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Experiments have investigated shape changes of polymer films induced by asymmetric swelling
by a chemical vapor. Inspired by recent work on the shaping of elastic sheets by non-Euclidean
metrics [Y. Klein, E. Efrati, and E. Sharon, Science 315, 1116 (2007)], we represent the effect of
chemical vapors by a change in the target metric tensor. In this problem, unlike that earlier work,
the target metric is asymmetric between the two sides of the film. Changing this metric induces a
curvature of the film, which may curve into a partial cylinder or a partial sphere. We calculate the
elastic energy for each of these shapes, and show that the sphere is favored for films smaller than a
critical size, which depends on the film thickness, while the cylinder is favored for larger films.
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I. INTRODUCTION

Thin films are three dimensional (3D) objects with one dimension much smaller than the other two. Such films
are not always flat; they can easily form buckled or wrinkled 3D shapes. Over several years, there has been extensive
theoretical and experimental research to explore the mechanisms for shape selection. This research is important
to understand the formation of biological structures, such as leaves and flowers, in which thin films assume well-
defined shapes with biological functions. It is also important for the design of new synthetic materials, which should
spontaneously form desired morphologies for applications in soft electronics and robotics, control of microfluidic flow,
and environmentally responsive shape change [1–5].

Sharon and others have recently developed an important theoretical approach for addressing shape selection in thin
elastic sheets [6–12]. In this approach, a film is characterized by a “target metric tensor,” which describes the ideal
spacings between points in the film that minimize the local energy. Depending on the mathematical properties of
this tensor, there may or may not be any global shape of the film embedded in 3D Euclidean space that achieves the
ideal spacings everywhere. If this state is not achievable, the film is geometrically frustrated. Its lowest-energy state
will then have residual local stresses and strains, and will generally be curved in a complex way [13, 14]. Sharon et

al. have demonstrated this approach experimentally by using thin films of gels, which can be expanded locally by
adding a nonuniform concentration of a dopant. The gels then relax to the 3D shape that has been programmed by
the dopant concentration profile, in agreement with the geometric calculations.

One limitation of Sharon’s theory is that it assumes the films are uniform across their thickness. This limitation
is significant, because many types of films have some variation in their elastic properties across their thickness. For
example, recent experiments have probed how soft materials respond dynamically after inhomogeneous exposure to
favorable solvents [5]. Indeed, this type of variation might provide an additional way to design films to form desired
structures. The purpose of this paper is to generalize the theory to describe asymmetric films, with arbitrary variation
across the thickness. Through this generalization, we show that the asymmetry leads to new types of terms in the
elastic free energy of the film, and we investigate how these terms change the curvature.

As a specific example to motivate this study, we consider the asymmetric swelling of a thin film by absorption of a
gas or liquid. A schematic view of this problem is shown in Fig. 1. Here, a cross section through the film is illustrated
by mass points connected by springs, with bold lines indicating that a spring is compressed relative to its stress-free
length. Before swelling, in Fig. 1(a), all the springs are at the stress-free length, and the film is flat. After swelling,
the intrinsic stress-free lengths of the springs vary gradually along the thickness direction, as shown in Fig. 1(b).

(a)

(b)

(c)

FIG. 1. Schematic illustration of the deformation of a thin shell due to swelling: (a) before swelling, (b) after swelling without
any deformation, and (c) deformed shell.
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Hence, the film will deform to minimize the energy, as shown in Fig. 1(c). Because the film is 3D, the actual geometry
is more complex than the cross section shown in the figure. It is not obvious whether the film should deform into a
partial cylinder (with mean curvature but no Gaussian curvature) or a partial sphere (with both mean and Gaussian
curvature). In either case, some of the springs will be unable to achieve their intrinsic stress-free length. Hence, this
is a simple example of a geometrically frustrated structure.
To address this problem, we extend the approach of Sharon et al. to consider a target metric that depends on

position across the thickness of the film. We calculate the energy of the deformed film in cylindrical and spherical
geometries, and find there is a critical lateral size, which depends on the film thickness and the gradient of the intrinsic
metric. If the lateral size of the film is smaller than this critical size, a partial sphere is preferred; otherwise, a partial
cylinder has lower energy.
This paper is organized as follows. In Sec. II, we briefly review the theory of non-Euclidean plates, and use it to

calculate the energy in the general case where the target metric is proportional to the distance from the midplane.
We then use this general formula to calculate the energy for a cylinder in Sec. III and for a sphere in Sec. IV. Finally,
in Sec. V, we discuss the results of this study and compare with previous work on related elastic problems.

