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A deeper understanding of nonequilibrium phenomena is needed to reveal the principles govern-
ing natural and synthetic molecular machines. Recent work has shown that when a thermodynamic
system is driven from equilibrium then, in the linear response regime, the space of controllable
parameters has a Riemannian geometry induced by a generalized friction tensor. We exploit this ge-
ometric insight to construct closed-form expressions for minimal-dissipation protocols for a particle
diffusing in a one dimensional harmonic potential, where the spring constant, inverse temperature,
and trap location are adjusted simultaneously. These optimal protocols are geodesics on the Rie-
mannian manifold, and reveal that this simple model has a surprisingly rich geometry. We test these
optimal protocols via a numerical implementation of the Fokker-Planck equation and demonstrate
that the friction tensor arises naturally from a first order expansion in temporal derivatives of the
control parameters, without appealing directly to linear response theory.
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I. INTRODUCTION

There has been considerable progress in the study of
nonequilibrium processes in recent years. For example,
fluctuation theorems relating the probability of an in-
crease to that of a comparable decrease in entropy during
a finite time period have been derived [1–5] and exper-
imentally verified [6–9] in a variety of contexts. More-
over, other new fundamental relationships between ther-
modynamic quantities that remain valid even for sys-
tems driven far from equilibrium, such as the Jarzynski
equality [10–13], have also been established. Interest-
ingly, some of these ideas were independently developed
in parallel within the machine learning community [14],
as ideas from nonequilibrium statistical mechanics are in-
creasingly finding applications to learning and inference
problems [15, 16].

For macroscopic systems, the properties of optimal
driving processes have been investigated using thermo-
dynamic length, a natural measure of the distance be-
tween pairs of equilibrium thermodynamics states [17–
22], with extensions to microscopic systems involving a
metric of Fisher information [23, 24]. Recently, a linear-
response framework has been proposed for protocols that
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minimize the dissipation during nonequilibrium pertur-
bations of microscopic systems. In the resulting geomet-
ric formulation, a generalized friction tensor induces a
Riemannian manifold structure on the space of param-
eters, and optimal protocols trace out geodesics of this
friction tensor [25].

In this article, we make use of Riemannian geometry
theorems to simplify the problem of optimizing proto-
cols. To illustrate the power of these geometric ideas, we
consider a simple, but previously unsolved, stochastic
system and calculate closed-form expressions for optimal
protocols. We test the accuracy of our approximation
by numerically comparing our optimal protocols against
naive protocols using the Fokker-Planck equation. We
conclude by demonstrating that our inverse diffusion
tensor framework arises naturally from a first order
expansion in temporal derivatives of the control parame-
ters, without appealing directly to linear response theory.

II. DERIVATION OF THE EXCESS POWER
FOR VARIABLE TEMPERATURE

For a physical system at equilibrium in contact with
a thermal bath, the probability distribution over mi-
crostates x is given by the canonical ensemble

π(x|λ) ≡ expβ [F (λ)− E(x,λ)] , (1)

where β = (kBT )−1 is the inverse temperature in natural
units, F (λ) is the free energy, and E(x,λ) is the system
energy as a function of the microstate x and a collection
of experimentally controllable parameters λ.



2

In equilibrium, the thermodynamic state of the system
(the probability distribution over microstates) is com-
pletely specified by values of the control parameters, but
out of equilibrium the system’s probability distribution
over microstates fundamentally depends on the history of
the control parameters λ, which we denote by the con-
trol parameter protocol Λ. We assume the protocol to
be sufficiently smooth to be twice-differentiable.

The usual expressions for heat and work [26–29] as-
sume that the temperature of the heat bath is held con-
stant over the course of the nonequilibrium protocol.
Following the development of methods to handle time-
varying temperature described in section 1.5 of [30], and
preceding Eq. (4) of [31], we argue that the unitless en-
ergy βE(x,λ) (normalized by the natural scale of equilib-
rium thermal fluctuations, kBT = β−1, set by equiparti-
tion) is the fundamental thermodynamic quantity. Thus
when generalizing to a variable heat bath temperature,
we arrive at the following definition for the average in-
stantaneous rate of (unitless) energy flow into the system:〈

d

dt

(
βE(x,λ)

)〉
Λ

, (2)

where angled brackets with subscript indicate a nonequi-
librium average dependent on the protocol Λ. For con-
stant β, this reduces to the standard thermodynamic def-
inition [25]. With this definition, we can prove that for
systems obeying Fokker-Planck dynamics, excess work
is guaranteed to be non-negative for any path, which is
not true of the naive definition (see § III). Nonetheless,
a deeper understanding of the subtleties involved in our
modified energy flow definition (Eq. (2)) calls out for fur-
ther study.

