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Multi-scale community geometry in network and its application∗
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We introduce a betweenness-based distance metric to extract local and global information for
each pair of nodes (or “vertices”, used interchangeably) located in a binary network. Since this
distance then superimposes a weighted graph upon such a binary network, a multi-scale clustering
mechanism, called data cloud geometry, is applicable to discover hierarchical communities within
a binary network. This approach resolves many shortcomings of community finding approaches
which are primarily based on modularity optimization. Using several contrived and real binary net-
works, our community hierarchies compare favorably with results derived from a recently-proposed
approach based on time-scale differences of random walks, and has already demonstrated significant
improvements over module-based approaches, especially on multi-scale and the determination on
the number of community.

I. INTRODUCTION

In modern research networks are collected and stud-
ied in nearly all disciplines of sciences, and many previ-
ously unthinkable domains in real world [1, 2], including
social dynamic relational networks [3], genetic pathway
networks [4–6], ecological food-web and competition net-
works [7, 8], financial payment and banking networks
[9–11], and many others. These networks attempt to
manifest relationships ranging from macroscopic to mi-
croscopic levels. Though they are diverse in format, these
networks often successfully reveal intriguing structures
of the system under study. The most intriguing struc-
tures, when a network is viewed as an approximation
of a complex system, are primarily brought out through
identifying communities [12]. This is why investigations
of community structures in networks have been a very
intensive research area. Well-studied examples include
Zachary’s karate club [13], scientific coauthor-ship net-
work [14], bottlenose dolphin network [15] and protein-
protein interaction network [16]. So far, the key idea un-
derlying most approaches is the minimum-cut-maximum-
flow from graph theory. One of the most well-known ap-
proaches is the modularity optimization [17], which was
popularized in a series approach, along with many of its
variants. These methods work well in partitioning the
whole network into several separate communities with
high intra-connectivity, but low inter-connectivity [18].
Many of these identified communities are indeed capable
of extracting meaningful structural information hidden
in the underlying complex system.
However, as advances in data acquisition techniques

have been revolutionized in a surprisingly rapid pace,
many researches in this area have raised a common issue
that computational approaches for identifying communi-
ties need to be revised for adapting more conceptual and
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realistic features relevant to the complex system under
study, such as hierarchical, multi-scale and overlapping
structures[19–21]. In this paper we particularly focus on
the issue of multi-scale structure, which is significantly
related with the hierarchical issue. To our point of view,
the overlapping issue also heavily involves the multi-scale
one from the aspect of similarities among links or edges.
The resolution limit of communities—identified via

modularity optimization and its variants—has been
pointed out as a significant drawback by Fortunato and
Barthelemy [22] . The importance of multi-scale commu-
nity detection has become better recognized, and resolv-
ing attempts are proposed [23–26] in order to completely
depict the multi-level community structure in networks.
Among these approaches, the one proposed by Delvenne,
Yaliraki and Barahona [27] is a step toward the direction
of trying to unify the modularity optimization and the
clustering idea via intrinsic time scale differences as ran-
dom walk traveling within large and small communities.
In this paper we will study the geometric sense of

multi-scale structure among network communities. In
addition to extracting information regarding whether a
community indeed contains many denser, but smaller
communities, we also compute the information about the
proximity between the communities. Basically, a perti-
nent geometry is constructed as the network community
structure.
Two pieces of information are essential for any multi-

scale structure: 1), what and how many scales are rel-
evant; and 2), given a relevant focal scale, how can we
extract a right structural configuration. The two pieces of
information would be rigorously extracted in this study.
The approach begins with defining a distance measure
between any pair of nodes based on their global and lo-
cal positions in the network. After identifying the out-
liers, data cloud geometry is applied as a nonparametric
clustering algorithm to explicitly derive the two pieces of
essential information mentioned [28].
Here we link the community detection with the classic

clustering mechanism. This approach is in even sharper
contrast to existing optimization approaches than that
proposed in Delvenne, Yaliraki and Barahona [27]. A
brief view of our approach is as follows. We start with
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offering a new “distance” perspective for all possible pairs
of nodes given its empirical edge connectivity in the net-
work. This distance is calculated based on the concept
of edge betweenness and defined along a shortest path
between two nodes. The underlying idea is that, if a
shortest path contains one or several large edge between-
ness, then these two nodes are likely to be apart. With
such a distance, a distance matrix can be derived as an
empirical one measured in classic clustering setting.
How far apart two nodes are globally is not only de-

