
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Scroll wave filaments self-wrap around unexcitable
heterogeneities

Zulma A. Jiménez and Oliver Steinbock
Phys. Rev. E 86, 036205 — Published  6 September 2012

DOI: 10.1103/PhysRevE.86.036205

http://dx.doi.org/10.1103/PhysRevE.86.036205


ET10903

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N
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Scroll waves are three-dimensional excitation vortices rotating around one-dimensional phase sin-
gularities called filaments. In experiments with a chemical reaction-diffusion system and in numerical
simulations, we study the pinning of closed filament loops to inert cylindrical heterogeneities. We
show that the filament wraps itself around the heterogeneity and thus avoids contraction and an-
nihilation. This entwining steadily increases the total length of the pinned filament and reshapes
the entire rotation backbone of the vortex. Self-pinning is fastest for thin cylinders with radii not
much larger than the core of the unpinned rotor. The process ends when the filament is attached
to the entire length of the cylinder. The possible importance of self-pinning in cardiac systems is
discussed.
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INTRODUCTION

Dynamic diseases are a widely uncharted area of modern science, partly because their fundamental origins are not
molecular, cellular, or tissue abnormalities but rather undesired dynamic states of complex networks [1]. Important
examples are the occurrence of epileptic seizures and certain cardiac arrhythmia. A seizure for instance involves an
enormously large number of synchronized neurons [2]. Tachycardia and the reentry of electrical activity in the heart on
the other hand correspond to spatio-temporal patterns that involve rotation around a phase singularity [3]. Numerous
studies have discussed the close link between rotating waves in cardiac tissue and non-biological reaction-diffusion
systems such as the Belousov-Zhabotinsky (BZ) reaction [4, 5]. The latter reaction is a spatially homogeneous and
isotropic, active medium. In two space dimensions, it self-organizes rotating spiral waves of typically constant pitch.
The spiral tip describes a trajectory that in the simplest case is a circular orbit with a diameter much smaller than
the pattern wavelength.

It is widely accepted that two-dimensional models are insufficient to describe ventricular tachycardia and in partic-
ular ventricular fibrillation [6, 7]. Rotation in three-dimensional systems, however, cannot occur around a point-like
phase singularity but must rather be organized around one-dimensional curves. These curves are commonly referred
to as filaments while their surrounding wave fields are called scroll waves [8–10]. Filaments are dynamic objects
and move with local speeds that–to some approximation–are proportional to the local curvature κ [11]. Theoretical
analyses [11, 12] of reaction-diffusion models yield the equation

ds

dt
= (αN̂+ βB̂)κ, (1)

where t is time, s is a position vector pointing to a location on the filament, and N̂ and B̂ are the corresponding normal
and binormal unit vectors, respectively. The proportionality constants α and β are system-specific parameters which
depend, in a non-trivial fashion, on the underlying rate constants and diffusion coefficients. The parameter α plays
the role of a filament tension. For positive values of α, filament loops collapse and annihilate in finite times [9, 13];
negative values induce chaotic motion known as Winfree turbulence [14, 15]. This form of spatio-temporal chaos exists
only in three-dimensional media and has been linked to ventricular fibrillation [16, 17]. The parameter β controls
motion in binormal direction that for a planar loop coincides with an out-of-plane translation. In activator-inhibitor
systems with equal diffusion coefficients and in the complex Ginzburg-Landau equation, the value of β is zero [18].

Excitation vortices can pin to stationary as well as slowly moving heterogeneities [19, 20]. A simple example is
the pinning of two-dimensional spirals to small, static heterogeneities that are permeable but unexcitable. This basic
form of vortex pinning has been studied in chemical reactions [21], aggregating slime molds [22], the CO oxidation
on platinum surfaces [23], and cardiac tissue as well as cardiac cell cultures [24]. The pinning of three-dimensional
excitation vortices was demonstrated experimentally by our group in 2009 [25]. Since then we have reported examples
of scroll wave pinning to inert and impermeable tori, double tori as well as single and multiple spheres [26–28]. These
studies show that pinning can increase the lifetime of collapsing scroll waves (α > 0) and even establish stationary
filaments. We also reported that heterogeneities can create local differences in the rotation period that twist the
emitted wave field. The dynamics of this process and the opposing response of the nonlinear reaction-diffusion system
are described by the forced Burgers equation [25, 29]. In addition, Pertsov et al. established topological constraints
that govern the pinning of multiple filaments to a given heterogeneity [30]. These laws state that the sum of all
topological charges, an integer quantity defined by the sense of rotation, must add up to zero on any given closed
surface. As a consequence, the total number of filaments pinned to a given heterogeneity is always even.

