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Effects of Forcing Geometry on Two-Dimensional Weak Turbulence
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Using high-resolution particle tracking velocimetry, we study the effects of the forcing geometry on
the statistics of an electromagnetically stirred thin-layer flow. We consider two forcing arrangements:
one that produces a lattice of vortices as a base flow, and one that produces an array of shear bands.
We find that the vortex flow drives stronger fluctuating kinetic energy while the shear-band flow leads
to more intense fluctuating velocity gradients. We explain our results by considering the spectral
flow of energy in the system. Our results have implications for the design of two-dimensional flow
experiments.

PACS numbers: 47.20.Ky, 47.27.-i

I. INTRODUCTION

Many large-scale geophysical flows can to a degree be
approximated as two-dimensional (2D) [1, 2]. Although
at small scales flows in the atmosphere and oceans are un-
deniably 3D, their lateral extent is so much larger than
their depth that (with the added effects of planetary ro-
tation and density stratification) large-scale motion lies
primarily in the plane. This observation has motivated
the development of 2D fluid mechanics, and particularly
of 2D turbulence, via theory and modeling, computa-
tional studies, and laboratory work. But even though
experimental 2D fluid mechanics is developing rapidly,
the understanding of the quirks of typical experimental
systems is not as well developed as it is for standard 3D
flows [2].
Two dominant systems have emerged for studying 2D

turbulence in the laboratory: thin layers of electrolytic
fluid that are stirred by electromagnetic Lorentz forces
and soap films that flow under gravity [2]. Soap films
are the 2D analog of wind tunnels. They typically have
a mean flow that is large compared with the turbulent
fluctuations, and the turbulence is advected downstream.
In contrast, electromagnetic thin-layer flows are closer in
spirit to the zero-mean-flow turbulence generators such
as von Kármán swirling flows and oscillating grid sys-
tems that have been well studied in recent years for 3D
turbulence [3]. Turbulence is driven in soap films by run-
ning the film through a comb, which plays the role of
the grid in a wind tunnel. In an electromagnetic thin-
layer flow, an electric current is driven through the (elec-
trolytic) fluid, which itself lies above an array of magnets;
the current and magnets together produce Lorentz body
forces that stir the fluid. Intrinsic flow instabilities excite
the turbulent fluctuations.
Because of the tendency of 2D flows to transfer energy

from the injection scale to larger length scales [4–6], the
details of the forcing may matter more in 2D systems
than they do in 3D turbulence. Here, we study how the

∗ nicholas.ouellette@yale.edu

layout of the magnets (and therefore the geometry of the
forcing) in an electromagnetic thin-layer systems affects
the flow field. We consider two magnet arrangements: a
checkerboard pattern (producing a vortex lattice at low
Reynolds number) and parallel stripes (producing paral-
lel shear bands at low Reynolds number). We show that
the magnet layout does indeed affect the velocity statis-
tics. The vortex flow tends to produce stronger velocity
fluctuations, while the shear flow leads to stronger ve-
locity gradients. We interpret these results in terms of
the symmetries of the forcing and the spectral transfer of
energy in the flows. Thus, depending on what one wants
to study, different magnets layouts will be appropriate.

We begin below in section II by describing our ap-
paratus and experimental methods in detail. Then, in
section III, we present our results. We measure how the
injected energy is distributed between the mean flow and
the velocity fluctuations, and how the gradient statistics
depend on the magnet layout. We also show how the
transfer of energy between length scales changes in the
two flows. Finally, in section IV, we summarize our find-
ings and draw conclusions.

II. EXPERIMENTAL METHODS

A. Apparatus

Our experimental apparatus, sketched in Fig. 1 and
described in detail elsewhere [7], is similar to other elec-
tromagnetic thin-layer flows [8–13], though it is larger
than many. The lateral size of the driven area measures
86 cm × 86 cm. The working fluid is a solution of 16% by
mass NaCl in water, with a density of ρ = 1116 kg/m3

and a kinematic viscosity of ν = 1.24× 10−6 m2/s. The
depth of this layer was approximately 5 mm. A second
layer of pure water (also 5 mm deep) lies above the elec-
trolyte in order to provide an interface with vanishing
surface tension on which we float tracer particles to mea-
sure the flow field. The electrolyte sits on top of a glass
bottom plate; beneath the glass is a square 34 × 34 grid
of neodymium-iron-boron (NdFeB) grade N52 magnets,