Eq. (2) may be written as

〈
dxT

dt
· ∂ (βE)

∂x
(x,λ)

〉
Λ

+

〈
dλT

dt
· ∂ (βE)

∂λ
(x,λ)

〉
Λ

.

(3)
The first term represents energy flux due to fluctuations
of the system at constant parameter values and naturally
defines heat flux for nonequilibrium systems. The second
term, associated with an energy flux due to changes of
the external parameters, defines nonequilibrium average
power in the general setting of time-variable bath tem-
perature.

The average excess power exerted by the external agent
on the system, over and above the average power on a
system at equilibrium, is

β(t0)Pex(t0) ≡ −

[
dλT

dt

]
t0

· 〈4X〉Λ . (4)

Here X ≡ −∂(βE)
∂λ are the forces conjugate to the control

parameters λ, and 4X(t0) ≡ X(t0) − 〈X〉λ(t0)
is the

deviation of X(t0) from its current equilibrium value.

Applying linear response theory [32],

〈4X(t0)〉Λ ≈
∫ t0

−∞
χ(t0 − t′) · [λ(t0)− λ(t′)] dt′ (5)

where χij(t) ≡ −dΣ
λ(t0)
ij (t)/dt represents the response of

conjugate force Xi at time t to a perturbation in control
parameter λj at time zero, and

Σ
λ(t0)
ij (t) ≡ 〈δXj(0)δXi(t)〉λ(t0)

. (6)

For protocols that vary sufficiently slowly [25], the result-
ing mean excess power is

β(t0)Pex(t0) ≈

[
dλT

dt

]
t0

· g(λ(t0)) ·
[
dλ

dt

]
t0

, (7)

for inverse diffusion tensor

gij ≡ β(t0)ζij(λ(t0)) =

∫ ∞
0

dt′
〈
δXj(0)δXi(t

′)
〉
λ(t0)

,

(8)
where ζij is the friction tensor in control parameter
space from [25]. We will construct geodesics using this
inverse diffusion tensor gij .

III. THE MODEL SYSTEM AND ITS INVERSE
DIFFUSION TENSOR

We consider a particle (initially at equilibrium) in a
one-dimensional harmonic potential diffusing under iner-
tial Langevin dynamics, with equation of motion

mÿ + k(t) (y − y0(t)) + ζcẏ = F (t) , (9)

for Gaussian white noise F (t) satisfying

〈F (t)〉 = 0 , 〈F (t)F (t′)〉 =
2ζc

β(t)
δ(t− t′) . (10)

Here ζc is the Cartesian friction coefficient. We take as
our three control parameters: the inverse temperature
of the bath β, the location of the harmonic potential
minimum y0, and the stiffness of the trap k [see Fig. 1(a)].
The conjugate forces are

X =

(
βk (y − y0) ,− p2

2m
− k

2
(y − y0)

2
,−β

2
(y − y0)

2

)
.

(11)
This model can be experimentally realized as, for in-

stance, a driven torsion pendulum [33, 34].
The excess work

〈(βW )ex〉 ≡
∫ tb

ta

dt β(t)Pex(t) (12)

is non-negative. Assuming the system begins in equilib-
rium, the relative entropy D

[
f || π(x|λ(t))

]
corresponds

to the available energy in the system due to being out of
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FIG. 1. (a) Our model system. A particle (black dot) diffus-
ing in a harmonic potential with adjustable spring constant k,
position y0, and inverse temperature β = 1

kBT
(indicated by

thermometers). (b) Representative optimal protocols (orange
and red curves) plotted for two of the three control parame-
ters, k and β. An optimal protocol (e.g., red curve) results
in the minimum dissipation for any path taking the system
from one particular state (black square) to another (black tri-
angle) in a fixed amount of time. (c) A change of variables
{β, k} → {z, x} (Eq. (34)) reveals that our model system
has an underlying structure described by hyperbolic geom-
etry, represented here as the Poincaré half-plane, in which
geodesics form half circles (orange curve) or vertical lines (red
line). (d) A piece of the (z, x) manifold may be isometrically
embedded as a saddle in R3. The distortions in each of these
two optimal paths as shown in panels (b) and (c) reflect the
curvature of this manifold.