In this Article we investigate the fate of scroll waves that are partially pinned to cylindrical heterogeneities. We find
that a single contact point between the filament and the heterogeneity is sufficient to induce a process that ultimately
incorporates the entire cylinder into the rotation backbone of the scroll wave. This self-pinning stabilizes and reshapes
the vortex pattern. In the context of the human heart such vortex pinning and reshaping could be induced by blood
vessels and scar tissue (structurally remodelled myocardium) from infarcts and other traumatic events. The core
region of such tissue can be non-conducting [31, 32] and might hence be a suitable ”anchor” for rotating action
potentials. One can further speculate that such pinning will reduce the efficiency of low-power intervention techniques
[33] such as implantable cardioverter defibrillators. The systematic investigation of such phenomena is therefore of
great interest, both from a fundamental and an applied, biomedical perspective.
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EXPERIMENTAL METHODS

For our experiments, we use the ferroin-catalyzed Belousov-Zhabotinsky (BZ) reaction. This autocatalytic reaction
is a well-known model for the study of spiral and scroll waves in excitable and oscillatory reaction-diffusion systems
[8, 9, 13, 34]. The system consists of a lower gel layer (0.8% w/v agar) and a top liquid layer [25]. Both layers are 4 mm
thick and contain a reaction medium of essentially identical concentrations. Disregarding the bromination of malonic
acid, the initial concentrations are: [NaBrO3] = 0.04 mol/L, [malonic acid] = 0.04 mol/L, [H2SO4]= 0.16 mol/L,
and [Fe(phen)3SO4] = 0.5 mmol/L. In addition, all diffusion coefficients are expected to be identical throughout
the two-layer system. From the collapse of unpinned scroll rings, we find the filament tension in this system to be
α = (1.4± 0.2)× 10−5 cm2/s. For the given layer height, a centered scroll ring evolves without measurable boundary
effects. Smaller heights or closer proximities to the system boundaries, however, are expected to influence the dynamics
of the scroll wave. Moreover earlier studies have shown that the parameter β (see Eq. (1)) is approximately zero [25].
For filaments with low curvature and twist, free filament motion in binormal direction is hence negligible.
During the gelation process, we place cylindrical glass rods onto the gel surface and gently press them halfway into

the forming gel. After completion of gelation, we add the liquid layer and initiate a non-rotating, nearly spherical
chemical wave using the tip of a silver wire. The chemical mechanism behind the Ag-mediated wave nucleation is
the formation of insoluble AgBr which decreases the local concentration of inhibitory bromide ion. The system is
then manually swirled to create a homogeneous, excitable upper layer. Notice that this motion does not affect the
expansion of the half-spherical wave in the gel. Once the wave reaches the desired size (typically the size needed
to be in contact with the cylindrical heterogeneity), we stop the mechanical agitation and all fluid flow ceases. At
this time we also place a flat glass plate onto the system to prevent fluid-dynamic perturbations that could arise
from undesired processes in the liquid layer and at the liquid-air interface. Notice that the height of the liquid layer
remains essentially constant at 4 mm. Subsequently, the rim of the half-spherical wave curls up into the top layer and
nucleates a scroll ring (see Supplemental Material [35], for a schematic view of the procedure described here). In a
typical experiment, its nearly circular filament is pinned to the heterogeneity in at least one position.
The subsequent evolution of the wave patterns is monitored with a CCD camera equipped with a dichroic blue

filter. The camera is mounted over the BZ system and the local intensity in each image pixel is hence a measure of
the transmitted light across the 8 mm thick layer at that specific location. Image contrast results from the absorption
of light by the chemically reduced catalyst. Wave patterns can be observed for more than six hours. All experiments
are carried out at 21.5 ◦C.

