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In contrast to overtaking interactions, head-on collisions between two electrostatic solitons can
only be dealt with by an approximate method, which limits the range of validity but offers valuable
insights. Treatments in the plasma physics literature all use assumptions in the stretching of space
and time and in the expansion of the dependent variables that are seldom if ever discussed. All
models force a separability to lowest order, corresponding to two linear waves with opposite but
equally large velocities. A systematic exposition of the underlying hypotheses is illustrated by
considering a plasma composed of cold ions and nonthermal electrons. This is general enough to
yield critical compositions that lead to modified rather than standard Korteweg-de Vries equations,
an aspect not discussed so far. The nonlinear evolution equations for both solitons and their phase
shifts due to the collision are established. A Korteweg-de Vries description is the generic conclusion,
except when the plasma composition is critical, rendering the nonlinearity in the evolution equations
cubic, with concomitant repercussions on the phase shifts. In the latter case, the solitons can have
either polarity, so that combinations of negative and positive solitons can occur, contrary to the
generic case, where both solitons necessarily have the same polarity.

PACS numbers: 52.27.Cm, 52.35.Fp, 52.35.Mw, 52.35.Sb

I. INTRODUCTION

Standard nonlinear evolution equations, like the
Korteweg-de Vries (KdV) equation, are derived in a
frame which travels at the linear acoustic speed with re-
spect to an inertial frame and can have N -soliton solu-
tions (for arbitrary N , due to their integrability proper-
ties). Hence, in an inertial frame, they are all seen as
propagating in the direction underlying the derivation of
the original evolution equation, so that only overtaking
interactions are covered in this way. A more general de-
scription, on a par with the N -soliton methods for treat-
ing overtaking solitons, does not at present appear to be
available for the interaction between solitons traveling in
opposite directions.

Thus, to describe head-on collisions (in an inertial
frame) between two solitons, an approximate method is
necessary. This limits the range of validity of the descrip-
tion, but offers some valuable insights. The framework is
based on an extension of the Poincaré-Lighthill-Kuo for-
malism of strained coordinates [1], which was used three
decades ago to study the head-on collision of nonlinear
waves on the surface of an inviscid homogeneous fluid [2].
To lowest nonlinear order, the problem of colliding soli-
tons leads to KdV equations, and also yields the phase
shifts that occur in the interaction.

In recent years there has been much interest in the
problem of head-on collisions of acoustic solitary waves

in various multispecies plasmas, for parallel [3–15] or
oblique [16–19] propagation with respect to a static mag-
netic field. The papers quoted represent a typical selec-
tion of recent papers, without any claim at being exhaus-
tive. Although the models vary quite a bit between them,
all the papers in the literature follow a similar methodol-
ogy, apparently inspired by the seminal paper by Su and
Mirie [2], and lead to KdV solitons with their phase shifts.
We will focus more specifically, in what follows, on the
problem of parallel propagation, thus avoiding extrane-
ous analytical complications due to oblique propagation,
where the method runs along broadly similar lines as in
the parallel case.

The treatments in the plasma physics literature all use
assumptions that are seldom, if ever, discussed. For in-
stance, choices made in imposing the stretching of the
space and time coordinates, and the expansion of the de-
pendent variables, hide assumptions that are not spelt
out. Among the restrictions which are assumed by al-
most all cited authors, but not explicitly motivated, is
that while the stretching for the co-moving coordinates
starts in a smallness parameter ε, the perturbations in
the dependent variables start at quadratic order [3, 5–
8, 10–13, 15], except when an equivalent ordering in ε1/2

and ε is chosen [4]. The only exceptions are where the
expansions in the dependent variables are also assumed
to start at order ε [9, 14]. Unfortunately, however, these
exceptions contain serious errors which invalidate the re-
sulting algebra [20].
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Before going on, let us briefly recall that the traditional
stretching for the KdV class of equations starts from

ξ = ε(x− t), τ = ε3t. (1)

Here we have taken ε and ε3 rather than the traditional
ε1/2 and ε3/2, in accordance with present usage in almost
all papers dealing with head-on collisions of electrostatic
solitons in plasmas. Next, expansions are chosen of the
form ϕ = ε2ϕ2 + ε3ϕ3 + ε4ϕ4 + ... [our choice for the
subscripts] for the electrostatic potential in normalized
form. The standard reductive perturbation treatment
thus leads to the KdV equation [21, 22],

∂ϕ2

∂τ
+ A ϕ2

∂ϕ2

∂ξ
+ B

∂3ϕ2

∂ξ3
= 0. (2)

Given the vast literature on single solitons and their KdV
description, we have on purpose omitted all references of
this kind, barring [21, 22].

This is all fine as long as A only has one definite sign,
as is the case for the original description of shallow water
waves [2] or of ion-acoustic solitons in simple electron-ion
plasmas [4]. In both these physical situations, A > 0 and
the nonlinear modes are compressive, showing density
and/or electrostatic potential humps.