II. THEORY

In the first part of this section, we briefly review the non-Euclidean theory developed by Sharon et al. for the special
case in which the target metric is uniform across the thickness of the film [8, 9]. We then introduce our calculation
for the asymmetric film with a target metric tensor that depends on the distance from the midplane of the film.

A. Brief review of non-Euclidean theory

Following Sharon et al., we define the elastic free energy for any configuration of a material through the following
construction. First, we construct a coordinate system xi, for i = 1, 2, 3, in the material frame. The current 3D position
of a point (x1, x2, x3) is then given by R(x1, x2, x3). As a result, the current spacing between two nearby material
points (x1, x2, x3) and (x1 + dx1, x2 + dx2, x3 + dx3) is given by (ds)2 = gijdx

idxj (using the Einstein summation
convention, where Latin indices range from 1 to 3, and Greek indices range from 1 to 2). Here, the metric tensor is
gij = ∂xiR · ∂xjR = ∂iR · ∂jR. By comparison, if we were to cut out a very small piece of material around the point
(x1, x2, x3), and let this small piece relax to its lowest-energy state, then the spacing between those points would
be (ds)2 = ḡijdx

idxj , where ḡij is the target metric tensor that characterizes the intrinsic, ideal spacing between
the points. The Green-Lagrangian strain tensor is then defined as the difference between the current metric and the
target metric

εij =
1

2
(gij − ḡij) . (1)

If the material is isotropic, the most general expression for the 3D elastic energy density can be written as

f3 =
1

2
Aijklεijεkl, (2)

where

Aijkl = λḡij ḡkl + µ(ḡik ḡjl + ḡilḡjk), (3)

are the contravariant components of the three-dimensional elasticity tensor in curvilinear coordinates [15]. If the
target metric ḡij is independent of the coordinate x3 across the thickness of the cell, then the 3D elastic energy
density can be integrated across thickness to construct the 2D elastic energy density of the plate,

f2 =

∫

f3dx
3. (4)

This 2D elastic energy density includes a stretching energy (proportional to thickness h) and a bending energy
(proportional to h3). The total elastic energy then becomes

F =

∫

f2
√

|ḡ|dx1dx2 =

∫

f3
√

|ḡ|dx1dx2dx3, (5)
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integrated over the whole body.
Note that the target metric tensor ḡij represents an ideal local configuration of the plate with zero stress and zero

elastic energy density. There might or might not be any global configuration in 3D Euclidean space that has this
target metric tensor everywhere. If such a configuration exists, then it is a stress-free reference configuration, which
can be used to formulate Truesdell’s hyper-elasticity principle [16]. On the other hand, if such a configuration does

not exist, then there is no such stress-free reference configuration. It is still possible to minimize the elastic energy to
find the equilibrium state of the plate, but this equilibrium state must be a frustrated state with residual local stress.
In this case, the object can be called a non-Euclidean plane, whose midplane has no immersion with zero stretching
in 3D Euclidean space.

B. Asymmetric film

In our problem of asymmetric swelling of a thin film, as shown in Fig. 1, the target metric must depend on position
across the thickness of the film. If the gas vapor induces expansion of the polymer film, the expansions at the top and
the bottom of the film are different due to the different concentrations of the gas. Assuming the gas concentration
varies linearly across the thickness, the target tangent vectors can be written as

ḡi =
(

p+ qx3
)

g̊i, (6)

and hence the target metric is

ḡij = ḡi · ḡj =
(

p2 + 2pqx3 + q2
(

x3
)2
)

g̊ij . (7)

In our notation, all symbols with rings represent quantities before swelling; in particular, g̊i are the tangent vectors
and g̊ij is the metric before swelling. Likewise, all symbols with bars represent target quantities after swelling. The
coefficients p and q define how the gas concentration is distributed; p represents a uniform expansion or compression,
and q represents a linear gradient in the expansion factor across the thickness of the film.
From Eq. (1), the strain tensor is defined as the difference between the actual metric gij and the target metric ḡij

after swelling. To find the actual metric, we must consider a specific configuration of the plate. Following the second
Kirchhoff-Love assumption, we assume that points located on any normal to the midplane in the initial state remain
on that normal in the deformed state, but the distance to the midplane may change. Thus, a point (x1, x2, x3 = 0)
on the midplane before swelling becomes R(x1, x2, x3 = 0) = Rmid(x

1, x2) after swelling, and a point (x1, x2, x3) off
the midplane becomes

R(x1, x2, x3) = Rmid(x
1, x2) + ξ(x3)N̂(x1, x2). (8)