EXPERIMENTAL RESULTS

Figure 1(a) shows a snapshot of a typical experiment recorded a few seconds after termination of the mechanically
sustained mixing of the top layer. This instant corresponds to the nucleation of the scroll wave from the bowl-shaped
wave in the gel layer. Bright and dark regions indicate primarily excited and excitable areas, respectively. We
reemphasize that the local gray levels are the result of light absorption along a line of spatially variable concentration
of the absorbing catalyst species. The bright, rectangular region near the middle of the image frame is the cylindrical
glass object, which in this experiment has a length of 12 mm and a radius of 1.0 mm. Notice that the rim of the
excitation wave touches the cylinder. Figure 1(b) shows the same system approximately two hours later. Despite the
positive filament tension in this BZ system, the scroll wave has not collapsed but organizes a kidney-shaped, periodic
wave pattern.
For the given perspective, the filament of the scroll wave appears as a curve that emits waves to both of its sides

in an alternating fashion. Clearly this cyclic wave generation is due to the–spatially not fully resolved–rotation in
three-dimensions. Closer inspection of the dynamics reveals that the filament in Fig. 1(b) traces approximately the
bright, diffuse wave border that connects the end points of the pinning cylinder. Figure 1(c) shows the result of a
quantitative analysis of the filament position. This computerized analysis detects the filament (or more precisely its
two-dimensional projection) as a set of image pixels that show only small intensity changes during one approximate
rotation period of the pattern. A similar method was first used by Vinson et al. [9].
The data in Fig. 1(c) reveal that the initially small filament loop (red circles) expands quickly to a seemingly

stationary, C-shaped structure. The filament terminates at the cylinder in nearly normal direction. Notice that wave
rotation occurs also around the cylinder itself, which connects the overall rotation backbone topologically to a closed
loop. The rotation around the cylinder has a lower frequency than the freely rotating filament because the cylinder
perimeter is larger than the free spiral core orbit. This frequency difference induces twist along the cylinder axis,
which can be discerned in Fig. 1(b). It is probably also responsible for the kidney-shape of the emitted wave fronts.
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Figure 1(d) shows the temporal evolution of the maximal distance dx between the free filament and the cylinder
(squares) and the maximal extension dy of the free filament in the direction parallel to the cylinder (circles). The
data reveal an initial, rapid increase in both measures, which could be partly caused by our specific initiation method.
Subsequently both distances change only slowly. More specifically, we observe a slight increase in dy and a slight
decrease in dx. These slow dynamics must be compared to the motion of free scroll rings in this system, which have a
life time of tL = R2

0
/(2α) (see e.g. [25]). For the given filament tension and an initial radius of R0 = 5 mm, the free

vortex annihilates within 2.5 h. This comparison shows that pinning to a single, cylindrical heterogeneity can prevent,
or at least greatly delay, the collapse and the self-annihilation of scroll rings. We also note that further observation of
the wave structure in Fig. 1 was possible for a total of seven hours during which the vortex remained intact. However,
the closed BZ system undergoes chemical changes that are most pronounced in its late stages. These changes alter
wave speed, rotation frequency, and possibly filament tension. Consequently, we did not include these data in the
figure.
One would expect that the motion of the contact points between the free filament and the cylinder is affected by

the shape of the unpinned filament. We hence investigated other configurations such as the one in Figure 2. Frames
(a) and (b) show an early and late view of a scroll wave pinned to two glass rods that we arranged side-by-side at a
distance of 8.1 mm. The length and radius of these unexcitable cylinders are 14 mm and 1.0 mm, respectively. The
time elapsed between the two frames is 174 min. The small circular objects in (b) are gas bubbles that nucleate and
grow due to the formation of CO2 in the BZ reaction. The image shows that the filament loop connects to both glass
rods, which again prevents the filament-tension-induced collapse of the vortex structure.
Figure 2(d) is a time-space plot which is constructed by collecting subsequent image profiles and stacking them in