equilibrium [35], and bounds the excess work from below.
Here, π is the equilibrium distribution (Eq. (1)) defined
by parameters λ(t), and f ≡ f(y, p, t) is the nonequilib-
rium probability distribution. The time derivative of the
relative entropy may be written as

d

dt
D
[
f || π(x|λ(t))

]
=

∫
∂f

∂t
log (f/π(x|λ(t)))+β(t)Pex(t),

(13)

which follows from the identity∫
f

[
∂

∂t
log (π(x|λ(t)))

]
=
dλT

dt
· 〈4X(t)〉Λ . (14)

The first term of Eq. (13) simplifies to

−ζ
c

β

∫
e−

βp2

m

[
1

f

(
∂

∂p

(
e
βp2

2m f

))2
]
≤ 0. (15)

Integrating Eq. (13) from 0 to t0 proves the relative en-
tropy bounds the excess work from below. Since this
quantity is always non-negative, so is the excess work; in
fact, for any finite-duration path visiting more than one
point in parameter space, it is strictly positive, yield-
ing a well-behaved metric in our geometrical formalism.
See [36] for related results in the special case of constant
temperature. Note that, unlike our modified definition

for work, the naive definition
∫ tb
ta
dtPex(t) may be nega-

tive for particular protocols that vary β.
Calculation of the time correlation functions in Eq. (8)

requires knowledge of the dynamics for fixed control pa-
rameters. We may write any solution to the equation
of motion as a sum yh + yp of a homogeneous part yh,
which depends on the initial conditions and is indepen-
dent of F (t), and a particular part yp, which has vanish-
ing initial conditions but depends linearly on F (t) (see,
for instance, Theorem 3.7.1 in [37]). Explicitly, we may
write

yp(t) =

∫ t

0

(
y
(1)
h (s)y

(2)
h (t)− y(1)h (t)y

(2)
h (s)

y
(1)
h (s) ddsy

(2)
h (s)− y(2)h (s) ddsy

(1)
h (s)

)
F (s)

m
ds

(16)

where y
(i)
h (t) for i = 1, 2 are independent solutions of the

homogeneous equation. It follows immediately that

yh(t) = C1y
(1)
h (t) + C2y

(2)
h (t) (17)

where the constants C1, C2 are determined by initial con-
ditions.

For Gaussian white noise F (t), it is easy to show that
the particular piece yp does not contribute to the equi-
librium time correlation function 〈δXj(0)δXi(t)〉. For
simplicity and without loss of generality, consider the
correlation function

〈
δy(t)2δy(0)2

〉
. Expanding this ex-

pression,〈
δy(t)2δy(0)2

〉
=
〈
y(t)2y(0)2

〉
−
〈
y(t)2

〉 〈
y(0)2

〉
, (18)

and substituting y(t) = yh(t) + yp(t), we find〈
δy(t)2δy(0)2

〉
=
〈
yh(t)2y(0)2

〉
+
〈
yp(t)

2y(0)2
〉

−
〈
yh(t)2

〉 〈
y(0)2

〉
−
〈
yp(t)

2
〉 〈
y(0)2

〉
(19)

+ 2
( 〈
yh(t)yp(t)y(0)2

〉
− 〈yh(t)yp(t)〉

〈
y(0)2

〉 )
.

Angled brackets denote an average over noise and initial
conditions.
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According to Eq. (16), the particular solution yp does
not depend on the initial conditions. It follows immedi-
ately that

〈
yp(t)

2y(0)2
〉
−
〈
yp(t)

2
〉 〈
y(0)2

〉
= 0 . (20)

Furthermore, since yh depends only on the initial condi-
tions and is independent of the noise,

〈
yh(t)yp(t)y(0)2

〉
− 〈yh(t)yp(t)〉

〈
y(0)2

〉
= 0 , (21)

follows from the assumption that 〈F (t)〉 = 0. To sum-
marize,

〈
δy(t)2δy(0)2

〉
=
〈
δyh(t)2δy(0)2

〉
. (22)

For each of the time correlation functions needed to com-
pute the inverse diffusion tensor, it is generally true that
yh(t) may be substituted in the average for y(t).