Here, N̂ is the unit normal vector to the midplane, and ξ(x3) is the new distance to the midplane along the normal.
Because of swelling, ξ(x3) is no longer equal to x3. To lowest order for a thin film, ξ(x3) can be written as power
series

ξ(x3) = mx3 +
1

2
m′

(

x3
)2

. (9)

If we assume that the local volume everywhere remains constant during deformation, equal to the swelled local volume
of the target metric, then the coefficients in this expansion are constrained to be m = p and m′ = 3q.
Using this configuration of the plate, we can calculate the metric tensor gij as a power series in x3. From Eqs. (8)

and (9), the first 2× 2 components of gij can be written as

gαβ = aαβ − 2mbαβx
3 −m′bαβ

(

x3
)2

, (10)

where aαβ = ∂αR·∂βR is the first fundamental form of the midplane (i. e. the 2D metric tensor), and bαβ = N̂ · ∂α∂βR
is the second fundamental form of the midplane (i. e. the 2D curvature tensor). The first 2 × 2 components of the
strain tensor are then εαβ = 1

2
(gαβ − ḡαβ).

We can now calculate the elastic energy density of the plate. Based on the first Kirchhoff-Love assumption that
the stress is in the local midplane [8, 17], we can express the full 3D elastic energy density of Eq. (2) in terms of the
first 2× 2 components of the strain tensor as

f3 =
1

2
Aαβγδεαβεγδ, (11)
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where

Aαβγδ = 2µ

(

λ

λ+ 2µ
ḡαβ ḡγδ + ḡαγ ḡβδ

)

. (12)

If we assume that the local volume everywhere remains constant during deformation, then ḡijεij = 0, and hence the
elastic modulus λ → ∞. As a result, the elasticity tensor becomes

Aαβγδ = 2µ
(

ḡαβ ḡγδ + ḡαγ ḡβδ
)

. (13)

The contravariant components of the target metric tensor in this expression are the inverse of the covariant components
of Eq. (7). Hence, the elasticity tensor depends on x3 as

Aαβγδ =
1

p4
Åαβγδ

(

1−
4q

p
x3 +

10q2

p2
(

x3
)2

)

. (14)

Thus, the 2D elastic energy density can be calculated by integrating the 3D elastic energy density over the film
thickness w, and neglecting terms that have higher order than q2, to obtain

f2 =

∫ w/2

−w/2

f3dx
3

=
1

p4
Åαβγδ

(

w

2
ε2Dαβε

2D

γδ +
p2w3

24
bαβbγδ

+
qw3

24
ε2Dαβbγδ +

qw3

12
aαβbγδ

+
q2w3

p2
ε2Dαβaγδ +

q2w3

3p2
aαβaγδ

)

. (15)

To interpret this 2D elastic energy density f2, note that it depends on three tensors characterizing the local geometry
of the midplane: the 2D strain tensor

ε2Dαβ =
1

2
(aαβ − āαβ) , (16)

which gives the difference between the actual metric and the target metric on the midplane, as well as the 2D metric
tensor aαβ and the 2D curvature tensor bαβ . If there is no swelling, so that p = 1 and q = 0, then f2 becomes
the deformation energy of a symmetric film. In that case, the first and second terms in Eq. (15) are the stretching
and bending terms, and the other terms vanish. However, if the film is swollen asymmetrically, with q 6= 0, then
the last four terms provide new couplings that are permitted by the asymmetry. Two of these terms are odd in the
curvature tensor bαβ, so they favor spontaneous curvature of the film; i. e. the lowest-energy state of a film is not
flat but has a preferred curvature. The concept of spontaneous curvature was first introduced in classic work on fluid
lipid membranes by Helfrich [18], purely on a macroscopic phenomenological basis, in order to describe membranes
where the two sides are chemically different. Here, we see that it arises through our more microscopic model of elastic
films when there is asymmetric swelling, consistent with Helfrich’s symmetry argument. In addition, we see that the
asymmetric swelling couples the curvature tensor to the in-plane strain ε2Dαβ. The last two terms might seem to be
higher order in q than the others, but we will show later that the equilibrium curvature bαβ is proportional to q, and
hence the last five terms are all of order q2.
For further insight into the 2D elastic energy of Eq. (15), in the following two sections we use it to calculate the

energy of an asymmetrically swollen film curving into a partial cylinder or a partial sphere, as shown in Fig. 2. In
each case, we calculate the optimal curvature and determine how it depends on the asymmetry parameter q. We then
compare the energies of these two shapes to see which is favored, as a function of the film parameters. We do not
consider a saddle shape because the saddle does not have an asymmetry between the two sides of the film, which is
favored by the swelling, and also because the saddle is not seen in experiments such as Ref. [5].

