because
more paths must pass through them to connect the
edges of the system. We indeed find this to be the
case.

6. Geodesic edge betweenness Bew [68, 88]: (i) We
define geodesic edge betweenness on weighted net-
works using the number of shortest weighted paths
between pairs of nodes that run along it. (We again
determine the path distance between nodes i and j
using dwij .) For the edge connecting nodes j and m,
the weighted geodesic edge betweenness is therefore

Bew(j,m) =
∑
i,k

ψ̃i,k(j,m) , (26)

where ψ̃i,k(j,m) is the number of shortest paths
between nodes i and k that pass through the edge
connecting nodes j and m. (ii) Weighted edge be-
tweenness indicates the influence of an edge on traf-
fic flow through a network. (iii) In a 2D granular
packing, the edge betweenness should give an indi-
cation of the influence of a contact on a hypothet-
ical flow through the network. We find that edge
betweenness is largest in the center of the system
because more paths must pass through these edges
to connect all pairs of particles.

7. Modularity index Qw [36–38]: The weighted mod-
ularity of a network partition is

Qw =
1

2W̄

∑
ij

[
Wij −

SiSj
2W̄

]
δgi,gj , (27)

where Si is node i’s strength, W̄ is the total
strength of the edges in a network, Wij is an el-
ement of the weighted adjacency matrix, δij is the
Kronecker delta, and gi is the label of the com-
munity to which node i has been assigned. As with
unweighted networks, one uses some computational
heuristic to find a partition that maximizes Q. As
with the binary networks, we have used the Louvain
locally greedy optimization method [39]. (ii) The
maximum value of Q is a measure of how well a net-
work can be partitioned into cohesive communities.

(iii) In a 2D granular packing, in which forces be-
tween particles are represented as edge weights, we
expect communities to be localized in space because
the forces between nodes in potential communities
are constrained geographically. Indeed, as shown
in Fig. 2, this is indeed the case.

8. Transitivity T [87]: (i) The weighted transitivity
T (i) of node i is

T (i) =
2

ki(ki + 1)

∑
j,k

(
W̃ijW̃jkW̃ik

)1/3

, (28)

where we have normalized weights by the maximum
edge weight in the matrix:

W̃ij =
Wij

max (Wij)
. (29)

The transitivity T of the entire network is the mean
of T (i) over all nodes i. (ii) Weighted transitivity
is a generalization of the local clustering coefficient
in unweighted networks in which one computes the
sum of the weights of edges in a network’s triangles
instead of computing simply the number of trian-
gles. (iii) We expect weighted transitivity to be
similar to the weighted clustering coefficient Cw.
Indeed, we find that the two variables are highly
correlated over experimental runs (with a Pearson
correlation coefficient of r ≈ 0.99 and a p-value of
p ≈ 1× 10−16).

We implemented all computational and simple statis-
tical operations (such as t-tests and correlations) using
MATLAB R© (2009a, The MathWorks Inc., Natick, MA).
We estimated network diagnostics using a combination of
in-house software, the Brain Connectivity Toolbox [89],
the MATLAB Boost Graph Library, and the fast unfold-
ing community detection code for the Louvain optimiza-
tion of modularity [39] from Peter Mucha [90].

V. APPENDIX B: RELIABILITY OF
NETWORK STRUCTURE

We quantify the reliability of each diagnostic by cal-
culating the coefficient of variation (a normalized mea-
sure of dispersion) over the 17 experimental runs: CV =
σ/|µ|, where σ is the standard deviation and µ is the
mean. Values of CV . 0.2 are commonly considered to
be acceptable, as they indicate that a variable is reliable
[77, 91, 92]. See Table I for CV values for all binary
network diagnostics and Fig. 9B for a corresponding bar
graph. Interestingly, reliable diagnostics are dispersed
among the quantities we considered rather than focused
on sets of related diagnostics.