cided by the distance between them, but is also critically
determined by the focal scale used. To introduce the con-
cept of scale, a sequence of different temperatures, taking
values from very small to extremely large, is employed to
transform the empirical distance matrix to a sequence
of scale-sensitive similarity matrices, which are therefore
manipulated into a Laplacian, or Markovian transition
matrix. A regulated random walk is then devised to ef-
fectively and exhaustively explore the whole collection of
nodes to simultaneously reveal clustering structure. In
an ensemble fashion, such piece of information is sum-
marized into a clustering sharing probability matrix per-
taining to the focal scale. The eigenvalue plot of such a
matrix reveals the number of clusters involved, while the
properly constructed hierarchical clustering tree reveals
the clustering memberships. Finally phase transitions are
searched along the evolution of the sequence of eigenvalue
plots corresponding to the sequence of employed scales
to determine the set of relevant scales. The geometry
sense among communities is seen through a community
merging process. Two communities being closer to each
other merge earlier than two communities being far apart
on the process of relevant scale changing from small to
large. As a network is taken as an approximation of com-
plex system of interest, it is believed that this geometric
perspective of multi-scale network structure can offer a
new hierarchical insight into the system under study. An
equally-important implication is that such structural in-
formation is potentially useful for comparing among dif-
ferent networks, and likewise for comparing among dif-
ferent complex systems.

II. ESTABLISHING DISTANCES IN BINARY

NETWORKS

We start with the description of a binary network
G = {N , E} with node collection N = {N1, N2, · · · , NK}
and edge collection E = {ek,k′ : 1 ≤ k, k′ ≤ K}. Here
ek,k′ = 1 when an edge exists between two nodes Nk and
Nk′ , otherwise 0. The edge betweenness of an existing
edge ek,k′ is denoted as bk,k′ , and its number of common
nearest neighbors of both ending nodes Nk and Nk′ is
denoted as ck,k′ .
A monotonically-increasing kernel function, H(·), is

applied to derive the “distance”. It can be simply
H(b) = b or H(b) = eb. Another proper choice of H(·)
is data-driven, which can be derived as the reciprocal

of the fitted smooth right tail of edge betweenness his-
togram. The data-driven version is recommended when
the number of node K is not small. The bottom line is
that the kernel function keeps the order of the connec-
tions according to the betweenness. For convenience, we
always normalize H(b) by the maximal fitted value, so
that the kernel function eventually takes values between
0 and 1.
For an arbitrary pair of nodes (NA, NB), the corre-

sponding path length lAB is computed as the length of
shortest paths, and its full collection of shortest paths
as SP(NA, NB). Any one of the shortest path between
NA and NB, say (N0, N1, · · · , NlAB

), with N0 = NA and
NlAB

= NB, corresponds to a vector of edge betweenness
(b0,1, b1,2, · · · , blAB−1,lAB

).
With all ingredients for a pair of nodes (NA, NB), we

define the distance as follows:

d(NA, NB) = min
SP(NA,NB)

lAB
∑

i=1

H(bi−1,i)

The distance aggregates the kernel function over all
the segments, in which inter-community edges contribute
much more than intra-community edges.
In some cases the component H(bi−1,i) is replaced by

the power transform H(bi−1,i)
1

1+ci−1,i , which is a device
that we use to couple the global information of edge be-
tweenness with the local information of the number of
sharing nearest neighbors ci−1,i. The piece of local in-
formation, as illustrated in the following example, is not
necessarily included in the distance when the size of the
network is large. However, the piece of local information
does help us obtain more reasonable community struc-
ture.
As we briefly examine on this distance, it becomes clear

that it yields a relatively small-scale distance for a pair of
nodes within the same community, and a relatively large
distance for two nodes falling into two different commu-
nities. This fact effectively realizes the classic idea in
clustering.

III. DATA CLOUD GEOMETRY AND

COMMUNITY DETECTION

Once the distance matrix is obtained, an algorithm
named data cloud geometry is applied to detect the
multi-scale community structure over the binary net-
work. The algorithm proposed in [28] is to display the
multi-scale clustering structure in a given dataset. With
an appropriate distance matrix defined, the topology of
the data is shown at a series of scales, represented by the
temperature T . Here we briefly introduced the procedure
of the algorithm at one temperature T :

1. Identify the potential “outliers”, which are the
nodes far from others in the distance defined. The
distance to the nearest node is chosen to be the
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proxy of distance from each node. By calculating
the interquartile range of the short distance distri-
bution, we mark the nodes outside the upper fence
as potential outliers to guarantee that no isolated
nodes would be identified as communities.