downward direction. In this case, the intensity profiles are obtained along the centerline between the two cylinders
(vertical in Figs. 2(a,b)). In the time-space plot this space axis is oriented horizontally and time evolves in downward
direction spanning 3 h. Each white band corresponds to a propagating wave front. The intersections between the
profile line and the two filaments arches appear as wave emitting points. Figure 2(c) shows the temporal evolution
of the distance dy between these two points, which increases over time. The overshoot around 0.5 h is an unusual
feature, which we tentatively explain by the formation of twist.
The final vortex structure is nearly stationary with free filament segments connecting the neighboring end points

of the two cylindrical heterogeneities. Their maximal distance (approximately 17 mm) is slightly larger than the
length of the pinning glass rods (14 mm). The free segments periodically emit inward and outward propagating waves
that collide in the central region between the two cylinders. In the time-space plot, these collisions create V-shaped
features that are clearly not centered between the wave emitting points. This asymmetry was observed in several
experiments but its origin is not completely understood.
The experiments shown in Figs. 1,2 raise the important question whether the filament loop would expand further

if pinned to a single, longer cylindrical heterogeneity. However, for such situations we observe the build-up of strong
twist that tilts the filament out of its initial plane and typically induces filament collisions with the system boundary.
The resulting patterns appear to be rather complicated and have not been analyzed further.
An alternative approach is illustrated in Figure 3. This experiment employs two long cylinders arranged on a

common line. The gap between the cylinders is 8.5 mm wide. Using the protocol described above, we initiate a scroll
ring in the middle of this gap and ensure that its filament is in contact with both cylinders (Fig. 3(a)). Notice that
the early filament connects to the cylinder not tangentially as in Figs. 1,2 but rather in normal direction. Figure 3(b)
shows the pinned vortex about two hours after the recording of Fig. 3(a). The vortex is still present but the wave
structure has clearly lost its symmetry with respect to the cylinder-connecting axis.
The dynamics that give rise to this profound change are illustrated in the time-space plots shown in Figs. 3(c,d).

Referring to the images in Figs. 3(a,b), the intensity profiles are collected along a horizontal line slightly above the
cylinders (c) and a parallel line slightly below the cylinders (d). Both figures show two wave emitting points which
correspond to the filament intersections. The distance between these points increases in (a) and decreases in (b) and
is further characterized in Fig. 3(f). The entire dynamics of this process, however, is not limited to the motion of
the contact points between filament and obstacle but also involve the connecting filament arches in the upper and
lower image halves. Their shapes are plotted in Fig. 3(e) for three different times. About 16 min after scroll initiation
(black triangles), the two filament arches still form a nearly continuous circle. One hour later (blue squares), the small
mismatch between the arches in x-direction has significantly increased and the upper filament has also expanded in
y-direction. At 256 min (red circles), the upper filament has expanded further while the lower one has moved slightly
towards the cylinder-connecting line. One can speculate that the shrinking filament arch will eventually connect the
gap between the cylinders as a nearly straight line as such a shape would result from the system’s free curvature flow
(see Eq. (1)).
The observed dynamics show several novel phenomena which can be summarized as follows: (i) filaments terminating
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at cylindrical (inert and impermeable) heterogeneities can move along the cylinder axis; (ii) this motion stops at the
end of the cylinder; (iii) the connecting free filament arches can expand or shrink depending on the relative direction
of their termination points (as well as their own curvature); (iv) the expansion of the free filament segments occurs
despite their concave shape which should generate an opposite motion. Another key observation relates to the drift
direction of the pinned filaments. Based on the available experimental data, the governing principle is the increase in
the length of the pinned of filament.
The self-wrapping of scroll waves around unexcitable heterogeneities is a feature that has not been reported earlier

but should have profound consequences on the stability, dynamics, and persistence of scroll wave in heterogeneous
excitable systems. It also raises the perplexing question as to how a vortex responds if the initial situation is perfectly
symmetric. The experiment in Fig. 3 is a good approximation of such a case and one can wonder why filament
expansion and shrinkage did not occur in the opposite image halves. Repeat runs of this particular experimental
configuration show that both scenarios are possible. This issue will be revisited in context of the numerical simulations
in Figs. 8,9.

