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Abstract

In fluids and plasmas with zonal flow reversed shear, a peculiar kind of transport barrier appears

in the shearless region, one that is associated with a proper route of transition to chaos. These

barriers have been identified in symplectic nontwist maps that model such zonal flows. We use

the so-called nontwist standard map, a paradigmatic example of nontwist systems, to analyze the

parameter dependence of the transport through a broken shearless barrier. On varying a proper

control parameter, we identify the onset of structures with high stickness that give rise to an

effective barrier near the broken shearless curve. Moreover, we show how these stickness structures,

and the concomitant transport reduction in the shearless region, are determined by a homoclinic

tangle of the remaining dominant twin island chains. We use the finite-time rotation number,

a recently proposed diagnostic, to identify transport barriers that separate different regions of

stickness. The identified barriers are comparable to those obtained by using finite-time Lyapunov

exponents.
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I. INTRODUCTION

Internal transport barriers that appear in Hamiltonian dynamical systems have been

proposed as an explanation for the cessation or reduction of transport in physical systems

that describe fluids (e.g. [1, 2]) and plasmas (e.g. [3]). These barriers may have various

physical or dynamical origins, yet they can and have been used to control experiments and

sometimes to improve desired confinement of trajectories. Thus, there is justification for

studying these barriers in the general context of Hamiltonian systems, which we do here.

A peculiar kind of transport barrier exists in fluids and plasmas with a nonmonotonic

equilibrium zonal flow, which give rise to orbit topologies that can only exist with reversed

shear [4], i.e., with a nonmonotonic rotation number profile. The barriers appear in the

shearless region of nontwist Hamiltonian dynamical systems and present their own typical

characteristics with a proper route of transition to chaos [2]. They possess robustness –

persisting even for high amplitude perturbations – and have an effective capacity to reduce

the transport even after invariant tori are broken [5]. Invariant barriers persist until the

destruction of the shearless invariant curve [4], but the capacity to reduce transport remains

and is credited to the stickiness around islands that remain in the shearless region [6].

Such barriers have been numerically and experimentally identified in several nontwist

dynamical systems such as those that describe magnetic field lines in toroidal plasma devices

with reversed magnetic shear [7], the advection of a passive scalar by an incompressible shear

flow [8], travelling waves in geophysical zonal flows [1, 4], the E×B-drift motion of charged

particles in a magnetized plasma under the action of a time-periodic electric field from an

electrostatic wave [4, 9], and laser-plasma coupling [10].

Symplectic maps have been used for a very long time to model generic features of Hamil-

tonian dynamical systems that describe a variety of physical phenomena [11, 12]. Such maps

may arise from intersections of phase space trajectories with a given surface of section, or

they may appear as stroboscopic samplings of a trajectory of a time-dependent system at

fixed time intervals. Symplectic maps are convenient to investigate because one can compute

a large number of iterations using only a relatively small amount of CPU time, and do so

without propagating significant numerical error. This is particularly important in investi-

gations of Hamiltonian transport that require computation of phase space trajectories over

very long time intervals. More recently there has been significant interest in nontwist maps,
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for which the twist condition, a condition discussed in Ref. [13], is not fulfilled for all points

in the domain of interest. Moreover, nontwist maps also appear in many dynamical systems

of physical interest, often related to continuous systems like fluids and plasmas. The most

studied symplectic nontwist map is the standard nontwist map, introduced in Ref. [2], which

has been effectively used to describe the local transport approximation in phase space of

several systems.

The mentioned barrier properties have been theoretically derived for the standard non-

twist map (SNTM) and interpreted as a consequence of successive bifurcations of the shear-

less invariant curve [2, 4]. This scenario shows for the nontwist standard map the relevance

of the location of the shearless region where the transport reduction occurs. Thus, for all

nontwist systems, the transport reduction should be observed in the shearless region and

not necessarily in high shear regions as for other barriers proposed to exist in twist systems

[14].