For more complex plasma compositions, this simple
picture no longer holds, and one can encounter plasma
parameter values which allow A to vanish. For those
critical values the quadratic nonlinearity will disappear
from (2), and the expansion must be changed to ϕ =
εϕ1 + ε2ϕ2 + ε3ϕ3 + ... . This leads to a modified KdV
(mKdV) equation,

∂ϕ1

∂τ
+ C ϕ2

1

∂ϕ1

∂ξ
+ D

∂3ϕ1

∂ξ3
= 0, (3)

having a cubic nonlinearity.
One could, of course, have started in both cases di-

rectly with ϕ = εϕ1 + ε2ϕ2 + ε3ϕ3 + ..., but then a
careful analysis is needed, leading to a bifurcation in the
treatment, where either A = 0 or ϕ1 = 0 [23]. We will
encounter a similar bifurcation in the present paper.

As will also be seen, a natural consequence of the
method is that one necessarily has to work with linear
phase velocities which are opposite but of equal magni-
tude. This is sometimes assumed ab initio [3, 4, 6, 8, 10–
15], or explicitly proven at lowest order [5]. As to the
type of acoustic waves studied, one finds dust-acoustic
[3, 10, 12], dust-ion-acoustic [11], ion-acoustic [4–9, 13]
and electron-acoustic modes [14, 15].

The inertial species are usually cold [3–5, 7–15], poly-
tropic [6], sometimes in the presence of a neutralizing
background [11, 14, 15], while the hot species can have
Boltzmann [3–6, 9, 10, 12], Cairns nonthermal [10], kappa
superthermal [7], Tsallis nonextensive [9, 13, 14] or quan-
tum distributions [8, 11, 15]. Even dust charge fluctua-
tions are sometimes included [3]. Despite being based on
such a rich variety of models, all papers arrive at KdV

equations as the governing evolution equations [3–7, 9–
15], even when the derivation cannot be trusted [9, 14],
except when viscosity is added and the resulting equation
is of the KdV-Burgers type [8].

Surveying the relevant literature, there is a need to go
more deeply into the details of the analytical derivation,
to see in a reasoned way where the restrictions come in
and what they imply. To do this in an easily tractable
way, we will start from a fairly general stretching and
expansion scheme for a plasma composed of cold positive
ions and nonthermal electrons obeying a Cairns distri-
bution [24]. This is sufficiently general to permit critical
parameters leading to mKdV rather than KdV equations.
We also include a discussion of why the model forces a
separability to lowest order, with opposite velocities of
equal magnitudes in the stretching, and clarify the vari-
ous assumptions.

One can investigate more sophisticated plasma compo-
sitions. In the end, however, one always arrives at KdV
equations in the generic case or at mKdV equations when
some of the compositional parameters are sufficiently spe-
cial. As far as we have been able to ascertain, the latter
aspect is not addressed at all in the plasma literature on
head-on collisions.

Having mentioned a fair selection of the theoretical
papers, we would like to draw attention to a recent paper
[28] with experimental observations of the interaction of
two counter-propagating solitons of equal amplitude in
a monolayer strongly coupled dusty plasma. This will
be discussed later, when our theoretical results can be
properly compared with the observations.

The paper is structured as follows. In Section II, the
basic formalism is introduced. The exposition is given in
the generic case with due attention being paid to the var-
ious assumptions needed to make the method work and
to the physical and mathematical restrictions that these
assumptions imply. This leads to two KdV equations, for
the right and the left traveling soliton, respectively, plus
equations giving the phase changes due to the head-on
collision between the two solitons. Section III is devoted
to the special case when the compositional parameters
take on values such that the coefficient of the quadratic
nonlinearity in the KdV equations vanishes. In this case,
one has to adapt the treatment and derive instead an
mKdV equation with corresponding changes in the de-
termination of the phases during interaction. Section IV
then briefly summarizes our conclusions.

II. BASIC FORMALISM AND GENERIC
COMPOSITION

The basic fluid equations for the positive ions are the
continuity and momentum equations,

∂n

∂t
+

∂

∂x
(nu) = 0, (4)

∂u

∂t
+ u

∂u

∂x
+

∂ϕ

∂x
= 0. (5)
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The dimensionless variables n and u are the density and
fluid velocity of the ion species, respectively, with charge
e and mass mi, normalized in terms of the equilibrium
density n0 and of an ion-acoustic velocity Via =

√
Te/mi.

We note that this is not the true sound speed for the
model plasma, as the effect of the Cairns nonthermal pa-
rameter has been ignored (see below). Nonetheless, it is
a useful normalizing speed, and the nonthermal effects
will then appear explicitly in the calculations. The elec-
trostatic potential ϕ is given in units of Te/e, where Te

is the kinetic temperature the hot electrons would have
in the absence of nonthermal effects.