Without loss of generality, let us assume for the mo-
ment that (ζc)

2 − 4km > 0. If we define

r± =
ζc

2m
± 1

2

√(
ζc

m

)2

− 4k

m
, (23)

then the homogeneous solution with initial conditions
{y(0), p(0) = mẏ(0)} is given by

yh(t) = y0 +
p(0) +mr− (y(0)− y0)

m(r− − r+)
e−r+t

+
p(0) +mr+ (y(0)− y0)

m(r+ − r−)
e−r−t , (24)

where y0 is the fixed trap position. For convenience, let
us define Y ≡ y−y0. Assuming that the initial conditions
{y(0), p(0)} are distributed according to the equilibrium
Boltzmann distribution π[y(0), p(0)] ∝ e−βE[y(0),p(0)] for

E[y, p] = p2

2m + 1
2kY

2, we obtain the following identities:

〈δY 2
h (t)δY 2(0)〉 =

2

(kβ)
2

(r+ − r−)
2

(
r−e
−r+t − r+e−r−t

)2
(25a)

〈δẎ 2
h (t)δY 2(0)〉 =

2r2+r
2
−

k2β2 (r+ − r−)
2

(
e−r+t − e−r−t

)2
(25b)

〈δY 2
h (t)δp2(0)〉 =

2

β2 (r+ − r−)
2

(
e−r+t − e−r−t

)2
(25c)

〈δẎ 2
h (t)δp2(0)〉 =

2

β2 (r+ − r−)
2

(
r−e
−r−t − r+e−r+t

)2
.

(25d)

Integrating these expressions, we obtain∫ ∞
0

dt〈δY 2
h (t)δY 2(0)〉 =

m

k2β2ζc

(
1 +

(ζc)
2

km

)
(26a)∫ ∞

0

dt〈δẎ 2
h (t)δY 2(0)〉 =

1

kβ2ζc
(26b)∫ ∞

0

dt〈δY 2
h (t)δp2(0)〉 =

m2

kβ2ζc
(26c)∫ ∞

0

dt〈δẎ 2
h (t)δp2(0)〉 =

m

ζcβ2
. (26d)

Thus the inverse diffusion tensor is

gij =
m

4ζc


4(ζc)2

m β 0 0

0 1
β2

(
4 + (ζc)2

km

)
1
βk

(
2 + (ζc)2

km

)
0 1

βk

(
2 + (ζc)2

km

)
1
k2

(
1 + (ζc)2

km

)
 ,

(27)
which endows the space −∞ < y0 < ∞, 0 < β <∞, 0 <
k <∞ with a Riemannian structure.

IV. BRIEF REVIEW OF RIEMANNIAN
GEOMETRY.

We recall some definitions from Riemannian geometry
and establish notation (see [38–40] for details). For a
smooth Riemannian manifold M endowed with metric
tensor g, the Christoffel symbols are defined as

Γjik ≡
1

2
gjl (∂igkl + ∂kgil − ∂lgik) (28)

where gij denotes the matrix inverse of the metric. We
employ the Einstein summation convention here (and as-
sume it throughout). The Riemann tensor, constructed
from the Christoffel symbols, measures the curvature of
the manifold M and is given in local coordinates by

Rijkl ≡ ∂kΓijl − ∂lΓijk + ΓmjlΓ
i
mk − ΓmjkΓiml. (29)

Contracting indices gives the Ricci tensor Rij and the
Ricci scalar R,

Rij = Rlilj , R = gijRij , (30)

which are useful for determining the curvature content of
the manifold M . Geodesics are defined in local coordi-
nates by

d2λi

dτ2
+ Γijk

dλj

dτ

dλk

dτ
= 0 . (31)

V. OPTIMAL PROTOCOLS

Though one can write down the geodesic equations for
the metric Eq. (27) in the (y0, β, k) coordinate system,
more insight is gained by finding a suitable change of



5

coordinates. Consider the lower right 2 × 2 block of the
metric Eq. (27) which is the metric tensor for the two-
dimensional (β, k) submanifold. A direct calculation of
this submanifold’s Ricci scalar yields R = −2ζc/m which
is constant and always strictly negative.