In nontwist systems, after the shearless curve breakdown, chaotic orbit stickiness is high in

the shearless region and, consequently, the chaotic transport is reduced in this region. For the

standard nontwist map, this local transport reduction has been associated with an effective

transport barrier and characterized in terms of the orbit escape time and transmissivity

[6]. Moreover, it was suggested that the sensitive dependence of these quantities has the

same parameter dependence as the dominant crossings of stable and unstable manifolds [6].

However, despite the discovery of the effective barriers and their interpretations in terms of

stickness, further investigations will better elucidate the dependence of this scenario on the

main control parameters.

In this paper we determine the control parameter dependence for the emergence of effec-

tive transport barrier caused by the stickness enhancement. To investigate this parameter

dependence we characterize the effective barriers by their stickness . To evaluate the stick-

ness we calculate the finite-time rotation number (FTRN), a recently proposed indicator

[15]. We identify remaining stickiness structures that reduce the transport in the phase

space region through the broken shearless barrier, for some parameter ranges in which the

transport barrier of the SNTM is broken. We show how these sticky structures are de-

termined by homoclinic tangle of the dominant dimerized islands (twin island chains that

straddle the shearless invariant curve), and how these structures change with the control

parameters and modify the observed transport within the shearless region.
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Moreover, we also identify these structures, in phase space, by mapping out the FTRN in

the shearless region, to identify barriers that separate different regions of stickness structures

in phase space [15]. Additionally, we show that these identified barriers are similar to those

obtained by using the finite-time Lyapunov exponent (FTLE) [15]. The FTLE and FTRN

allow us to identify structures that separate different regions of stickiness in phase space.

Other indicators have been used in Hamiltonian systems to delineate regions with other

dynamical properties, besides the stickiness, as Lagrangian coherent structures [16] and

resonant zones [17], but we note the convenience and simplicity of the FTLE for identifying

the stickiness structures and effective barrier onset.

The rest of the paper is organized as follows: in Section II we describe two qualitatively

different transport regimes related to the separatrix reconnection and breakup of shearless

curves in the SNTM. Section III is devoted to a characterization of the transport barriers,

which are stickiness structures of the SNTM. Section IV uses the infinite-time rotation num-

ber to evidence period-three satellite islands just after the formation of transport barriers.

Section V introduces the finite-time rotation number, an indicator for stickiness structures.

Section VI uses the finite-time rotation number ridges to visualize transport-related escape

channels. Finally Section VII contains our Conclusions.

II. STANDARD NONTWIST MAP

A paradigmatic dynamical system to study the formation and breakup of internal trans-

port barriers is the so-called standard nontwist map (SNTM) [2]

xn+1 = xn + g(yn+1) = xn + a(1− y2n+1), (1)

yn+1 = yn − b sin(2πxn) , (2)

where x ∈ [−1/2,+1/2), y ∈ R, a ∈ (0, 1), and b > 0. The function g(y) is the winding

number of the unperturbed phase-space trajectories lying on nested tori, its derivative being

the shear function. If the function g is either monotonically increasing or decreasing the

corresponding shear does not change sign, which amounts to the following twist condition

|g′(y)| > 0. The loci where g′(yS) = 0, i.e. where the shear changes sign, define shearless

curves in phase space. The SNTM violates the twist condition by having one extremum at

y = yS = 0, at which the shear changes sign.
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FIG. 1: (color online) Phase portraits of the standard nontwist map (1)-(2) for b = 0.6 and (a)

a = 0.364; (b) a = 0.8; (c) a = 0.80552 and (d) a = 0.8063.

In the unperturbed case (b = 0) the condition yS = 0 defines a shearless curve {(x, y)| −

1/2 < x ≤ 1/2, y = yS = 0}. The quadratic form of g around yS = 0 leads to two invariant

curves, at y = ±y0 with the same winding number a(1 − y20) at both sides of the shearless

curve. As b 6= 0 two periodic island chains appear at the two invariant curve locations, and

the former shearless curve becomes a shearless invariant torus separating these two island

chains.