2. We calculate the similarity between any pair
(NA, NB) at the temperature T by

sAB (T ) = exp{−
d (NA, NB)

T
}

and therefore construct the similarity matrix under
temperature T by

S (T ) = [sAB (T )]K×K

As mentioned above, T is the scale parameter with
which we view the network. Under a high tem-
perature, the differences between the distances are
shrunk to be close, while under a low temperature
the gaps between the distances tend to be magni-
fied.

3. A regulated random walk is established based on
the Markovian transition matrix

L (T ) = D−1 (T )S (T )

where D is the diagonal matrix with

dii =

K
∑

j=1

sij

Compared to the traditional random walk, a mod-
ification has been made in this regulated one. A
node is removed when it has been visited for a
certain number of times. The number is always
preassigned, for example, five times. By this mod-
ification, it is observed that the algorithm tends
to remove all the vertices in one communities one
by one, and the random walk is forced to jump
to another community after all the vertices in the
previous community are all removed. This pat-
tern is more evident when the intra-community dis-
tances are much smaller than the inter-community
distance. The successive time of each removal is
recorded to make a profile in which a “spike” sig-
nals that the algorithm enters a new cluster. By
detecting the “spikes”, we create a series of removal
segments, and conclude that if two vertices are in
the same removal segment, they are likely to be in
the same community.

4. The regulated random walk is repeated for a large
number of times. An ensemble connectivity ma-
trix is then constructed with each element being
the proportion of times in which the pair belongs
to the same removal segments in the last step. It is
actually an empirical estimate of the probabilities

that any pair of nodes belongs to the same com-
munity. The ensemble connectivity matrix is more
informative and reliable than the original similarity
matrix or distance matrix.

5. At a working temperature, a hierarchical clustering
tree is built from the ensemble matrix and is then
cut into a set of subtrees with number of pieces been
determined from the eigenvalue plot of the ensem-
ble matrix. The choice of the number of communi-
ties are empirical, usually be selected as the number
of eigenvalues which are significantly larger than
zero[14, 29]. In the following simulated and real
network examples, we checked the drops in eigen-
value plots. All the eigenvalues larger than the last
drop will be counted as non-zero eigenvalues.

6. To confirm the “outliers”, the communities are
marked to see whether the potential “outliers” con-
nect between two different communities. A poten-
tial “outlier” would not be confirmed when it is ac-
tually linking two disconnected parts of the same
community.

7. The community structure will be detected at a se-
ries of temperature scales which usually vary from
very small to large. Plotting the number of commu-
nities against the temperature enables us to track
the merging process, and therefore easily identify
the stable phases. Later in the simulation studies
the phase transition will be shown. It is noted that
the outlier is related to the data geometry of the
majority of data, and is also temperature depen-
dent.

IV. SIMULATION STUDIES

A. Scale-free hierarchical networks

A small hierarchical network is analyzed to illustrate
how the multi-scale community structure is detected by
the goemetry we proposed. The network, shown in
Fig. 1(a), is firstly raised in Ref. [30] as a determinis-
tic network with scale-free characteristic. For simplic-
ity, only the network with one level of replicas is dis-
cussed here. By varying the temperature scale in a large
range, only two stable phases: 6-community and single-
community, are detected through the merging process,
shown in Fig. 1(b). This process is very distinct to the
type reported in Fig. 3 of Ref. [27], in which the stability
function r(t) smoothly going through many phases: from
125 (total number of nodes) to 1. This result indicates
that our multi-scale community geometry is rather sta-
ble within each of its phases. The stability implies the
intrinsic structural information being discovered in the
network.
The label in Fig. 1(a) represents the community struc-

ture at the fine scale (The trivial structure at coarse scale
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is not shown). Compared to the similar multi-scale com-
munity structure given in Ref. [27], an extra community
which consists of the central node is given from our ap-
proach. The detection of this central vertex shows that
the established geometry is even capable of perceiving
hierarchical structure, which is missing in Ref. [27]. An-
other notable aspect is that our multi-scale community
geometry does not reveal a phase in which each single
node is a community as being seen in Ref. [27]. We
believe that this property should be avoided by any com-
munity detection approach.
This network also allows us to check the effect of chang-

ing the visit time for removing a node in the algorithm.
An additional phase with five communities is detected
when the visit time is set as three. In this phase, the
central node(in red) is clustered with the four adjacent
nodes(in yellow), which actually conforms to the results
reported in [27]. In this case the smaller visit time pro-
vides more stable phases which complete the multi-scale
structure. However, it is not always the case in real net-
work examples. For practitioners, selecting a series of
visit time is of the best choices.