Theorems from Riemannian geometry [38] imply that
this constant negative-curvature submanifold is isomet-
rically related to the hyperbolic plane. In our construc-
tion, we choose the Poincaré half-plane representation
of the hyperbolic plane, which is described by {(z, x) ∈
R2, x > 0} with metric tensor given by the line element

ds2 = gijdx
idxj = dx2+dz2

x2 . The geodesics of the hyper-
bolic plane (see Fig. 1) are half-circles with centers on
the z-axis and lines perpendicular to the z-axis. Fig. 1(c)
shows two geodesics in (z, x) coordinates. The portion of
the hyperbolic plane {(z, x) ∈ R2, x > 1, z ∈ [0, π]} may
be isometrically embedded in R3 using the map(

1

x
cos z, log

(√
x2 − 1 + x

)
−
√
x2 − 1

x
,

1

x
sin z

)
.

(32)
The geodesics of Fig. 1 (c) and the part of the hyperbolic
plane containing them are embedded in R3 in Fig. 1(d).

The line element associated with the submanifold met-
ric tensor,

ds2 =
m

4ζc

[
1

β2

(
4 +

(ζc)
2

km

)
dβ2 + (33)

2

βk

(
2 +

(ζc)
2

km

)
dβ dk +

1

k2

(
1 +

(ζc)
2

km

)
dk2

]
,

is coordinate-invariant since it measures geometric dis-
tances. Thus we may construct an explicit coordinate
transformation,

x ≡ 1

2βζc

√
m

k
, z ≡ 1

4βk
, (34)

to demonstrate the equivalence of the submanifold with
a portion of the Poincaré plane. Note that x is propor-
tional to the classical partition function of the system
in equilibrium, and z is proportional to the equilibrium
variance of y − y0. Inverting Eq. (34), and substituting
into Eq. (33) gives the metric tensor in (z, x)-coordinates,

ds2 =
m

ζc
dx2 + dz2

x2
. (35)

The line element corresponding to the metric of the
full three-dimensional manifold in Eq. (27) is

ds2 =
m

ζc
z dy20 + dx2 + dz2

x2
(36)

in (y0, z, x) coordinates. To fully exploit the machinery
of Riemannian geometry to find closed-form geodesics,
we look for Killing fields of Eq. (36). In general [38–
40], isometries of a metric are generated by the Killing

vector fields K which are themselves characterized by the
Killing equation

∇iKj +∇jKi = ∂iKj + ∂jKi − 2ΓkijKk = 0 . (37)

While directly solving this system of equations may be
difficult, certain characterizations of Killing vectors help
circumvent this difficulty. For instance, if in a given co-
ordinate system the metric tensor components are inde-
pendent of a coordinate xi, then the coordinate vector
∂xi is a Killing field [40]. Hence, ∂y0 is clearly a Killing
vector field. Examining the full set of Killing equations
shows that

K = y0∂y0 + 2x∂x + 2z∂z (38)

is also a Killing vector field. There may be more solutions
to the Killing equation yet to be discovered.

In general [40], for Killing vectorKi the quantityKi
dλi

dτ
is conserved along the geodesic described by λ. This
follows from

d

dτ

(
Ki
dλi

dτ

)
= ∇iKj

dλi

dτ

dλj

dτ
+Ki

D

dτ

dλi

dτ
= 0. (39)

The first term of the equation vanishes by the definition
of the Killing field and the second term vanishes by the
geodesic equation Eq. (31). For the three-dimensional
inverse diffusion tensor, we have the following two con-
served quantities associated with Killing fields:

z(τ)

x2(τ)

dy0
dτ

,
2

x(τ)

dx

dτ
+

z(τ)

x2(τ)
y0(τ)

dy0
dτ

+
2z(τ)

x2(τ)

dz

dτ
. (40)

To solve the geodesic equations, note that the velocity
of the geodesic (i.e., its tangent vector) must have con-
stant norm [38–40]. For convenience, we choose the norm
so that

1 =
1

x2(τ)

((
dz

dτ

)2

+

(
dx

dτ

)2
)

+
c21
r2
x2(τ)

z(τ)
(41)

where we have used the first conserved quantity of
Eq. (40). We combine this with the full geodesic equation
for x(τ), to decouple x(τ) from y0(τ) and z(τ):

d2x

dτ2
− 2

x(τ)

(
dx

dτ

)2

+ x(τ) = 0 , (42)

which has solution

x(τ) = r sech(τ) . (43)

When z(τ) is constant, the geodesic equation for z implies
that y0 is also constant, giving a geodesic straight line in
the constant-z submanifold.