A representative example is depicted in Fig. 1(a), where a Poincaré section of the SNTM

is depicted for b = 0.6 and a = 0.364 (in the following we shall fix this value of b and vary only

the parameter a). We observe two island chains with three islands each, with winding number

1/3. In the unperturbed map the corresponding invariant curves are located at y0 = ±0.42.

The local maxima of the perturbed winding number profile define a shearless invariant curve,

whose existence can be inferred between the two island chains. The island chains bordering

the shearless invariant curve are transport barriers, since chaotic trajectories above and
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below do not mix at all (in Fig. 1(a) they have been represented in different colors).

If the parameters are further modified another noteworthy feature of nontwist maps can

emerge, depending on the parameter space region. In one scenario (generic reconnection)

the island chains with the same winding number approach each other and their unstable

and stable invariant manifolds suffer reconnection. In the region between the chains, there

appear new invariant tori called meandering curves (which are not KAM tori, though, since

the latter must be a graph over x, while meanders are not). The periodic orbits remaining

eventually coalesce and disappear, leaving only meanders and the shearless torus. This set

is a robust transport barrier, as illustrated in Fig. 1(b), where two chaotic orbits on different

sides of the barrier are kept segregated by a shearless curve. The other possible reconnection

scenario is nongeneric and involves the formation of vortex pairs, which is only possible in

nontwist maps with symmetries.

Further growth of the a-parameter causes the breakup of the transport barrier and the

consequent mixing of the chaotic orbits formerly segregated on both sides of the shearless

invariant torus [Figs. 1(c) and (d)]. However, there are subtle differences between Figures

1(c) and (d), which are ultimately related to the invariant manifold of unstable periodic

orbits (saddles) embedded in the chaotic orbit. As we shown in Ref. [6] the manifold

structure determines the different transport properties along the globally chaotic layer,

III. TRANSPORT BARRIER

This effective transport barrier is a consequence of a topological reordering of the invariant

stable and unstable manifolds of periodic orbits embedded in the chaotic region that follows

the breakup of the last shearless curve [18]. This chaotic region coexists with the remnants

of “twin” period-11 island chains [6]. The stable and unstable manifolds of the saddle points

in the chaotic region therein suffer a reconnection at a value of a between those used to

obtain Figs. 1(c) and (d). Before this reconnection, the manifolds belonging to the upper

and lower period-11 island chains cross each other many times (intercrossing), forming an

escape channel responsible for the high transmissivity displayed by Fig. 1(c), as illustrated

by Fig. 2(a), where the stable manifolds of the upper and lower islands are depicted in red

and blue, respectively.

On the other hand, in Fig. 2(b) [which corresponds to the Poincaré section of Fig. 1(d)]
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(a)

(b)

FIG. 2: (color online) Invariant stable manifolds of periodic orbits embedded in the chaotic region

after the breakup of the last shearless curve for the standard nontwist map with b = 0.6 and (a)

a = 0.80552 and (b) a = 0.8063. The red and blue curves represent manifolds of the upper and

lower period-11 island chain remnants.

the manifolds of the upper (lower) island chain have chiefly crossings with manifolds of the

upper (lower) chain (intracrossings), hence diminishing transmissivity, while still allowing

for diffusion. The changing manifold structure responsible for the local decrease of cross-
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barrier diffusion determines the local stickiness, the characterization of which is the purpose

of the Sections IV and VI.

Another illustration of the manifold reconnection forming transmissivity channels is pro-

vided by the numerical experiment depicted in Fig. 3. Here we considered a grid of initial

conditions and computed for each point the average y-value for a given time tesc = 100. If

< y > was positive (negative) the corresponding initial condition was plotted in red (blue).