All species are coupled through Poisson’s equation,

∂2ϕ

∂x2
+ n− (1− βϕ + βϕ2) exp(ϕ) = 0, (6)

where (1 − βϕ + βϕ2) exp(ϕ) represents the hot Cairns
electron contribution in terms of a nonthermality param-
eter β. More details can be found in the original paper
introducing the Cairns nonthermal distribution [24].

To model head-on collisions of two electrostatic soli-
tons, and inspired by methods in the literature [1, 2], the
stretching is introduced as

ξ = ε(x− ct) + ε2P (ξ, η, τ) + ...,

η = ε(x + ct) + ε2Q(ξ, η, τ) + ...,

τ = ε3t, (7)

referring in ξ and η to a right- and to a left-propagating
soliton, sξ and sη, respectively. For the derivation of
a single standard KdV equation to work, the velocity
used in the coordinate stretching has to be the appropri-
ate phase speed for the linear acoustic wave type in the
plasma considered. In the present problem, the stretch-
ing, to the lowest order, treats the colliding waves as
separate entities, and both ξ and η involve the unique
linear acoustic phase velocity (in absolute value). This
argument could have been made in the papers which as-
sume equal velocities without further justification. How-
ever, it was not [3, 4, 8, 12] or only in an indirect way
[10, 11, 13, 14].

In our model, the linear acoustic phase velocity is
c = 1/

√
1− β. Although, by definition [24], 0 6 β < 4/3,

we will limit ourselves in this paper to 0 6 β < 4/7, so
that certainly β < 1 holds. The reason for this reduced
limit is that for β > 4/7, the phase space Cairns distribu-
tion [24] may develop bump-on-tail or beam instabilities,
so this range is best avoided. The contribution of the
nonthermal effects to c, expressed in β, is made explicit.

The functions P and Q will be seen later to represent
phase shifts that arise through the interaction between
the two solitons. For now, we prefer to leave them as
functions of all three stretched variables, to be deter-
mined later, rather than to impose some restrictions at
this early stage of the calculations. We shall need

∂

∂x
=

∂ξ

∂x

∂

∂ξ
+

∂η

∂x

∂

∂η
,

∂

∂t
=

∂ξ

∂t

∂

∂ξ
+

∂η

∂t

∂

∂η
+

∂τ

∂t

∂

∂τ
, (8)

which in turn requires

∂ξ

∂x
= ε + ε2

(
∂P

∂ξ

∂ξ

∂x
+

∂P

∂η

∂η

∂x

)
+ ...,

∂η

∂x
= ε + ε2

(
∂Q

∂ξ

∂ξ

∂x
+

∂Q

∂η

∂η

∂x

)
+ ...,

∂ξ

∂t
= − εc + ε2

(
∂P

∂ξ

∂ξ

∂t
+

∂P

∂η

∂η

∂t
+

∂P

∂τ

∂τ

∂t

)
+ ...,

∂η

∂t
= εc + ε2

(
∂Q

∂ξ

∂ξ

∂t
+

∂Q

∂η

∂η

∂t
+

∂Q

∂τ

∂τ

∂t

)
+ ... . (9)

Up to third order, the solution of this intricate set of
equations yields

∂ξ

∂x
= ε + ε3

(
∂P

∂ξ
+

∂P

∂η

)
+ ...,

∂η

∂x
= ε + ε3

(
∂Q

∂ξ
+

∂Q

∂η

)
+ ...,

∂ξ

∂t
= −εc + ε3c

(
∂P

∂η
− ∂P

∂ξ

)
+ ...,

∂η

∂t
= εc + ε3c

(
∂Q

∂η
− ∂Q

∂ξ

)
+ ... . (10)

We next introduce the operators

X̂ =
∂

∂ξ
+

∂

∂η
,

T̂ = c

(
∂

∂η
− ∂

∂ξ

)
,

X̂ ′ =
(

∂P

∂ξ
+

∂P

∂η

)
∂

∂ξ
+

(
∂Q

∂ξ
+

∂Q

∂η

)
∂

∂η
,

T̂ ′ = c

(
∂P

∂η
− ∂P

∂ξ

)
∂

∂ξ
+ c

(
∂Q

∂η
− ∂Q

∂ξ

)
∂

∂η
, (11)

to write the operators in (8) in a compact way, viz.,

∂

∂x
= εX̂ + ε3X̂ ′ + ...,

∂

∂t
= εT̂ + ε3T̂ ′ + ε3 ∂

∂τ
+ ... . (12)

The series expansions of the dependent variables are

n = 1 + εn1 + ε2n2 + ε3n3 + ε4n4 + ...,

u = εu1 + ε2u2 + ε3u3 + ε4u4 + ...,

ϕ = εϕ1 + ε2ϕ2 + ε3ϕ3 + ε4ϕ4 + ... . (13)