2

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

(b)(a)

+

+

+

+

+

−

−

−

−

−

+

+

+

+

+

−

−

−

−

−

+

+

+

+

+

−

−

−

−

−

+

+

+

+

+

 

 
(c)

 

 
(d)

J

x

y

 

 
(f)

 

 
(e)

L
f

∇
 ×

 u
 (

s
−1

)

−2

0

2

∇
 ×

 u
 (

s
−1

)

−2

−1

0

1

2

∇
 ×

 u
 (

s
−1

)

−1

0

1
∇

 ×
 u

 (
s

−1
)

−1

0

1

FIG. 1. (color online) Forcing geometry and typical flow
fields. Magnets are arranged (a) with polarity alternating
in one-dimensional rows for shear-band flow, or (b) in two
dimensions like a checkerboard for vortex flow. Here + and
− indicate the magnetic field direction. A forcing current J

flows in the x̂ direction; when it is large, instantaneous flow
fields (here represented with vorticity) are apparently disor-
dered in both (c) shear-band flow and (d) vortex flow. Here
each dot is one tracked particle, and its color indicates its
vorticity ∇ × u. The influence of the underlying forcing ge-
ometry is apparent in an ensemble average of flow fields in (e)
shear-band flow and (f) vortex flow. Color indicates vortic-
ity. All panels show the same field of view, about 30% of the
measurement region and about 3% of the fluid surface.

spaced 2.54 cm on center. Each magnet is cylindrical,
with a diameter of 12.7 mm, a thickness of 3.2 mm, and
a peak magnetic field of about 0.3 T [14]. By passing a
steady electrical current through the electrolyte, we pro-
duce steady Lorentz forces in the bulk of the fluid and
cause it to flow. By varying the magnitude of the current,
we can vary the bulk Reynolds number Re = ULf/ν,
where Lf = 2.54 cm is the center-to-center magnet sepa-
ration distance and U is the measured root-mean-square
velocity. As long as the Reynolds number is not too large
(below about 200 for our apparatus), the flow is nearly
entirely in the plane and is 2D [7]. We note that this
Reynolds number is essentially a nondimensional mea-
sure of the strength of the electric current, since the mag-
net spacing Lf , the kinematic viscosity, and the magnetic
field are all fixed and we vary the velocity only by chang-
ing the current [14].

Our magnets always lie on a square grid, but their po-

larities can be changed to vary the flow structure. As
shown in Fig. 1, we have studied two configurations:
stripes of magnets, which produces shear bands at low
Reynolds number, and an alternating checkerboard pat-
tern, which produces a vortex lattice. The stripes inject
energy into the flow at a length scale that is well defined
in only one direction, whereas the checkerboard injects
energy at a length scale that is well defined in both di-
rections. At high Reynolds number, instantaneous flow
fields appear disordered for both configurations. Never-
theless, the statistical signature of the underlying forcing
geometry remains and is apparent in time-averaged mean
flow fields (also shown in Fig. 1).

B. Particle Tracking

We measure the flow quantitatively using particle
tracking velocimetry (PTV). We seed the flow with small
(51 µm diameter) fluorescent polystyrene spheres. With
a specific gravity of 1.05, these tracer particles float at
the interface between the salty layer and the pure wa-
ter layer; since this interface does not have a bulk sur-
face tension, there are no long-range forces coupling the
particles. We illuminate the particles with blue light-
emitting diodes, and record their green fluorescence from
above with a 4 megapixel camera at a rate of 60 frames
per second. We process the movies and construct particle
trajectories using a predictive tracking method described
in detail elsewhere [15].

In the present study, we performed experiments at sta-
tistically steady conditions, allowing the flow to stabilize
before recording data. We then track roughly 30 000 par-
ticles per frame for 5000 frames (between 3 and 37 eddy
turnover times, depending on the Reynolds number) in
each experiment, ensuring that the flow field is well sam-
pled in space and time. We compute particle velocities
by convolving the measured trajectories with a Gaussian
smoothing and differentiating kernel [16].