If there were a perfect transport barrier, like a shearless curve between the upper and lower

twin chains, then there would be a clearcut separation between points evolving to positive

large y-values (red) and negative large values of y (blue). After the breakup of the last

shearless curve, the case of high transmissivity [Fig. 3(a)] clearly shows the existence of

incursive fingers of the blue region, showing that there are initial conditions above the up-

per chain going to negative y through the blue channels. The low-transmissivity [Fig. 3(b)]

suggests that the manifolds after reconnection act as effective transport barriers, with very

small diffusion between the colors and few identified incursive fingers. In the next Section

we consider the FTRN as a means for diagnosing this situation.

IV. ROTATION NUMBER

Let x 7→ M(x) be a map of the circle S1 onto itself. If the dynamical system is a

continuous-time flow, then M can be thought of as a Poincaré map obtained through suc-

cessive intersections of the trajectories with a given surface of section in the phase space.

The rotation number for the trajectory starting at the point x0 is defined as

ω = lim
n→∞

Π · (Mn(x0)− x0)/n, (3)

which is lifted to R and Π is a suitable angular projection. According to a theorem of

Poincaré, if f is orientation-preserving this limit exists for every initial condition x0 ∈ S1

and does not depend on x0 as well [19].

As a simple example, let us consider a rigid rotation on the circle S1 given by M(x) =

x+ w. The corresponding rotation number is ω = w. If w is a rational number p/q, where

p and q are coprime integers, the trajectory represents a period-q orbit of the map M , and

p is the integer number of times the orbit cycles through the x-direction before returning to

its initial position. If w is irrational, then the ensuing (quasiperiodic) orbit densely covers
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(a)

(b)

FIG. 3: (color online) Fixed-time average y-values for orbits evolving from a grid of initial conditions

under the standard nontwist map, with b = 0.6 and (a) a = 0.80552 and (b) a = 0.8063. If < y >

is positive (negative) the corresponding initial condition is plotted in red (blue).

the circle S1. The rotation number is not defined for chaotic orbits, for the limit in (3) does

not exist in general.

The rotation number profiles of the period-11 island chain yield information about the

topological mechanism underlying the manifold reconnection that we described in Section

III, and which creates an effective transport barrier. For this sake we have considered a single

island of this chain [left panels in Fig. 4] and the local rotation number profiles corresponding

to cross sections of them taken at x = 0 [right panels in Fig. 4]. Each island of the primary

period-11 chain of the high transmissivity case [Fig. 4(a)] is characterized by having an outer

secondary period-7 chain and an inner secondary period-3 chain.

As we approach the point of manifold reconnection [Fig. 4(c)] the period-7 chain is en-
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FIG. 4: Left: one island of the period-11 primary chain in the chaotic region after the breakup

of the last shearless curve for the standard nontwist map with b = 0.6 and (a) a = 0.80552; (c)

a = 0.8060; (e) a = 0.8061; (g) a = 0.8063. Right: corresponding local rotation number profiles at

x = 0 cross-sections.

gulfed by the surrounding chaotic sea, and an outer period-10 chain emerges. The inner

period-3 chain, however, seems to disappear. Its reappearance [Fig. 4(e)] occurs slightly

after the transport barrier is formed, being also present in the low-transmissivity situation

[Fig. 4(g)]. This transition appears in Fig. 5 marked by the two black dots that indicate the

period-3 chain death and birth, for a critical parameter a, in different y-values.

The topological changes occurring while the manifolds reconnect can be also appreciated

from the point of view of the rotation number profiles in the right panels of Fig. 4 or, al-

ternatively, by the diagram depicted in Fig. 5, where the values of the rotation number are
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FIG. 5: (color online) Rotation number (in colorscale) as a function of y for x = 0 cross-sections

and different values of a for the standard nontwist map, keeping b = 0.6. White pixels stand for

values for which the rotation number is not well-defined, since the corresponding orbit is chaotic.

shown in colorscale as a function of y for continuous variation of a-values. As a common

trend, the formation of transport barrier through manifold reconnection is followed by in-

creasingly high values of the rotation number. This fact suggests that the transport barrier

itself may be somewhat connected with comparatively large values of the rotation number,

and this suggests a diagnostic based on the rotation number, which we consider in Section

V. We also emphasize the appearance of a period-3 satellite island (“gumdrops”) just after

the formation of the effective transport barrier.