When z(τ) is not constant, Eqs. (41) and (43) imply

x4(τ)

r2
=

(
dz

dτ

)2

+
c21
r2
x4(τ)

z(τ)
, (44)
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which integrates to

z(τ) = h−1
(
c2 − r tanh(τ)

)
, (45)

where

h (ξ) ≡ ξ
√

1− c21
ξ + 1

2c
2
1 log

(
2ξ
(
1+

√
1− c21

ξ

)
−c21

)
. (46)

The Killing conserved quantities of Eq. (40), together
with x(τ) and z(τ), yield

y0(τ) = E − c1 log

[
− c21 + 2h−1 (c2 − r tanh(τ))×(

1 +

√
1− c21

h−1 (c2 − r tanh(τ))

)]
. (47)

Let (y0,i, xi, zi) and (y0,f , xf , zf ) denote the endpoints

of the geodesic. Define ∆λ ≡ λf − λi and λ̄ ≡ λi+λf
2

for λ ∈ {y0, x, z}. Defining h̄ ≡ h(zf )+h(zi)
2 and 4h ≡

h (zf )− h (zi) , the constant c2 may be written as

c2 = h̄+ x̄
4x
4h

(48)

and r is given by

r2 = x2i +
1

4

(
4h+ 2

4x
4h

x̄

)2

. (49)

The constant E is given by

E = y0,i + c1 log

−c21 + 2zi

1 +

√
1− c21

zi

 (50)

and c1 is determined by the equation

4y0 = −c1

[
log

(
−c21 + 2zf

(
1 +

√
1− c21

zf

))
−

log

−c21 + 2zi

1 +

√
1− c21

zi

]. (51)

The parameter τ ranges between the values

τi = sgn

(
4h+ 2

4x
4h

x̄

)
sech−1

(xi
r

)
(52)

and

τf = −sgn

(
4h− 2

4x
4h

x̄

)
sech−1

(xf
r

)
. (53)

When y0 is held fixed, the geodesics are precisely those
of the hyperbolic plane as expected. Furthermore, these
geodesics are necessarily minimizing by virtue of the con-
stant, negative Ricci scalar [38, 39]. Several example

geodesics are displayed in Fig. 2.

VI. COMPUTING DISSIPATION
NUMERICALLY

We validate the optimality of these geodesics by calcu-
lating excess work directly from the Fokker-Planck equa-
tion. In full generality, the mean excess work as a func-
tional of the protocol λ(t) = (y0(t), β(t), k(t)) is

〈(βW )ex〉 ≡
∫ tf

0

dt βPex (54a)

=

∫ tf

0

dt

(
β̇
〈p2〉
2m

+
1

2
〈(y − y0)

2〉
(
kβ̇ + k̇β

)
+ kβẏ0〈y0 − y〉 −

β̇

β
− k̇

2k

)
. (54b)

Here angled brackets denote averages over the nonequi-
librium probability density f(y, p, t).

Standard arguments [32] yield the Fokker-Planck equa-
tion for the time evolution of f(y, p, t),

∂f

∂t
+
p

m

∂f

∂y
−k(t) [y − y0(t)]

∂f

∂p
−ζ

c

m

∂[pf ]

∂p
− ζc

β(t)

∂2f

∂p2
= 0 .

(55)
By integrating Eq. (55) against y, p, etc., we find a system
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FIG. 2. Optimal protocols differ substantially from linear in-
terpolation (red dashed lines). Blue solid curves represent
geodesics of the inverse diffusion tensor, and are thus opti-
mal protocols for transitioning the system from one state to
another in a fixed amount of time. Blue dots indicate points
separated by equal times along each of the eight optimal paths
shown.
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of equations for relevant nonequilibrium averages:

d

dt
〈y〉 =

〈p〉
m

(56a)

d

dt
〈p〉 = −ζ

c

m
〈p〉 − k〈y − y0〉 (56b)

d

dt
〈py〉 =

〈p2〉
m
− k〈y2〉 − ζc

m
〈py〉+ ky0〈y〉 (56c)

d

dt
〈y2〉 =

2

m
〈py〉 (56d)

d

dt
〈p2〉 = −2k〈p (y − y0)〉 − 2

ζc

m
〈p2〉+

2ζc

β
. (56e)