C. Velocity Field Conditioning

Despite taking care to minimize any forcing or flow in
the depth direction, some residual three-dimensionality
will always remain in any physical apparatus due to ef-
fects such as Ekman pumping [7]. Thus, we post-process
our velocity field data in order to remove the (small) third
component of the velocity.

Since we observe our particles only in a single plane, we
cannot directly measure the third component of the field.
But any flow in the depth direction will be manifest in
the in-plane velocity field as an apparent compressibil-
ity. This component of the field can be removed via a
Helmholtz decomposition [17], since any vector field that
vanishes at its boundary (which may be at infinity) can
be uniquely decomposed into a compressible component
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and a rotational component. In two dimensions, the mea-
sured velocity field can be written as

umeas = ∇Φ− ẑ ×∇Ψ, (1)

where

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
. (2)

Since umeas is a velocity field, Φ is the velocity potential
and Ψ is the streamfunction. The first term on the right-
hand side of equation 1 is irrotational in two dimensions,
and the second is solenoidal; that is,

∇× (∇Φ) = 0, (3)

and

∇ · (ẑ ×∇Ψ) = 0. (4)

Removing the irrotational (compressible) component of
the measured 2D velocity field will leave a field u free
of apparent compressibility and therefore free of out-of-
plane motion.
Our velocity fields, however, do not vanish at the

boundary of our measurement region since we measure
only the central 10% of the flow in order to avoid edge
effects. Thus, our effective boundaries are open because
|u| 6= 0 at the edge of the field of view. With open bound-
aries, decomposition into incompressible and irrotational
components remains possible but is no longer unique due
to a possible harmonic component that is both solenoidal
and irrotational and can therefore be assigned to either
term in Eq. 1 [18]. We seek flow fields that are incom-
pressible in the plane but that contain as much of the
measured energy as possible, so we assign the harmonic
component to the second (incompressible) term in Eq. 1.
To do this, we solve the Poisson equation

∇2Φ = ∇ · umeas (5)

for the minimal velocity potential, subject to the con-
dition that it vanishes at the boundary. We solve this
equation numerically using finite-element tools that al-
low gradient calculations at the particle locations and
that do not require imposing an arbitrary grid. Once
Φ is known, we calculate the compressible component of
the flow and subtract it from our measurements to obtain
the incompressible velocity field

u = umeas −∇Φ. (6)

For all data shown below, the energy associated with ∇Φ
is less than 4% of the total flow energy.
We note that one can also remove apparent compress-

ibility via a least-squares projection of umeas onto a set
of incompressible basis functions [7]. Although this pro-
jection method is highly accurate, it can be very com-
putationally expensive, especially for large numbers of
tracer particles. The Helmholtz decomposition method

−1 0 1
10

−2

10
−1

10
0

pr
ob

ab
ili

ty
 d

en
si

ty

 

 
(a)

−2 0 2
10

−3

10
−2

10
−1

10
0

 

 
(b)

−1 0 1
10

−2

10
−1

10
0

u
mean

 (cm/s)

pr
ob

ab
ili

ty
 d

en
si

ty

 

 
(c)

−2 0 2
10

−3

10
−2

10
−1

10
0

u
fluct

 (cm/s)

 

 
(d)

FIG. 2. (color online) Distributions of velocity components
for (a) mean flow in the shear-band flow, (b) fluctuations in
the shear-band flow, (c) mean flow in the vortex flow, and (d)
fluctuations in the vortex flow. Solid lines show distributions
of u · x̂, and dashed lines show distributions of u · ŷ. The
distributions come from experiments with Re = 243 (shear-
band flow) and Re = 244 (vortex flow). The shear bands
themselves flow along the ŷ direction, as is evident from the
bimodal distribution of its mean flow.

described here is much faster, and is sufficiently accurate
for our purposes.
Finally, as shown in Fig. 1, we Reynolds-decompose

our measured flow fields, splitting them into a mean
component, computed as the time average of the in-
stantaneous velocity fields, and a fluctuation around this
mean. Note that the mean flow fields are not uniform or
isotropic for either magnet arrangement. We show the ve-
locity statistics of the mean and fluctuating components
for both flows in Fig. 2.