V. INDICATORS

From the example worked out in Sections II-IV, we learned there is an effective trans-

port barrier related to manifold reconnection generating intracrossings, and thus the large

expansion rates are related to the escape routes avoiding the barrier. From the observations

of Section IV the barrier formation is seen to be accompanied by a localized increase in the
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rotation number – this suggests that the barrier can be related to large values of finite-time

approximations of the local rotation number. In a previous work [15] we presented the same

idea for identifying coherent structures. The FTRN is a simpler and computationally faster

method than the FTLE for one and a half degree-of-freedom systems, because the FTRN

does not require the evaluation of spatial derivatives or additional differential equations

and this substantially reduces the computer time. We will pursue both indicators here to

determine barriers.

The time-N finite-time rotation number (FTRN) is thus the time-N truncation for the

corresponding iterations of the map M

ωN(x0) := Π ·
MN (x0)− x0)

N
, (4)

where Π represents the projection of the coordinate onto the x-direction. In general, ωN , like

any truncation, depends on the initial condition. While the infinite-time rotation number

is not well-defined for chaotic orbits, its finite-time counterpart exists for any orbit, chaotic

or not. The FTRN measures the average rotation angle swept by a trajectory over a time

interval T , and thus conveys information about the local behavior of trajectories, in the

same way as the finite-time Lyapunov exponents does (since the latter is the local rate of

contraction or expansion).

In Fig. 6(a) and (b) we show the FTRN and largest FTLE respectively, of a region near

the period-11 island chain in the high transmissivity case previously shown in the manifold

diagram of Fig. 2(a). The transport channel provided by the intercrossing of manifolds of

the upper and lower chains is illustrated by the striations of constant rotation number or

Lyapunov exponent crossing the phase space channels between the islands.

The FTRN and FTLE plots corresponding to the low-transmissivity case are depicted in

Fig. 7(a) and (b), respectively. Thus we see that the FTRN is an indicator of effective trans-

port barriers and stickiness structures that survive in the chaotic region after the invariant

curves are broken. These transport characteristics are essentially related to the stickiness

and recurrence and have been also described with the FTLE [20] for magnetic reconnection.

Here we see that the same characteristics can be more easily obtained by calculating the

FTRN, since comparable results with less computer time give essentially the same picture.

Therefore, the FTRN is a “fast indicator” of barriers.

On the other hand, the FTRN (as well as the FTLE) are not good chaos indicators. In
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(a)

(b)

FIG. 6: (color online) (a) Finite-time rotation number and (b) finite-time largest Lyapunov ex-

ponent (in colorscale) as a function of the initial condition for the standard nontwist map, with

a = 0.80552 and b = 0.6.

the infinite time limit the Lyapunov exponent can be used to distinguish chaotic and regular

trajectories, but it is not efficient, and the rotation number is defined only for the regular

(periodic or quasi-periodic) trajectories. However, as seen here a grid of both FTRNs and

FTLEs in the two-dimensional phase space do reveal structures coincident with regions of
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(a)

(b)

FIG. 7: (color online) (a) Finite-time rotation number and (b) finite-time largest Lyapunov ex-

ponent (in colorscale) as a function of the initial condition for the standard nontwist map, with

a = 0.8063 and b = 0.6.

observed stickiness (around resonances) and effective barriers that are not detected for long

time observations. We argue in favor of the FTRN, since it is faster than the FTLE, and

proceed with its further use in the next section.
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VI. RIDGES OF FINITE-TIME ROTATION NUMBER

FTRNs also provide a convenient way to visualize the escape channels related to inter

and intracrossing transport. In order to do that, we plot the ridges associated with a field

of FTRNs, representing crests of local maxima. This is defined as follows: suppose one

has computed the FTRN field in a two-dimensional region ωN(x, y). Then, according to a

procedure developed by Marsden et al. [21] we superimpose an N×N mesh of equally spaced

initial conditions (xi, yj), with i, j = 1, 2, . . .N and compute the related Hessian matrix

H(x, y) =





∂2ωN (x,y)
∂x2

∂2ωN (x,y)
∂y∂x

∂2ωN (x,y)
∂x∂y

∂2ωN (x,y)
∂y2



 =





ωxx ωxy

ωxy ωyy



 , (5)

where the corresponding derivatives must be computed for all mesh points, e.g.