Although it might be anticipated that the first order
contributions will vanish in the generic case, it is prudent
not to assume that from the outset, but to let the algebra
decide this, should that be the case. Hence, to lowest
nonzero order (4), (5) and (6) give

T̂ n1 + X̂u1 = 0,

T̂ u1 + X̂ϕ1 = 0,

n1 − (1− β)ϕ1 = 0. (14)
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By operating on the first equation in (14) by −T̂ , on
the second by X̂ and on the third by T̂ 2 and adding the
results, we eliminate n1 and u1, to find that

4
∂2ϕ1

∂ξ∂η
= 0. (15)

Hence, the first-order variables will consist of a term de-
pending on ξ and τ , but not η, and another term depend-
ing on η and τ , but not ξ. This leads to

n1 = (1− β) (ϕ1ξ + ϕ1η) ,

u1 =
√

1− β (ϕ1ξ − ϕ1η) ,

ϕ1 = ϕ1ξ + ϕ1η, (16)

with obvious compact notations to denote the depen-
dence on the space arguments ξ or η.

To the next higher order (4), (5) and (6) give

T̂ n2 + X̂u2 + X̂(n1u1) = 0,

T̂ u2 + u1X̂u1 + X̂ϕ2 = 0,

n2 − (1− β)ϕ2 − 1
2 ϕ2

1 = 0. (17)

For those terms that depend on τ , and on either ξ or η,
but not both, we find that

n2ξ = (1− β)ϕ2ξ + 3
2 (1− β)2ϕ2

1ξ,

n2η = (1− β)ϕ2η + 3
2 (1− β)2ϕ2

1η,

u2ξ =
√

1− β ϕ2ξ + 1
2 (1− β)3/2ϕ2

1ξ,

u2η = −
√

1− β ϕ2η − 1
2 (1− β)3/2ϕ2

1η, (18)

coupled to

(2− 6β + 3β2)ϕ2
1ξ = 0,

(2− 6β + 3β2)ϕ2
1η = 0. (19)

These results include an integration with respect to ξ
or η, with zero boundary conditions at infinity, in the
undisturbed medium.

The remainder of the information to this order comes
from the elimination of u2 between the first two equations
in (17) and using the third equation to replace n2, but
only for the terms which depend on ξ and η together,
which leads to

∂2ϕ̃2

∂ξ∂η
+

β(2− β)
2(1− β)

∂ϕ1ξ

∂ξ

∂ϕ1η

∂η

− 2− 2β + β2

4(1− β)

(
ϕ1η

∂2ϕ1ξ

∂ξ2
+ ϕ1ξ

∂2ϕ1η

∂η2

)
= 0. (20)

Here ϕ̃2 = ϕ2 − ϕ2ξ − ϕ2η has been defined as the part
of ϕ2 which depends on ξ and η together in a way which
cannot be disentangled, with analogous definitions for
other variables and higher orders.

The structure of (19) points to two possibilities: ei-
ther the nonthermality parameter is very special, in that
βc = (3 −

√
3)/3 ' 0.423, or else ϕ1ξ = ϕ1η = 0. Not

surprisingly, there is a close correspondence to standard

KdV theory, where critical parameters annul the coeffi-
cient of the quadratic nonlinearity and one has to go to
cubic nonlinearities in an mKdV equation. This will be
investigated in detail in Section III. There is also a cor-
relation with the large amplitude analysis of nonlinear
modes by pseudopotential theory, where the same value
of βc is found for the reversal of polarities of the KdV-
like and nonKdV-like modes in a number of physically
different plasma systems [25–27].

Apart from the papers by Demiray [4] and Chatterjee
et al. [7] whose plasma models do not give rise to critical
parameters, the other models [3, 5, 6, 8, 10–13, 15] are
sufficiently sophisticated to yield critical compositions.
However, none of the authors discusses the possibility of
having such special cases, because they have immediately
started the expansions of the dependent variables, out-
side equilibrium, at order ε2. Since in the generic case
all first-order quantities vanish, it has been implicitly as-
sumed in the papers quoted [3, 5, 6, 8, 10–13, 15] that
this is the only case worth considering. Eslami et al.
[9, 14] start the expansions at order ε, but then proceed
as though this were the generic case, and get thoroughly
confused, so that their results are wrong [20].