III. RESULTS AND DISCUSSION

A. Energy

Turbulent flow requires large velocity fluctuations ;
large velocity alone does not lead to developed turbu-
lence. Measuring how much of the injected energy goes
towards producing mean flow versus how much drives
fluctuations for different forcing configurations can thus
give us insight into how the forcing affects the efficiency
of generating turbulence.
To this end, we plot in Fig. 3 the mean kinetic energy

per unit mass 〈E〉 = 〈u2〉/2, where the average is taken
over space and time, in both the mean flow and the fluc-
tuations as a function of Reynolds number for our two
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FIG. 3. (color online) Average kinetic energy 〈E〉 for the (a)
fluctuating and (b) mean components of the flow field as a
function of Reynolds number. Data are shown for the vortex
flow (◦) and the shear-band flow (�). Error bars indicate
statistical variation as described in the main text; for some
data, the error bars are smaller than the plot symbols.

flows. The error bars here and below are computed from
the statistical variation between the averages of subsets
of our full data sets. In all cases, 〈E〉 increases with Re,
as it must given our definition of Re. But the partition-
ing of energy between the mean flow and the fluctuations
is not the same for the two flows we consider. The energy
injected into the mean flow is smaller for the vortex flow
than it is for the shear-band flow at all Re; the opposite
effect is present (though weakly) for the energy in the
fluctuating component of the velocity field. Thus, the
vortex flow is slightly more efficient at generating veloc-
ity fluctuations than the shear-band flow is.

B. Velocity Gradients

Energy, however, is not the only quantity of interest
in complex flow. In many cases, we desire a flow with
strong velocity gradients. We therefore also measured
the velocity gradients, again separating them into their
mean and fluctuating components.

In Fig. 4, we show results for the vorticity ω = ∇× u

and enstrophy Ω2 = |∇ × u|2/2 in the two flows. We
find, perhaps counter-intuitively, that the vortex flow
produces less fluctuating enstrophy than the shear-band
flow does, although (unsurprisingly) there is more en-
strophy in the mean component of the vortex flow. As
shown in Fig. 4(c-d), where we plot the probability den-
sity functions of vorticity for the two flows at a fixed Re,
the shear-band flow also shows an enhanced likelihood of
very large fluctuations of vorticity relative to the vortex
flow. Thus, it seems that the shear-band flow drives more
intense velocity gradients than the vortex flow does.
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FIG. 4. (color online) Average enstrophy 〈Ω2〉 for the (a)
fluctuating and (b) mean components of the flow field. Data
are shown for the vortex flow (◦) and the shear-band flow
(�). Probability density functions of the (c) fluctuating and
(d) mean vorticity are also shown. The distributions come
from experiments with Re = 243 (shear-band flow) and Re =
244 (vortex flow). Error bars indicate statistical variation as
described in the main text; for some data, the error bars are
smaller than the plot symbols.

Our conclusions drawn from the vorticity data are
supported by measurements of the rate of strain Sij =
(∂iuj + ∂jui)/2, shown in Fig. 5. We find that, similar
to the vorticity, the shear-band flow produces stronger
fluctuating strain and less mean strain than the vortex
flow. Thus, we find that the shear-band forcing leads to
a flow with strong fluctuating velocity gradients, while
the vortex-lattice forcing creates a flow with more turbu-
lent kinetic energy. Let us also note that measurements
of the velocity increments show nearly no differences be-
tween the two flows.

C. Spectral Fluxes

To understand these results in more detail, we turn to a
spectral description of these flows to characterize how en-
ergy is driven away from the injection scale. Rather than
taking a fully spectral approach by calculating, for exam-
ple, energy spectra, we instead turn to the recently devel-
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FIG. 5. (color online) Average squared strain rate 〈SijSij〉,
where summation is implied over repeated indices, for the (a)
fluctuating and (b) mean components of the flow field. Data
are shown for the vortex flow (◦) and the shear-band flow
(�). Error bars indicate statistical variation as described in
the main text; for some data, the error bars are smaller than
the plot symbols.

oped tool of so-called filter-space techniques (FSTs) that
allow the direct measurement of spectral energy fluxes
[19–25]. We have previously applied FSTs to this flow
and studied their Lagrangian properties [26].
The idea of an FST is simple, and relies on a posteri-

ori low-pass filtering of the velocity. Let u
(L)
i be the ith

component of the velocity field filtered at spatial scale L,
so that spatial variation on scales smaller than L is sup-
pressed. The equation of motion for the filtered kinetic
energy E(L) = [u(L)]2/2 can then be written as [20]