∂ωN (x, y)

∂x
=

















∂ωN (x1,y1)
∂x

∂ωN (x1,y2)
∂x

· · · ∂ωN (x1,yN )
∂x

∂ωN (x2,y1)
∂x

∂ωN (x2,y2)
∂x

· · · ∂ωN (x2,yN )
∂x

...
...

. . .
...

∂ωN (xN ,y1)
∂x

∂ωN (xN ,y2)
∂x

· · · ∂ωN (xN ,yN )
∂x

















, (6)

and so on. The smallest eigenvalue of the Hessian matrix (5) is given by

λn(x, y) =
1

2

[

ω2
xx + ω2

yy −
(

ω2
xx + ω2

yy − 2ωxxωyy + 4ω2
xy

)1/2
]

, (7)

with corresponding eigenvector (non-normalized)

n(x, y) =





ω2
xx − ω2

yy −
(

ω2
xx + ω2

yy − 2ωxxωyy + 4ω2
xy

)1/2

2ωxy



 . (8)

The ridges of the FTRN field are defined as the loci where the following conditions are

fulfilled:

∇ωN(x, y) · n = 0, λn < 0, (9)

where

∇ωN(x, y) =





∂ωN (x,y)
∂x

∂ωN (x,y)
∂y



 . (10)

In Figs. 8(a) and (b) we plot the ridges of the FTRN field corresponding to the cases

of inter and intracrossings, respectively, so as to illustrate the usefulness of plotting the

ridges for delineating escape channels. The ridges (in blue in Fig. 8) are plotted with the
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(a)

(b)

FIG. 8: (color online) Ridges of the finite-time rotation number field (blue) and invariant manifolds

(red) for the standard nontwist map, with a = 0.8063 and (a) b = 0.80552; (b) b = 0.80630.

boundaries between positive and negative transport that were previously shown in Fig. 3 (in

red), the latter indicating the escape channels for fast transport. In both cases the ridges

act as the walls for the escape channels, in such a way that in the intracrossings [Fig. 8(b)]

the ridges form effective transport barriers, whereas in the intercrossing situation depicted

in Fig. 8(a) the barrier opens into a gateway for transport.
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VII. CONCLUSIONS

One of the distinctive features of nontwist maps, and, in particular, of the standard

nontwist map, is the capability of developing effective transport barriers, which hamper

diffusion by means of a trapping mechanism similar to that responsible for stickiness in

Hamiltonian dynamical systems. These broken barriers are only effective on a timescale of

the order of the experiment or the observation being conducted, for they are stickiness layers

of chaotic behavior rather than true invariant tori. That is, one expects some transport to

occur through these barriers, although on a timescale substantially larger than the typical

duration of the experiment or numerical simulation.

For the standard nontwist map we investigated the parameter dependence of the transport

through the broken shearless barrier. Upon varying a proper control parameter we identified

the onset of high stickiness structures that give rise to the effective barrier near the broken

shearless curve. Once this barrier formed, it was observed that two qualitatively different

phase space regions inside the barrier were revealed by the FTRN, our proposed indicator.

Additionally, the two identified regions were confirmed by using the FTLE indicator. We

also observed the appearance of a period-three satellite island just after the formation of the

effective transport barrier.

In the present analysis the computer time for the FTRN is almost an order of magnitude

less than that for the corresponding FTLE. We have shown in this paper the usefulness of

both diagnostics on the simplest nontwist map presenting such internal transport barriers,

but we claim that our results could be applicable to other symplectic maps describing local

transport approximation in the shearless regions of other Hamiltonian systems.
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