B. Network with no hierarchical structure

In this simulation a network with no hierarchical struc-
ture is constructed and analyzed to make comparison be-
tween multi-scale community geometry with result ob-
tained via modularity optimization. The illustrative
example is a binary network, as shown in Fig. 2(a),
consisting of 21 motifs and each of them is a fully con-
nected network of four nodes. This network with sym-
metric structure has no hierarchical structure since none
of the motifs has dominating number of connections, like
the central vertex in the last simulation study. Another
significant distinction is that the one we show here is not

FIG. 1. (Color online) The fine level geometry with six com-
munities is given in (a). Another stable phase is the trivial
single-community structure. Both phases can be identified
from the solid line in (b), which plots the numbers of commu-
nities against temperature scales. The dashed line is the the
number of communities when the visit times to burn a node
is set as three.

FIG. 2. (Color) The network, shown in (a), is simulated to
illustrate the procedure. A series of temperatures are set to
determine the number of communities, shown in (b). The two
stable phases, 21-community and 4-community, are provided
in (c) and (d).

scale-free.
By varying the temperature scale, we found that the

evolution of the community merging process has only
passed through three stable phases: 21, 4 and 1 com-
munity, as shown in Fig. 2(b). Again, only short tran-
sition phases are present between any two stable phases
which provide clear geometry structure on this simulated
network.
To compare the multi-scale community geometry with

the community detection from modularity optimization,
very briefly we review the modularity approach. Mod-
ularity approach optimizes the following distance-like
quantity[17]

Q =
1

4m

∑

i,j

[

eij −
didj

2m

]

sisj

where the edge eij , degrees di and dj are pieces of local
information and the total degree m =

∑

i

di is the global

information, and so are the prospective community indi-
cators si which equals 1 if Ni is in the first community,
and 0 in the other community. By mixing the two pieces
of information, the optimization targets to find a parti-
tion of two on nodes index set (1, · · · ,K).
It is clear that the modularity optimization provide

only a single scale of the community structure, and
has been shown with the tendency of over-splitting the
network[22]. This tendency is also observed in this illus-
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FIG. 3. (Color) The communities detected by modularity
optimization approach.

trative network, as shown in Fig. 3. This result reveals
an undesirable community structure.

In contrast, the multi-scale community geometry is
computed at temperature T ranging from 0.01 to 1. Be-
fore converging into the single community phase, along
the evolution of community merging process, two appar-
ent stable phases are found: a 21-community phase in
Fig. 2(c), and a 4-community phase in Fig. 2(d). The
former one is much more stable than the latter. It is also
interesting to note that the 5-community phase is even
more transient than the 4-community phase.

V. MULTI-SCALE COMMUNITY

GEOMETRIES IN REAL WORLD NETWORKS

Three real world networks, from very small size to
large, are analyzed in this section for their multi-scale
community geometry. The karate club is a classic exam-
ple, while net-science co-authorship is popularly studied
in recent network analysis literatures. The third exam-
ple is one of a series of networks constructed from Lewis
Carroll’s English word game called Doublets [31]. This
network has a unique feature of having many long den-
drites. The present of dendrites is expected to cause some
computational difficulties in most existing community de-
tection approaches.

FIG. 4. (Color Online) Two scales of geometry are detected
on the karate club network, which are (a): 3-community struc-
ture and (b): 2-community structure. The node with label 0
is an outlier.

A. Karate club

As a famous example in community detection area, the
karate club network, is firstly introduced by Zachary [13]
and to some extent has been regarded as a benchmark
for evaluating the effectiveness of community detection
algorithm. Our computed multi-scale community geom-
etry provides an intrinsically different view on the how
the club could be split. Two levels of the geometric struc-
ture are reported in Fig. 4 to display the differences from
most other community detection algorithm.
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At the comparatively lower temperature T = 0.02,
three communities are detected as shown in Fig. 4(a),
while two communities are presented in Fig. 4(b) at tem-
perature T = 0.05. Only one “outlier” node is identi-
fied and labeled as 0. Without this outlier, the merging
process shown in the figures gives rise to the third com-
munity(labeled as 2) that has never been studied. As
we can see, instead of merging the community 1 and 2
in Fig. 4(a) in many literatures, our approach leaves the
second community alone and combines the others. It
indicates that these members in community 2 are even
further away from the other members in the distance we
have defined.