COMPUTATIONAL METHODS

To obtain further insights into the self-pinning of filaments, we have performed numerical simulations on the basis of
the Barkley model [36]. This reaction-diffusion model involves two variables u and v that obey

∂u

∂t
= ∇

2u+
1

ǫ
u(1− u)(u−

v + b

a
), (2)

∂v

∂t
= ∇

2v + u− v. (3)

In our simulations the model parameters are ǫ = 0.02, a = 1.1, and b = 0.18. These values yield excitable point
dynamics and define a medium in which spiral waves have circular tip trajectories. In spatially three-dimensional
systems, they cause positive filament tension (α > 0) [18]. Since the diffusion coefficients of u and v are identical
(here equalling one), free filaments of low curvature and twist show no translation in binormal direction (β = 0) [18].
The equations (2,3) are integrated using explicit Euler integration, a seven-point stencil for the Laplacian, a three-

dimensional lattice measuring 400× 400× 200 grid points (200× 200× 100 grid points for the data in Figs. 8,9), and
Neumann boundaries. The grid spacing and the integration time step are kept constant at 0.2 and 0.006, respectively.
The pinning cylinders are modeled as regions where u = v = 0, which creates a Dirichlet boundary between the
cylinder and the surrounding system. The filament is computed from the intersection of the waves’ u = 0.5 and
v = a/2 − b surfaces using a marching-cube algorithm [37]. We initiate scroll waves from appropriately set initial
conditions. For instance the simulation in Fig. 4 uses u = 0.25 within a 90◦-disk segment of radius 40 centered around
(x, y) = 0. The width of this excitable layer is 4.0 (16 ≤ z ≤ 20). To enforce the unidirectional propagation needed
for vortex nucleation, we initially also inhibit the lower half of the system (z < 16) by initializing v as 0.4. All other
points are initialized as (u, v) = (0, 0).

COMPUTATIONAL RESULTS

Figure 4 shows two snapshots of the wave field u(x, y, z) for a scroll wave pinned to a cylindrical heterogeneity that
extends along the entire system length in z-direction. Regions in which u has large values are rendered as solid, orange
areas and indicate that the system is locally excited. The initial condition of this simulation (not shown) establishes
a filament tracing a quarter of a circle from the left end of the cylinder ((x, y, z) = (50, 20, 0)) to the anterior wall.
The corresponding partial scroll ring is therefore in local contact with the unexcitable heterogeneity. The wave field
shown in Fig. 4(a) is taken a few rotation periods after initiation but still shows the expected, doughnut-like shape
in the posterior, left corner. Approximately 23 rotation periods later, the vortex structure has undergone profound
changes. The dominant feature is now a nearly untwisted scroll wave that is pinned to the cylinder. At around z = 60
(Fig. 4(b)), this pattern ends rather abruptly and a defect-like vortex structure connects the filament to the anterior
wall.
Clearly the simulation in Fig. 4 is in good agreement with the experimentally observed self-wrapping of scroll

waves to unexcitable, cylindrical heterogeneities. Its geometry is a particularly good match for the experiment shown
in Fig. 2 because the no-flux boundaries in the simulation can be interpreted as mirror planes for the computed
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concentration fields. Accordingly, the anterior wall in Fig. 4 (x = 0) can be thought of as a mirror plane generating
an identical cylinder centered around (x, y) = (−50, 20). Similarly, the left wall (z = 0) mirrors the wave field in
−z-direction, thus, completing the partial scroll ring to a full one.
Figure 5 provides additional information regarding the self-wrapping dynamics shown in Fig. 4. Here we follow