III. CYLINDER

We first use Eq. (15) to calculate the energy when the film deforms into a partial cylinder, as shown in Fig. 2(a). For
this calculation, we use an orthogonal curvilinear coordinate system (ξ1, ξ2) on the midplane in the material frame,
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FIG. 2. (Color online) Illustration of the curved film shapes considered in Sections III and IV. (a) Partial cylinder. (b) Partial
sphere.

where ξ1 is the direction around the circumference of the cylinder and ξ2 is the direction along the axis. The 3D
position of any point on the midplane can be written as

Rmid = rc cos

(

C1ξ1
rc

)

x̂+ C2ξ2ŷ + rc sin

(

C1ξ1
rc

)

ẑ, (17)

where rc is the cylinder radius, C1 and C2 are parameters that measure how much the coordinates elongate or shrink,
and x̂, ŷ, and ẑ are unit vectors in Cartesian coordinates for the lab frame. From Eq. (7), the target metric of the
midplane is

āαβ =

(

p2 0
0 p2

)

. (18)

From Eq. 17, the actual metric and curvature tensors (first and second fundamental forms) of the partial cylinder are
given by

aαβ =

(

C2
1

0
0 C2

2

)

(19)

and

bαβ =

(

−C2
1
/rc 0

0 0

)

. (20)

The elasticity tensor Åαβγδ can be calculated by noticing that the target metric tensor before swelling is just the
identity matrix, independent of position. Hence, the non-zero terms in the elasticity tensor are Å1111 = Å2222 = 4µ
and Å1122 = Å1212 = Å2121 = Å2211 = 2µ.
We now insert the target metric, actual metric, and curvature tensors into the 2D elastic energy of Eq. (15), and

minimize over the parameters C1, C2, and rc. To lowest order in w, we find that the stretching factors are C1 = C2 = p,
the cylinder radius is

rc =
2p2

3q
, (21)

and the corresponding 2D elastic energy density at that minimum is

f2 =
29q2

8p2
w3µ. (22)

These results imply that the curvature tensor bαβ is proportional to q, and that the strain tensor ε2Dαβ = 0; i. e. there is
no strain on the midplane. Note, however, that there is still nonzero shear strain off the midplane because the metric
tensor off midplane shows anisotropic swelling while the target metric favors isotropic swelling; that is the reason why
the elastic energy is non-zero. In the limit of a symmetric film with q → 0, then rc → ∞, the film remains flat, and
there is only uniform swelling without energy cost.
Equation (22) shows that the elastic energy density of the partial cylinder is uniform in 2D, independent of position

on the midplane, and hence the total elastic energy is just proportional to the film area. In particular, if the initial
shape of the film is a disk with radius rmax in the material frame, hence radius prmax in the midplane after swelling,
then the total elastic energy is

Fc =
29

8
πq2r2

max
w3µ. (23)
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IV. SPHERE

Let us now consider a circular thin film deforming into a partial of a sphere, as shown in Fig. 2(b). For this
problem, it is convenient to use polar coordinates (r, φ) on the midplane in the material frame, where r is the radial
displacement from the center of the circular film before swelling, and φ is the azimuthal angle, which is assumed not
to change during swelling and deformation. The 3D position of any point on the midplane can then be written as

Rmid = rs sin θ(r) cosφx̂ + rs sin θ(r) sin φŷ + rs cos θ(r)ẑ, (24)

where rs is the radius of the sphere and θ(r) is a monotonically increasing function of r, to be determined, which
describes how the material stretches or shrinks in the radial direction. (In particular, θ(r) gives the angular position
on the partial sphere up from the (−z)-axis corresponding to the radial position r in the material frame.) In this
coordinate system, the target metric of the middle plane is

āαβ =

(

p2 0
0 p2r2

)

. (25)

Note that this target metric is equivalent to Eq. (18), but in a different coordinate system. From Eq. (24), the actual
metric and curvature tensors (first and second fundamental forms) are given by

aαβ =

(

r2sθ
′(r)2 0
0 r2s sin

2 θ(r)

)

, (26)

and

bαβ =

(

−rsθ
′(r)2 0
0 −rs sin

2 θ(r)

)

. (27)

In this coordinate system, the non-zero components of the elasticity tensor Åαβγδ are Å1111 = 4µ, Å2222 = 4µ/r4,

and Å1122 = Å1212 = Å2121 = Å2211 = 2µ/r2.
The 2D elastic energy of Eq. (15) is now a functional of the stretching function θ(r) and the sphere radius rs. To

minimize this energy over θ(r), we expand θ(r) as a power series in r and minimize over the series coefficients. The
leading terms are then