Assuming now that we are in the generic case, for
which we have to take ϕ1ξ = ϕ1η = 0, one is, from (18)
and (20), once again, led to separability:

n2 = (1− β) (ϕ2ξ + ϕ2η) ,

u2 =
√

1− β (ϕ2ξ − ϕ2η) ,

ϕ2 = ϕ2ξ + ϕ2η. (21)

Continuing up the ladder, we find for the third-order
variables that

T̂ n3 + X̂u3 = 0,

T̂ u3 + X̂ϕ3 = 0,

n3 − (1− β)ϕ3 = 0. (22)

Since these variables will not appear at the next order,
we simply put n3 = u3 = ϕ3 = 0, and thus find that the
series expansions (13) go in even orders of ε, much as is
the case for the usual derivation of the KdV equation.

Finally, we arrive at the order where interesting new
contributions appear,

T̂ n4 + T̂ ′n2 +
∂n2

∂τ
+ X̂u4 + X̂(n2u2) + X̂ ′u2 = 0,

T̂ u4 + T̂ ′u2 +
∂u2

∂τ
+ u2X̂u2 + X̂ϕ4 + X̂ ′ϕ2 = 0,

X̂2ϕ2 + n4 − (1− β)ϕ4 − 1
2 ϕ2

2 = 0. (23)

Combining again the parts of these equations which con-
tain terms that only depend on ξ or on η (besides τ),
yields the typical KdV equations

∂ϕ2ξ

∂τ
+ A ϕ2ξ

∂ϕ2ξ

∂ξ
+ B

∂3ϕ2ξ

∂ξ3
= 0,

∂ϕ2η

∂τ
−A ϕ2η

∂ϕ2η

∂η
−B

∂3ϕ2η

∂η3
= 0, (24)
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FIG. 1. (Color online) Changes of A and B (full and dashed
curves, respectively), as β is increased, showing how A goes
from positive to negative values at βc and how B remains
positive and increases monotonically from 1/2.

for the right- and left-going solitary waves, respectively,
with

A =
2− 6β + 3β2

2(1− β)3/2
, B =

1
2(1− β)3/2

. (25)

The coefficient of the quadratic nonlinearity, A, has al-
ready been encountered in a similar role in (19), except
for factors (1−β) which have been omitted there. It will
be recalled that this factor is related to the normalized
linear phase speeds, which are given by c = 1/

√
1− β.

As seen already in the discussion about (19), A can
change sign at βc. For good measure, we include in Figure
1 a graph of how A and B vary as β is increased from 0
to 0.6.

There is more information still, in the terms which
contain both ξ and η, besides τ , giving

∂2

∂ξ∂η

[
ϕ̃4 +

β(2− β)
2(1− β)

ϕ2ξ ϕ2η

]
+

∂

∂ξ

{[
∂P

∂η
− S ϕ2η

]
∂ϕ2ξ

∂ξ

}
+

∂

∂η

{[
∂Q

∂ξ
− S ϕ2ξ

]
∂ϕ2η

∂η

}
= 0, (26)

with

S =
2− 2β + β2

4(1− β)
>

1
2
. (27)

The second and third terms in (26) will generate secular
contributions at the next higher order, so these are to be
annulled, leading to

∂P

∂η
= S ϕ2η,

∂Q

∂ξ
= S ϕ2ξ. (28)

Thus the phase shifts can be determined also. The struc-
ture of these equations is such that ∂P/∂η cannot depend

on ξ, since the right hand side does not contain ξ, and
thus P itself might contain an additive part which would
depend on ξ and τ , but not on η. Such a part plays no
role here and is not interesting, because it would refer
to changes in the phase of the right-traveling soliton due
to its own propagation. It can therefore be omitted alto-
gether, as was assumed at the outset, without discussion,
in all the papers mentioned [3–15]. Analogous arguments
hold for the absence of η in Q.

Finally, the other remaining term in (26) will give rise
to a contribution

ϕ̃4 = − β(2− β)
2(1− β)

ϕ2ξ ϕ2η (29)

to ϕ4, besides the parts ϕ4ξ and ϕ4η, which will have to
be determined from higher-order contributions.

Turning now to the one-soliton solutions of (24), these
are the well-known “sech squared” solitons of KdV the-
ory, here

ϕ2ξ =
3vξ

A
sech2[κξ(ξ − vξτ)],

ϕ2η =
3vη

A
sech2[κη(η + vητ)], (30)

with the amplitudes and inverse width (related to κξ or
κη) expressed in terms of the velocities vξ and vη, respec-
tively, for the right- and left-propagating solitons. Here

κξ = (1− β)3/4

√
vξ

2
, κη = (1− β)3/4

√
vη

2
. (31)

This requires that vξ > 0 and vη > 0 and also indicates
that the two interacting solitons must have the same po-
larity, given by the sign of A. Thus, for 0 6 β < βc, hence
A > 0, both solitons must have positive polarity, and for
βc < β < 1 (where A < 0), negative polarity. These
ranges for the soliton polarities agree with those found
in recent pseudopotential studies for KdV-like solitons in
plasmas with a Cairns nonthermal component [26, 27].