Following the derivation of the friction tensor in [25]
would require us to use linear response theory and to
supplement the system Eq. (56) by initial conditions

〈y〉 (0) = y0(0) (57a)

〈p〉 (0) = 0 (57b)〈
y2
〉

(0) = y0(0)2 +
1

k(0)β(0)
(57c)

〈py〉 (0) = 0 (57d)〈
p2
〉

(0) =
m

β(0)
. (57e)

We solve these equations numerically and compare a
geodesic protocol with naive protocols in Fig. 3.

This system has three natural dimensionless quantities

A ≡ m

ζc4t
, B ≡ ζc

k̃4t
, M ≡ ζc (4t)3

l̃2m2β̃
, (58)

dependent upon characteristic scales for (inverse) tem-

perature β̃, length l̃, spring constant k̃ and the protocol
duration 4t. These suggest at least two plausible mea-
sures of distance from equilibrium [25]. A corresponds to
the ratio of two timescales, the timescale m

ζc for frictional

damping and the timescale of the perturbation protocol
∆t. Likewise, B is the ratio of two powers during changes
of y0, the dissipative power ζc(∆y0/∆t)

2 and the elastic

power k̃(∆y0)2/∆t. As A decreases and as B decreases,
the system will remain closer to equilibrium during the
course of the nonequilibrium perturbation, and hence our
near-equilibrium approximation will be more accurate.

This intuition is confirmed in our numerical calcula-
tions: with A� 1 and B � 1, the dissipation of geodesic
protocols obtained numerically via Fokker-Planck agrees
with the inverse diffusion tensor approximation to better
than .1% (see Fig. 3). Note that, while the inverse diffu-
sion tensor approximation is excellent for optimal proto-
cols and small deviations thereof, it can deviate substan-
tially from the exact result for large deviations from the
geodesic.

VII. THE INVERSE DIFFUSION TENSOR
ARISES NATURALLY FROM THE
FOKKER-PLANCK EQUATION

If we neglect terms involving derivatives of protocols
of degree two and higher, we may find an approximate
solution to the Fokker-Planck system:

〈y〉 ≈ y0 −
ζc

k
ẏ0 (59a)

〈p〉 ≈ mẏ0 (59b)

〈py〉 ≈ my0ẏ0 −
m

2

(
k̇

βk2
+

β̇

β2k

)
(59c)

〈
p2
〉
≈ m

β
+
m2

ζc

(
k̇

2βk
+

β̇

β2

)
(59d)

〈
y2
〉
≈ y20 +

1

βk
− 2ζc

k
y0ẏ0 (59e)

+ k̇

(
m

ζc
1

2βk2
+

ζc

2βk3

)
+ β̇

(
m

ζc
1

β2k
+

ζc

2β2k2

)
.

Substituting this into the expression for mean excess
power Eq. (54b), we recover Eq. (7). The argument
above suggests that the emergence of the inverse diffu-
sion tensor from the Fokker-Planck equation may follow
from a perturbation expansion in small parameters.

VIII. DISCUSSION

We have employed geometric techniques to find op-
timal protocols for a simple, but previously unsolved,
stochastic system. Calculation of the Ricci scalar for
a submanifold pointed to a change of coordinates that
identified the submanifold with the hyperbolic plane
and greatly simplified the metric for the full three-
dimensional manifold. This simplification, combined
with the identification of a Killing field, permitted cal-
culation of an exact closed-form expression for geodesics.
Exact calculations using the Fokker-Planck equation con-
firmed that geodesics in the (β, k)-submanifold do indeed
produce less dissipation than any comparison protocol we
tested.

In addition to being useful for identifying optimal pro-
tocols, we expect that the Ricci scalar will turn out to
have an important physical interpretation. Riemannian
geometry has been useful for the study of thermodynamic
length of macroscopic systems [41, 42], and there has
been some speculation about the role of the Ricci scalar in
that setting [42], but the interpretation of R arising from
the inverse diffusion tensor remains ambiguous. We hope
that further study of these geometrical ideas extended to
nonequilibrium systems will help clarify its role.