∂E(L)

∂t
= −

∂J
(L)
i

∂xi

− ν
∂u

(L)
i

∂xj

∂u
(L)
i

∂xj

−Π(L), (7)

where summation is implied over repeated indices. The
first term on the right-hand side of equation 7 is the di-

vergence of a spatial flux J
(L)
i , and acts to move energy

in space. The second term represents the direct dissi-
pation of (filtered) energy by viscous effects. Both are
directly analogous to terms that appear in the equation
of motion for the full (unfiltered) kinetic energy. The last
term, however, has no analog and accounts for the cou-
pling of the resolved scales to the filtered scales, and thus
the spectral flux of energy between scales smaller than L
and scales larger than L. It is given by

Π(L) = −
[

(uiuj)
(L)

− u
(L)
i u

(L)
j

] ∂u
(L)
i

∂xj

. (8)

Defined this way, Π(L) > 0 denotes transfer to smaller
scales, and Π(L) < 0 denotes transfer to larger scales.
We use a Gaussian low-pass filter to implement the FST
[26].

In Fig. 6(a), we show the mean spectral energy flux
〈Π(L)〉, computed for the whole flow field over a range of
Reynolds numbers, as a function of filter scale L for the
vortex flow. For all Reynolds numbers, the 〈Π(L)〉 curves
cross zero at the same length scale Lc ≈ 1.25Lf , as one
would expect given that the length scale of the forcing
is fixed by the geometry of the apparatus. We refer to
Lc as the energy crossover scale, and note that it gives
the effective energy injection scale for the system. For
L > Lc, energy is driven to larger length scales (negative
energy flux), in a nascent inverse energy cascade. For L <
Lc, we observe a (weaker) transfer of energy to smaller
scales.

We also computed the spectral energy flux for the mean
flow and the fluctuations, shown in Fig. 6(b-c). The mean
flow shows much weaker spectral flux than the whole flow
(note the different vertical scale), as one would expect
given that the mean flow is by definition stationary and
locked to the forcing geometry. Note that the forward
and reverse transfer peaks are of similar magnitude. The
spectral-flux curves computed from the fluctuating veloc-
ities are much more similar in size and shape to those of
the whole flow. We note that the energy crossover scale
Lc measured from the fluctuating velocities is slightly dif-
ferent (roughly 6% smaller) from the value computed for
the whole flow. Thus, even though the magnet spacing
Lf is set by the geometry of the apparatus, the energy
crossover scale is a dynamical parameter and is not fixed.
We do find, however, that Lc remains constant as a func-
tion of Reynolds number. Finally, let us note that the
mean energy flux measured for the total flow field is not
given by the sum of the fluxes measured from the mean
and fluctuating components separately. This mismatch
is due to the appearance of coupling terms in the spectral
flux equations between the mean and fluctuating parts of
the flow field.

The spectral energy flux computed from the shear-
band flow, shown in Fig. 7, has features that are qual-
itatively similar to the vortex flow. We again find that
the energy crossover scale Lc is constant as a function
of Reynolds number. Its value, however, is somewhat
different, even though the magnet spacing is unchanged.
We find that Lc ≈ 1.75Lf for the whole flow; a second

minimum in |〈Π(L)〉| is also apparent for all Reynolds
numbers at approximately 2Lf , corresponding to the full
wavelength of the shear bands. Above this scale, we again
see inverse energy transfer, while we find forward trans-
fer for L < Lc. The spectral energy flux computed for
only the mean flow field is also similar to the vortex flow,
though again with a different energy crossover scale. The
mean flow shows 〈Π(L)〉 > 0 for scales smaller than the
crossover scale and appears to carry the majority of the
forward energy flux.

The spectral energy flux computed from the fluctuat-
ing component of the shear-band flow, however, is qual-
itatively different from the vortex flow. First, we find
that 〈Π(L)〉 < 0 for all scales, even for L < Lc. Although
this behavior is expected for L > Lc, it is surprising for
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FIG. 6. (color online) Mean spectral energy flux 〈Π(L)〉 in the vortex flow for (a) the entire flow field, (b) the mean flow, and
(c) the fluctuations. The different curves are for different Reynolds numbers, as indicated by the colorbar. The scale at which

〈Π(L)〉 = 0 in the entire flow, which we define as the energy crossover scale, is indicated by a dashed line in all three panels.