It is thus clear that the present approximate way of
dealing with head-on collisions is unable to handle inter-
actions between two modes of opposite polarities in the
same physical system. Furthermore, even though at the
level of the stretching (7) we have opposing velocities c of
equal magnitude, this does not hold for the one-soliton
solutions, which are superacoustic in their direction of
propagation but can have quite different amplitudes.

To obtain the phase shifts after the head-on collision
between the two solitons, we assume that the right- and
left-propagating solitons sξ and sη are, asymptotically,
far from each other at the initial time (t = −∞), i.e.,
sξ is at ξ = 0, η = −∞ and sη is at η = 0, ξ = +∞,
respectively. After the collision (t = +∞), sξ is far to
the right of sη, i.e., sξ is at ξ = 0, η = +∞ and sη is at
η = 0, ξ = −∞. These or similar boundary conditions
have been used in almost all papers [3–7, 9–15]. Hence,
the phase shifts expressed by P and Q are found from the
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substitution of (30) into (28) and integration, yielding

P =
3S

√
2vη

A(1− β)3/4
{tanh[κη(η + vητ)] + 1} ,

Q =
3S

√
2vξ

A(1− β)3/4
{tanh[κξ(ξ − vξτ)]− 1} . (32)

As in all proper KdV problems, there is an intimate
link in the co-moving frame between the soliton ampli-
tude, width and excess velocity, and two of the character-
istics can be expressed in terms of a third. Here the choice
has been made to start from the excess velocities and use
that to give the amplitudes and widths. Increases in vξ

entail increases in the amplitudes of ϕ2ξ as well as in the
phase shift of ϕ2η. Thus, the larger of the two solitons
travels faster than the smaller one, but is less affected by
the phase shift when emerging from the collision region.

The special case of a plasma with Boltzmann electrons,
as treated in the literature [4], is obtained at β = 0, so
that A = 1, B = 1/2 and S = 1/2. Thus (30) and (32)
are simplified to

ϕ2ξ = 3vξ sech2

[√
vξ

2
(ξ − vξτ)

]
,

ϕ2η = 3vη sech2

[√
vη

2
(η + vητ)

]
, (33)

and

P = 3
√

vη

2

{
tanh

[√
vη

2
(η + vητ)

]
+ 1

}
,

Q = 3
√

vξ

2

{
tanh

[√
vξ

2
(ξ − vξτ)

]
− 1

}
. (34)

Moreover, the contribution to ϕ̃4 of the form ϕ2ξϕ2η now
disappears, so that ϕ4 is separable, as were the lower
orders, as is u4, but not n4. Indeed, one can show that
ϕ̃4 = 0 induces ũ4 = 0 but ñ4 = ϕ2ξϕ2η, provided the
simplified versions of (24) and (28) hold.

We can now illustrate the above discussion with some
graphs, starting with the Boltzmann case (β = 0) in Fig.
2. Both head-on colliding modes have positive polarities
and are therefore compressive in the electron and ion den-
sities. Plots with β intermediate between 0 and βc will
show a qualitatively similar behavior, as the nonthermal
effects are not strong enough to reverse the polarity.

In order to show the phase shift more clearly, we plot in
Fig. 3 for β = 0.25 a smaller (slower) right-going soliton
(with a larger phase shift) as viewed from above. We
have omitted the larger left-going soliton (with a smaller
phase shift) as it would obscure the right-going soliton.

If one looks at (7), P and Q are corrections to both the
space and time coordinates, in a way which is not imme-
diately obvious. However, Fig. 3 clearly shows that it is
not so much the soliton velocity which is affected, if one
compares the propagation characteristics long before and
after the interaction region, but the important change is
in a kind of phase shift. One should also keep in mind

FIG. 2. (Color online) Head-on collision for plasma compo-
sition with Maxwellian electrons (β = 0), for vξ = 0.01 and
vη = 0.02. The solitons have positive polarity and are com-
pressive in the densities.

FIG. 3. (Color online) Slower soliton in the interaction zone,
viewed from above, for the head-on collision for plasma com-
position with β = 0.25, for vξ = 0.1 and vη = 0.2. The
soliton is compressive and has a positive polarity. The soliton
speeds have been chosen as rather large, for graphical clarity,
but one cannot normally take the amplitudes too large, when
using reductive perturbation theory.

that the results are restricted to order ε3, as befits the
expansion scheme leading to the KdV equations.

Once β > βc, the polarities become negative and the
solitons are rarefactive in the densities. This is shown in
Fig. 4 for β = 0.5, a typical value used in literature on
nonthermal plasmas [24, 26, 27]. Plots for other values of
β > βc will yield graphs which are qualitatively similar
to Fig. 4.