It would also be interesting to establish a physical
interpretation for the conserved quantities arising from
Killing fields in this context. We found two conserved
quantities (see Eq. (40)), which may be the only ones,
but this model could have as many as six, given that
there might be as many as six unique globally smooth
Killing fields for this three-dimensional model system.
(In general, there are at most 1

2n (n+ 1) independent
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FIG. 3. Geodesics describe protocols that outperform naive
straight line paths in parameter space. A geodesic between
two fixed points in the (β, k)-plane (black) and several com-
parison protocols are pictured above. The comparison pro-
tocols were generated via a linear interpolation between the
constant speed straight line (pink) and the geodesic. The tick
marks represent points separated by equal times. The solid
pink dots correspond to the constant speed parametrization
of the line whereas the open red circles correspond to the
optimal parametrization along this straight path. The ra-
tio of excess work to that of the geodesic protocol is: 6.12
(pink circle), 4.37 (red open circle), 3.67 (cyan downward-
pointing triangle), 1.38 (orange upward-pointing triangle),
1.00 (black star (geodesic)), 2.86 (magenta square), and 6.29
(green circle). These ratios are plotted in the inset figure
along with a graph of the ratio as a function of the interpolat-
ing parameter (light gray curve). All excess work values were
calculated using the Fokker-Planck system Eq. (56). Here,
A = 10−2, B = 10−3,M = 1, placing the system within the
near-equilibrium regime and ensuring accuracy of the inverse
diffusion tensor approximation.

globally smooth Killing fields where n is the dimension
of the manifold [40].)

In the course of developing our framework, we encoun-
tered four distinct measures of the departure from equi-
librium. The first two were dimensionless parameters,
A and B, which have relatively straightforward physical
interpretations — the timescale for frictional dissipation
relative to the protocol duration and the ratio of the dissi-
pative power to elastic power, respectively (see discussion
following Eq. (58)).

The third was the disagreement between dissipation
computed assuming linear response theory and the true
dissipation. Empirically, we found that our linear re-
sponse approximation was consistently accurate for all
parameter regimes we tested in which both dimensionless

parameters A and B were small, at least for protocols not
too far from geodesics. Conversely, the linear response
approximation appeared to break down for many cases
we tested with at least one of these parameters of or-
der unity or greater. However, the full extent of validity
of the linear response approximation is not clear to us,
suggesting an important direction for future research.

Finally, we found that truncating to first order in tem-
poral derivatives of the control parameters in our model
was sufficient to yield the same inverse diffusion tensor
formalism we originally derived using linear response the-
ory. While it is plausible that these two types of linear
approximations are directly related, further exploration
is needed to uncover the relationship between linear re-
sponse theory and truncating the model equations to first
order in temporal derivatives.

Our results are novel in three distinct ways. First, we
included β as a control parameter, which is a natural
extension of thermodynamic length (e.g. [41, 43]) that
is amenable to direct experimental confirmation. Our
work generalizes the construction of [25] and opens up
new experimental avenues for testing the validity of the
framework.

Secondly, our geodesic protocols optimize dissipation
for simultaneous variation of all three adjustable param-
eters; to our knowledge, no previous study has reported
optimal protocols for any model system with three con-
trol parameters. In [44, 45], Seifert and coworkers ele-
gantly derived the exact optimal protocols for perturb-
ing the position y0 and spring constant k separately, for
both over-damped and under-damped Langevin dynam-
ics. In [46], Aurell and coworkers discuss the simulta-
neous variation of the stiffness and the location of the
trap. We note that our method misses the protocol jumps
found in their analysis due to our smoothness assump-
tions on the protocols. When this restriction on the
differentiability of the curve is imposed, we found that
any component of the optimal protocol

(
y0(t), β(t), k(t)

)
generically depends on all components of both endpoints
due to the non-trivial geometry of the parameter space.

Finally, we successfully brought the machinery of Rie-
mannian geometry to bear on a small-scale, nonequilib-
rium thermodynamic problem, revealing a surprisingly
rich geometric structure. Concepts such as Killing vector
fields, coordinate invariance and the Ricci scalar proved
indispensable in the construction of optimal protocols.
These results are encouraging and this approach may
prove useful for understanding the constraints on the
non-equilibrium thermodynamic efficiency of biological
and synthetic molecular machines.
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