L < Lc. 〈Π(L)〉 < 0 for L < Lc implies some small-
scale source of fluctuating kinetic energy. The nature of
this source is at present unclear: it might be due to a
weak small-scale energy source due to instabilities of the
shear-band forcing or with coupling between the fluctu-
ating and mean components of the flow. We leave its
detailed investigation for future work. We also find that
the energy crossover scale for the fluctuations is much
smaller (nearly 25%) than it is for the whole flow, a vari-
ation that is much larger than it is for the vortex flow.
Thus, the dominant dynamical length scale in the shear-
band flow is smaller compared to its value for the whole
flow than it is for the vortex flow.

D. Discussion

To summarize our findings, we find that the vortex flow
shows more fluctuating kinetic energy but weaker fluc-
tuating gradients than the shear-band flow over a sim-
ilar range of forcing strengths. The dynamical energy
crossover scale Lc varies only slightly between the fluctu-
ating field and the whole flow for the vortex lattice, while

the difference is much larger for the shear-band flow, with
Lc for the fluctuations almost 25% smaller than it is for
the whole flow.

To explain these differences, we first consider the forc-
ing symmetries of the two flows. The checkerboard mag-
net arrangement of the vortex flow has a discrete trans-
lational symmetry in both the x̂ and ŷ directions. Thus,
the flow is highly constrained by the forcing, and fluctu-
ations are not completely free to develop except at very
high Reynolds numbers; the flow tends to lock onto the
magnet lattice quite strongly for this arrangement [27].
The situation is different for the shear-band flow. In this
case, the flow is free to develop along the shear bands,
allowing the production of smaller length scales and thus
larger velocity gradients.

Our measurements of the spectral energy fluxes also
shed light on why the vortex lattice shows more kinetic
energy while the shear-band flow shows stronger gra-
dients. At any individual Reynolds number, the total

amount of energy injected into the flow is the same for
both geometries, given how we have defined the Reynolds
number, but the energy crossover scale Lc is measured to
be larger for the shear-band flow. Thus, it is reasonable
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FIG. 7. (color online) Mean spectral energy flux 〈Π(L)〉 in the shear-band flow for (a) the entire flow field, (b) the mean flow,
and (c) the fluctuations. The different curves are for different Reynolds numbers, as indicated by the colorbar (which matches
the colorbar in fig. 6). The energy crossover scale is indicated by a dashed line in all three panels.

to hypothesize that more of the injected energy flows
to smaller scales in the shear-band flow, where it drives
small-scale motion and therefore larger gradients. More
of this energy, however, is directly dissipated by small-
scale viscous effects. Further study will be required to
understand the detailed implications of our finding that
the mean energy flux due to the fluctuating component
of the velocity field is always negative for the shear-band
flow. In contrast, the vortex flow drives most of its in-
jected energy to larger scales via an inverse cascade. At
these larger scales, viscous forces are weak, and thus more
kinetic energy persists in the flow field, since the large-
scale friction in our flow is also weak. On the other hand,
the velocity gradients associated with these larger scales
are smaller, leading to the phenomena we observe.

IV. SUMMARY AND CONCLUSIONS

We have studied the statistics of the weak turbulence
produced in a thin electromagnetically stirred fluid layer
under two different forcing configurations: a checker-
board lattice of magnets that produces a steady vortex

flow at low Reynolds number and stripes of magnets that
produce steady shear bands. We showed that the geome-
try of the forcing has measurable consequences. The vor-
tex flow leads to more fluctuating kinetic energy, while
the shear-band flow drives stronger gradients. These re-
sults can be explained by considering the symmetries of
the forcing and the spectral transfer of energy.

Our results show that the geometry of the forcing is
a non-negligible factor in determining the dynamics of
the flow field, since the Reynolds number in this type of
apparatus must be kept low to avoid three-dimensional
secondary flows [7] and thus an asymptotic regime inde-
pendent of forcing cannot be reached. Thus, we suggest
that the forcing can be chosen in experiments to optimize
the effects of interest (for example, strong large-scale mo-
tion or large velocity gradients).
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