As is clear from the literature surveyed [3–15], the in-
clusion of other superthermal electron effects, such as
kappa distributions, or more cold ion species, can easily
be done by modifying the derivation at the appropriate



7

FIG. 4. (Color online) Head-on collision for plasma compo-
sition with β = 0.5, beyond βc = 0.423, for vξ = 0.01 and
vη = 0.02. Here the solitons have negative polarity and are
rarefactive in the densities.

places. This will result in changes of the coefficients in
various expressions, but not in the intrinsic structure of
the nonlinear evolution equations or in the phase shifts.

None of the papers in the literature [3–7, 9–14] presents
graphs of this kind, except for the very recent paper by
El-Labany et al. [15] which shows interactions of two rar-
efactive or two compressive solitons, respectively. This is
a clear indication that in their model A = 0 is possible,
but no discussion has been given of what is needed at
critical composition. The figures in the paper by Han et
al. [8] cannot be directly compared with our graphs, be-
cause they studied the interaction between two colliding
shocks obeying KdV-Burgers equations.

The recent paper by Harvey et al. [28] includes exper-
imental observations that are qualitatively similar to our
results in Figs. 2 and 4. It was found that the solitons
are delayed after the collision, with solitons of higher am-
plitude experiencing longer delays. The amplitude of the
overlapping solitons during the collision was less than the
sum of the initial soliton amplitudes. We do not claim
that our model is the only one which produces graphs
which are qualitatively similar to those obtained by Har-
vey et al. [28], only that none of the papers in the liter-
ature dealing with head-on collisions even refers to the
experimental results of Harvey et al., and that El-Labany
et al. [15] might have reached an analogous conclusion
had they chosen to discuss the experimental results.

Harvey et al. [28] discuss a comparison with the theo-
retical analysis of Su and Mirie [2], which, however, like
all papers using the same methodology, predicts a super-
position of the amplitudes during the interaction. Pre-
sumably, this discrepancy between the theory and the
observations of Harvey et al. [28] highlights a weak point
of the present approximate approach, which works well
for the description of the solitons outside the interaction
region and gives the right phase shifts after the collision.

However, the decomposition ϕ2 = ϕ2ξ+ϕ2η amounts to a
linear superposition of two KdV solitons, which, partic-
ularly during the collision, is quite different from a two-
soliton solution, of a single KdV equation, to describe
overtaking collisions.

III. SOLITONS AND PHASE SHIFTS AT
CRITICAL COMPOSITIONS

Now we suppose that the electron nonthermality is
critical, in that βc annuls 2 − 6β + 3β2. Note that the
other root of this quadratic, β = (3 +

√
3)/3, is outside

the definition range 0 6 β < 4/3. Ignoring this root and
taking β = βc, the quadratic nonlinearity in the KdV
equations (24) disappears and in (18) we must keep the
contributions in ϕ1. Moreover, (20) simplifies to

∂2ϕ̃2

∂ξ∂η
+
√

3
3

(
∂2

∂ξ∂η
− ∂2

∂ξ2
− ∂2

∂η2

)
ϕ1ξϕ1η = 0. (35)

While it is clear that ϕ̃2 6= 0, we can cancel the solutions
of the linear operator without loss of generality, hence
ϕ2ξ = ϕ2η = 0, leaving us with

n2ξ =
1
2

ϕ2
1ξ,

n2η =
1
2

ϕ2
1η,

u2ξ =
4
√

3
6

ϕ2
1ξ,

u2η = −
4
√

3
6

ϕ2
1η, (36)

besides contributions ñ2 and ũ2, involving ϕ̃2 and com-
binations of ϕ1ξϕ1η.

At critical composition, the interesting new contribu-
tions appear in the equations for the third-order vari-
ables,

T̂ n3 + T̂ ′n1 +
∂n1

∂τ
+ X̂u3 + X̂(n1u2 + n2u1) + X̂ ′u1 = 0,

T̂ u3 + T̂ ′u1 +
∂u1

∂τ
+ X̂ (u1u2) + X̂ϕ3 + X̂ ′ϕ1 = 0,

X̂2ϕ1 + n3 −
√

3
3

ϕ3 − ϕ1ϕ2 −
4−

√
3

6
ϕ3

1 = 0. (37)

Combining again the parts of these equations which
contain terms that only depend on ξ or on η (besides τ)
yields the typical mKdV equations

∂ϕ1ξ

∂τ
+ (2−

√
3) 4
√

3 ϕ2
1ξ

∂ϕ1ξ

∂ξ
+

33/4

2
∂3ϕ1ξ

∂ξ3
= 0,

∂ϕ1η

∂τ
− (2−

√
3) 4
√

3 ϕ2
1η

∂ϕ1η

∂η
− 33/4

2
∂3ϕ1η

∂η3
= 0,

(38)

for the right- and left-propagating solitary waves, respec-
tively. Now the nonlinearity is cubic.
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Additional information can be found in the terms
which contain both ξ and η (in addition to τ), yielding