For the force-weighted granular networks, we find lower
reliability (i.e., higher values of CV) for the diagnostics
than for the (binary) contact networks. Compare Fig. 8B
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FIG. 8. [Color online] (A) Relationships between 21 binary
network diagnostics: degree assortativity (a), geodesic node
betweenness (B), closeness centrality (Cc), clustering coeffi-
cient (C), communicability (Co), geodesic edge betweenness
(Be), eigenvector centrality (Ce), global efficiency (Eg), hi-
erarchy (h), local efficiency (El), modularity optimized using
the Louvain (QL) and spectral (Qs) heuristics, number of
nodes (N), number of edges (D), mean connection distance
(mcd), random-walk node betweenness (Brw), Rent exponent
(p), robustness to random attack (Rr), robustness to targeted
attack (Rt), subgraph centrality (Cs), and synchronizability
(s). We order the diagnostics to maximize the correlation
along the diagonal for better visualization of highly corre-
lated groups of diagnostics. Color indicates the correlation
between global network diagnostics over the 17 experimen-
tal runs. (B) Reliability, as measured by the coefficient of
variation (CV), over the 17 runs for the 21 binary network
diagnostics reported in (A).

to Fig. 9B and Table II to Table I). It is possible that
the reliability is lower in the weighted networks because
a large ensemble of force-chain networks are consistent
with a given packing [93]. Therefore, for each binary
network, we are sampling one weighted network out of
the many possible force-chain networks that could arise
from the underlying contacts. Based on this degeneracy,
we might expect that network diagnostics that depend
on the force topology might be less consistent across ex-
periments than those based on contacts alone. As with
the unweighted networks, the strongly reliable weighted-
network diagnostics are dispersed among the 8 diagnos-
tics rather than focused on sets of related quantities.

Binary Contact Network Diagnostic Variable CV

Mean Connection Distance mcd 0.0046
Geodesic Edge Betweenness Be 0.0090
Global Efficiency Eg 0.0114
Rent Exponent p 0.0171
Random-Walk Node Betweenness Brw 0.0176
Number of Nodes N 0.0179
Geodesic Node Betweenness B 0.0213
Modularity: Louvain Optimization QL 0.0071
Modularity: Spectral Optimization Qs 0.0252
Closeness Centrality Cc 0.0267
Number of Edges D 0.0360
Synchronizability s 0.0408
Robustness, Random Rr 0.0456
Clustering Coefficient C 0.0496
Subgraph Centrality Cs 0.0528
Local Efficiency El 0.0573
Robustness, Targeted Rt 0.0727
Communicability Co 0.0829
Hierarchy h 0.1080
Eigenvector Centrality Ce 0.1150
Degree Assortativity a 0.3219

TABLE I. Reliability of network diagnostics for the binary
contact networks. We measure reliability using coefficient of
variance (CV).

Force-Weighted Contact Network Diagnostic Variable CV

Transitivity T 0.0339
Clustering Coefficient Cw 0.0549
Geodesic Node Betweenness Bw 0.0282
Geodesic Edge Betweenness Bew 0.0199
Normalized Strength S′ 0.0000
Modularity: Louvain Optimization Qw 0.0135
Diversity V 0.0412
Global Efficiency Ew 0.1094

TABLE II. Reliability of network diagnostics for the force-
weighted contact networks. We measure reliability using co-
efficient of variance (CV).

VI. APPENDIX C: COMPARISON OF
CONTACT NETWORKS TO RANDOM

GEOMETRIC GRAPHS

Many of the diagnostics that we compute for the granu-
lar networks are highly correlated with one another (see
Fig. 9A). In the (binary) contact networks, they form
roughly two families, where the correlations among the
diagnostics in a given family are high. The diagnos-
tics that we used for the weighted networks also exhibit
some correlations (see Fig. 8A), and (unsurprisingly) this
is particularly evident for diagnostics that are known
to be closely related mathematically. For example, the
weighted clustering coefficient is highly correlated with
transitivity, and geodesic node betweenness is highly cor-
related with geodesic edge betweenness.

It is important to think about the possible origins
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Diagnostic Name EG RGG t p