θ(r) = π − (p−
p3w2

6r2s
+

3pqw2

8rs
)
r

rs
. (28)

To minimize the energy over rs, we must consider two regimes in terms of q, w, and rmax, the radius of the film in
the material frame. In the first regime, where qr2max/w ≪ 1, the optimum sphere radius is rs = p2/q, and the total
elastic energy is

Fs =
7

2
πq2r2

max
w3µ. (29)

By comparison, in the second regime where qr2
max

/w ≫ 1, the sphere radius is rs = (prmax)
4/3(26qw2)−1/3, and the

total elastic energy is

Fs = 4πq2r2
max

w3µ. (30)

V. DISCUSSION

Our calculations in the preceding sections lead to specific conclusions about the cylindrical and spherical shapes,
as well as more general insight into elastic theory for asymmetric films.
For the specific problem of cylindrical and spherical shapes, we can see that Eq. (23) for the elastic energy of a

partial cylinder is between the two regimes of Eqs. (29) and (30) for a partial sphere. This result implies that the
spherical deformation is favored for disks of small radius rmax < rcritical, while the cylindrical deformation is favored
for disks of large rmax > rcritical. Calculating the actual value of rcritical requires higher-order terms than we have
presented here, and the numerical result is rcritical = 1.6(wp/q)1/2. To understand this result, note that the partial
sphere has an isotropic deformation in the midplane, which is consistent with the target metric, while the partial
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cylinder breaks is anisotropic in the midplane and disagrees with the target, which costs extra energy. For that
reason, the partial sphere is favored for small rmax. By contrast, for large rmax the partial sphere must have extra
stretching in the midplane, and hence it becomes disfavored with respect to the partial cylinder. This trend is at least
qualitatively consistent with experiments on inhomogeneous solvent exposure, as shown in Fig. 3 of Ref. [5], although
our calculation describes equilibrium behavior as a function of concentration while those experiments probe dynamic
behavior as a function of time.
More generally, we have shown that the theoretical approach of Sharon and collaborators can be applied to asym-

metric films. Through this approach, we transform the 3D elastic energy into the effective 2D elastic energy of
Eq. (15). This effective 2D elastic energy shows the standard stretching and bending energies, which have been
studied extensively for symmetric films, as well as new terms arising from the asymmetry. These new terms include
a spontaneous curvature term, which is linear in the curvature tensor and hence favors curvature of the asymmetric
film, as well as a coupling between spontaneous curvature and in-plane strain. These new terms should provide new
opportunities to design synthetic materials that will spontaneously form desired shapes for technological applications.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation through Grants DMR-0605889 and 1106014.

[1] M. Finot and S. Suresh, J. Mech. Phys. Solids 44, 683 (1996).
[2] L. B. Freund, J. Mech. Phys. Solids 44, 723 (1996).
[3] L. B. Freund, J. Mech. Phys. Solids 48, 1159 (2000).
[4] K. N. Long, M. L. Dunn, T. F. Scott, and H. J. Qi, Int. J. Struct. Changes Solids 2, 41 (2010).
[5] D. P. Holmes, M. Roche, T. Sinha, and H. A. Stone, Soft Matter 7, 5188 (2011).
[6] Y. Klein, E. Efrati, and E. Sharon, Science 315, 1116 (2007).
[7] E. Efrati, Y. Klein, H. Aharoni, and E. Sharon, Physica D 235, 29 (2007).
[8] E. Efrati, E. Sharon, and R. Kupferman, J. Mech. Phys. Solids 57, 762 (2009).
[9] E. Efrati, E. Sharon, and R. Kupferman, Phys. Rev. E 80, 016602 (2009).

[10] E. Sharon and E. Efrati, Soft Matter 6, 5693 (2010).
[11] R. D. Kamien, Science 315, 1083 (2007).
[12] M. A. Dias, J. A. Hanna, and C. D. Santangelo, Phys. Rev. E 84, 036603 (2011).
[13] A. Hoger, Arch. Rational Mech. Anal. 88, 271 (1985).
[14] M. Ben Amar and A. Goriely, J. Mech. Phys. Solids 53, 2284 (2005).
[15] P. G. Ciarlet, J. Elasticity 78-79, 1 (2005).
[16] C. Truesdell, The Mechanical Foundations of Elasticity and Fluid Dynamics (Gordon and Breach, 1966).
[17] A. E. H. Love, Philos. Trans. R. Soc. London, Ser. A 179, 491 (1888).
[18] W. Helfrich, Z. Naturforsch. 28c, 693 (1973).