B. Net-science co-authorship

In this example the network of collaboration in net-
science field is examined. It is consisting of 379 authors
with the edges representing if the two authors have been
ever shared a publication in net-science area. A commu-
nity structure may depict the common research interest
these authors share. Here we report three levels of the
multi-scale community geometry in Fig. 5 with 10, 7 and
5 communities. The composition of the communities in
Fig. 5(a) represents a fine partition over the network, in
which each community nearly represents a specific re-
search topic. In Fig. 5(b), the communities of closer re-
search topics are merged, while the communities being
distant to others keep unchanged.
In comparison, the multi-scale community structure of

this network computed and reported in Ref. [27] showed
three stable levels with twenty-one, five and two com-
munities, respectively. The community structures at the
5-community scale, which is the most stable one in both
analyses, are coherent. The Rand index(with no poten-
tial outliers) is calculated as 0.874, which indicates the
coherence between them.
We have to note that in Fig. 5(c) only one of the po-

tential “outliers” is confirmed at this temperature. The
bottom right one connects the disjoint parts from com-
munity no.1, which suggests that it is embraced into this
community at this working temperature. Under the other
two structures shown in Fig. 5(a-b), both potential “out-
liers” are confirmed.

C. Eight-letter Doublets

The Doublets network has recently been derived and
constructed based on the word game “Doublets”, which
is firstly created by Lewis Carroll, and studied in Ref.
[31]. With all English words as the whole collection of
nodes, a link is wired between two English words if they
share same alphabetic letters except one(obviously they
are in the same length). In this example only the largest
connected clique of eight-letter words in which each word
has eight letters is studied. The eight-letter Doublets

network, shown in Fig. 6 consists of 291 vertices. Its
multi-scale structure is illustrated in the two panels of
Fig. 6 corresponding to two temperature scales. The up-
per panel consists of four communities while the bottom
one, under a higher temperature has only two clusters.
The composition of detected communities usually reveals
distinct English word structures in regarding to linguistic
constraints and phonological rules or even redundancy,
see details in [31].
It is interesting to see that seven potential “outliers”

are detected, in which most of them are the nodes ly-
ing between the clusters illustrated in the upper panel.
When the temperature is raised, shown in the bottom
panel, many of the potential “outliers” should be merged
into identified communities since they are merely intra-
community node.

VI. CONCLUSION AND DISCUSSION

In this article we proposed a computational approach
to derive the process of community evolution through
the computed multi-scale community geometry. Not only
the formation of any conglomerate community, but also a
“distance” metric among communities is recorded. This
new in-depth-perspective of a binary network is likely to
offer potential insights and better understanding to the
complex system to which a binary network attempts to
approximate. At the same time we unify the computa-
tions for community geometry with the classic cluster-
ing mechanism. This unification would broaden network
analysis, and more importantly would place it upon the
same solid and rich mathematical foundations on which
clustering mechanism are based [28].
One of the most attractive advantage from this ap-

proach, compared to the optimization approaches and
modeling methods, is its computational efficiency. The
algorithm avoids NP-hard computation by taking only
O(K) computation time, which makes it capable to be
applied to the community detection on large networks.
Another significant feature in this approach is that the

number of communities could be naturally determined at
each temperature scale. By introducing the “distance”
into the network analysis, we provide a way to com-
pute the geometry of the underlying complex system, and
therefore the number of communities. In contrast, a pre-
assigned number of communities has been a persistent
flaw suffered by many model-based approach.
Though the “distance” among the nodes provides sig-

nificant improvement in understanding the system, its
definition could be quite empirical. Some suggestions
have been given and illustrated in this article. However,
a more subject-knowledge-based definition should be ex-
pected most fruitful in most of the real world studies.
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FIG. 5. (Color) Three scales of community geometry are detected on the co-authorship network, which are (a): 10-community
structure, (b): 7-community structure and (c): 5-community structure.
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FIG. 6. (Color online) Two scales of geometry are de-
tected on the eight-letter Doublets network, which are (a):
4-community structure and (b): 2-community structure.