EG Less Than RGG
Local Efficiency 0.33 0.67 73.33 3.1× 10−37

Modularity: Louvain Optimization 0.81 0.92 70.52 7.2× 10−36

Clustering Coefficient 0.26 0.54 85.28 2.5× 10−30

Random-Walk Betweenness 0.09 0.20 39.73 8.2× 10−29

Degree Assortativity 0.14 0.57 38.52 2.19× 10−28

Subgraph Centrality 7.19 28.79 22.41 3.9× 10−21

Communicability 0.15 0.73 17.79 3.6× 10−18

Rent Exponent 0.47 0.50 15.41 2.2× 10−16

EG Greater Than RGG
Global Efficiency 0.10 0.03 94.41 1.0× 10−40

Mean Connection Distance 39.60 32.32 79.38 2.5× 10−38

Robustness, Random 8.38× 104 2.33× 104 54.89 3.0× 10−33

Closeness Centrality 7.84 4.47 50.29 4.9× 10−32

Synchronizability 0.0014 0.0004 44.71 2.2× 10−30

Robustness, Targeted 7.08× 104 1.96× 104 36.96 7.9× 10−28

Edge Betweenness 13.33 4.55 34.71 5.6× 10−27

Geodesic Node Betweenness 6.24× 103 2.16× 103 30.95 2.0× 10−25

Hierarchy 0.76 0.27 24.42 2.9× 10−22

Eigenvector Centrality 0.0172 0.0080 19.15 4.2× 10−19

Modularity: Spectral Optimization) 0.78 0.75 5.06 1.63× 10−5

TABLE III. Comparison of binary network diagnostics in the (real) experimental graphs (EGs) and the random geometric
graphs (RGGs). We show the mean values of the EGs (column 1), the mean values of the RGGs (column 2), the t-values
(column 3), and p-values (column 4) for a two-sample t-test between the network-diagnostic values of the two families of
networks (EGs and RGGs).

of correlations between the various network diagnostics.
Some of them might be specific features of the precise
granular system under consideration, but others might
arise because our granular packings are confined in 2D
rather than in 3D or because of our particular prepara-
tion protocol. Still others might be general properties of
spatially-embedded systems (in any dimension), of gran-
ular materials, or of networks in general.

To examine such issues, it is desirable to compare net-
work diagnostics computed for the networks obtained
from experimental data with those obtained from appro-
priate ensembles of null-model networks. It is common to
compare the structures of networks under study to those
that would be expected in Erdős-Rényi random graphs
or from some other random graph ensemble [1]. The
networks that we study in the present paper — namely,
contact networks in granular packings — are spatially
embedded (in the plane) because of physical constraints.
The development of null-models is a wide open area of
research for spatially-embedded networks [8], but we can
make some progress for the binary contact networks by
comparing the network diagnostics in those networks to
computations of the same diagnostics using an ensemble
of random geometric graphs (RGGs). As we will now
discuss, we find that all diagnostics (except for the ones
that we fix when defining the RGG ensemble to match
their counterparts in the real networks) are significantly
different in the real versus random networks.

The simplest RGG [8, 32, 94] containsN nodes that are
randomly and distributed according to some probability

distribution throughout an ambient space, which in our
case is R [96]. One then places an edge between any pair
of nodes i and j that are separated by a distance of at
most 2r, where one should think of the parameter r as
the radius of a ball (using some metric) in the confining
space. In planar Euclidean space, one considers a disk in
R2 and uses ordinary (Euclidean) distance.

To compare the networks that we study to RGGs, we
generated RGGs in which we placed nodes randomly and
uniformly within the 2D space of the granular packing.
For each experimental run, we created an ensemble of 100
RGGs in which the number of nodes was identical to that
in the experimental system. We likewise fix the number
of edges in each RGG to be identical to that in the real
system (D) by choosing the threshold 2r so that the num-
ber of inter-node distances less than 2r is equal to D. We
calculate the other 19 binary diagnostics (i.e., except for
the number of nodes and the number of edges, as those
have been fixed to be equal in the two sets of networks)
and computed their mean over the 100 RGGs in each
ensemble. By performing these computations for each
experimental run, we created 1 estimate of each of the
19 diagnostic values for each of the 17 runs. We report
in Table III the mean values for both the real networks
and the networks generated from the RGG ensembles.
We also report t-values and p-values for two-sample t-
tests between the values in the 17 real networks and the
17 mean values in the RGG networks. As we show in
Table III, each of the 19 network diagnostics is signif-
icantly different between the two groups. Measures of
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FIG. 9. [Color online] (A) Relationships between 8 diagnos-
tics applied to the weighted networks: geodesic node between-
ness (Bw), clustering coefficient (Cw), diversity (V ), geodesic
edge betweenness (Bew), global efficiency (Ew), modular-
ity (Qw) optimized using the Louvain method, and normal-
ized strength (S′). We ordered the diagnostics to maximize
the correlation along the diagonal for better visualization of
highly correlated groups. Color indicates the correlation be-
tween global network diagnostics over the 17 experimental
runs. (B) Reliability, as measured by the coefficient of vari-
ation (CV), over the 17 runs for the 8 weighted graph diag-
nostics reported in (A).

local connectivity (e.g., clustering coefficient) are higher
in the RGG, whereas measures of global connectivity and
physical distance are lower. These results illustrate that
the networks in the RGG ensemble have more locally con-
nectivity structures than those in the 2D granular system
under study.
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