∂2ϕ̃3

∂ξ∂η
+

∂

∂ξ

{[
∂P

∂η
− 6

√
3− 5
12

ϕ2
1η

]
∂ϕ1ξ

∂ξ

}

+
∂

∂η

{[
∂Q

∂ξ
− 6

√
3− 5
12

ϕ2
1ξ

]
∂ϕ1η

∂η

}
+ R = 0. (39)

Here R represents all the terms in which the variables ξ
and η are fully mixed, in a way which cannot contribute
to the determination of P and Q. Most of these rather
complicated terms depend on finding expressions for ñ2,
ũ2 and ϕ̃2. This can only be done once (35) has been
solved for ϕ̃2, and this in turn relies upon the solutions
to (38).

The second and third terms in (39) will generate secu-
lar contributions at the next higher order. These are to
be annulled, leading to

∂P

∂η
=

6
√

3− 5
12

ϕ2
1η,

∂Q

∂ξ
=

6
√

3− 5
12

ϕ2
1ξ. (40)

Thus, with (40), the phase shifts can also be determined.
Because mKdV equations like (38) are invariant for a

sign inversion of ϕ1ξ or ϕ1η, the one-soliton solutions of
(38) are

ϕ1ξ = ±

√
2× 33/4

2−
√

3
√

vξ sech[κξ(ξ − vξτ)],

ϕ1η = ±

√
2× 33/4

2−
√

3
√

vη sech[κη(η + vητ)], (41)

where the amplitudes are now 4.125√vξ and 4.125√vη,
respectively, and

κξ =

√
2 vξ

33/4
' 0.937

√
vξ,

κη =

√
2 vη

33/4
' 0.937

√
vη. (42)

Note that in (41) the respective ± signs are not coupled.
The phase shifts expressed by P and Q are found from

the substitution of (41) into (40) and integration, yielding

P =
31/8(8 + 7

√
3)

2
√

2
√

vη {tanh[κη(η + vητ)] + 1}

' 8.162
√

vη {tanh[κη(η + vητ)] + 1} ,

Q =
31/8(8 + 7

√
3)

2
√

2
√

vξ {tanh[κξ(ξ − vξτ)]− 1}

' 8.162
√

vξ {tanh[κξ(ξ − vξτ)]− 1} . (43)

Because P and Q are defined in terms of ϕ2
1η and ϕ2

1ξ,
respectively, the polarity of the modes does not play a
role in this aspect of the problem.

FIG. 5. (Color online) Head-on collision for critical plasma
composition, at β = βc, so that mKdV equations are needed
here, for vξ = 0.001 and vη = 0.002 and positive potential
solitons.

As shown in Fig. 5 for two modes of positive polarity,
the behavior is qualitatively reminiscent of what happens
for other β < βc, namely, there are compressive solitons.
Compared to Fig. 2, there are less steep characteristics
and larger widths, as one is now plotting “sech” rather
than “sech squared” solutions. One could also have cho-
sen two modes with negative polarities, and then the rar-
efactive solitons would qualitatively look like those in Fig.
4.

The most interesting difference between the generic
and the critical case is that, in the critical case, the
two mKdV equations (38) admit a combination of posi-
tive and negative modes. This is shown in Fig. 6 for a
weaker right-propagating negative soliton and a stronger
left-propagating positive soliton.

IV. CONCLUSIONS

In this paper we have treated the head-on collision be-
tween two solitons in a nonthermal plasma, taking great
care to analyze in a systematic way the different assump-
tions needed to derive the corresponding nonlinear evo-
lution equations and phase shifts. It is shown that the
typical reductive perturbation expansion restricts one to
the case of equal linear phase speeds used in the coordi-
nate stretching.

For the generic case, the solitons are of KdV type, as
is the case for simple electron-ion plasmas or plasmas
having a more complicated multispecies composition but
without critical parameter values. Both left- and right-
propagating solitons must have the same electrostatic po-
larity, namely that given by the sign of the coefficient, A,
of the nonlinear term in the KdV equation.

If the plasma parameters take on critical values, the
quadratic nonlinearity in the KdV equation disappears
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FIG. 6. (Color online) Head-on collision between solitons of
opposite polarities, for critical plasma composition, at β =
βc, vξ = 0.001 (negative polarity) and vη = 0.002 (positive
polarity).

and the scaling works out in a different way. This leads

to an mKdV equation with cubic nonlinearity. This part
of the problem has not been treated before in the plasma
literature, as far as could be ascertained.

Moreover, since the mKdV equation is invariant for
inversion of the electrostatic polarity, it follows that
combinations of solitons of different polarities now be-
come possible, e.g., a negative right- and a positive left-
propagating soliton. This result has not been pointed out
before in a plasma physics context, and can not occur for
surface solitons on shallow water [2], which are always
compressive.
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