the location of a particular point on the filament to monitor the progress of the self-pinning process. This point is
defined in cylindrical coordinates (r, φ, z) as a filament position in close vicinity to the cylinder surface (the distance
is ∆r = 2.0). Figure 5(a) shows the z-coordinate of this contact point for three different cylinder radii Rcyl. All three
graphs increase over time while the average slope decreases with increasing values of Rcyl. The small oscillations on
each graph are due to the intrinsic rotation of the vortex structure. Figure 5(b) describes the movement of the contact
point in terms of its φ-coordinate. Notice that increasing φ values indicate rotation around the cylinder perimeter.
This rotation is most pronounced for Rcyl = 1 but still relatively slow as the point travels only 180 degrees during
the course of more than 26 rotation cycles of the scroll wave. The combined data in Fig. 5 show that the contact
point moves along the cylinder on a stretched-out helical trajectory. For large radii this motion becomes negligible or
is absent. This finding prompted us to repeat some of our experiments with glass rods of larger radii and we indeed
failed to observe any significant amount of self-wrapping for Rcyl = 1.5 mm (see Supplemental Material [35]).
An illustration of the motion of the entire self-wrapping filament is given in Fig. 6. The filaments are extracted from

the simulation in Fig. 4. The frames (a) and (b) show the same three-dimensional data from two different view points.
The small circular loops for z > 40 stem from wave fronts punctured by the unexcitable cylinder. There is no rotation
associated with these curves but for the given Dirichlet boundaries they are reliably detected by our algorithm and
have hence been included. In addition these loops are generated in collisions between the rotating, cylinder-bound
filament and its free continuation. More importantly, Fig. 6(a) shows that the helical motion of the contact point is
part of a large-scale deformation of the filament, which involves an extension in forward direction and a continuous
out-of-plane deformation of the free filament segment. The latter process can induce collisions of the filament with
the outer system boundary, which obviously affect the subsequent dynamics significantly. Such collisions have also
been observed in some of our BZ experiments (not shown).
Figure 7 describes the dynamics of self-wrapping filaments close to the end of the pinning cylinder. The diagrams

have been arranged similarly to Fig. 6; here however, the unexcitable cylinder extends only halfway through the
system (namely from z = 0 to z = 40). Initially the filament extends in nearly perpendicular direction away from
the heterogeneity towards the wall. However, once the end of the cylinder is reached, the filament decreases its angle
to the cylinder axis sharply and the resulting curves nearly extend in z-direction. We interpret this motion as a
curvature-driven process that aims to smoothen the sharp filament kink produced during self-wrapping. Also notice
that in this longer simulation, the filament collides with the upper system boundary. This collision shortens the
filament which seemingly assists the straightening process of the filament.
Lastly we return to the questions of directionality and symmetry breaking. In contrast to experiments, numerical

simulations allow us to study initial conditions that readily probe these important aspects of self-wrapping filaments.
Figure 8 shows the evolution of three, only slightly different initial conditions that–in the absence of heterogeneities–
would create untwisted scroll waves with linear filaments spanning the system in x direction. The angle between the
initial filament and the cylinder axis is (84.3)◦ in (a,d,g), (90.0)◦ in (b,e,h), and (95.7)◦ in (c,f,i). The first row (a,b,c)
shows the u pattern shortly after initiation of the vortex. Over 300 time units these initial conditions evolve to the
scroll waves shown in the next row (d,e,f). Notice the vortex in (e) has not changed significantly as it is still pinned to
the same position of the cylindrical heterogeneity. As expected for a noise-free system, it also conserved its symmetry
with respect to the x = 20 plane. Furthermore the scroll wave is slightly twisted as the rotation close to the cylinder
is slightly ahead of the remaining vortex. We suggest that this minor effect could be caused by our specific choice of
boundary conditions at the pinning heterogeneity.
More importantly, Figs. 8(d,e) show that the small difference in initial conditions between (a) and (c) evolve into

profoundly different structures. In particular we observe that the pinned scroll waves differ in their sense of rotation
around the cylinder. This remarkable result is due to opposite drift directions of the free filament segments that
extend from the cylinder to the anterior and posterior system boundaries. The underlying motion is illustrated in
Figs. 8(g,i) and complemented by the stationary state (h) generated from the symmetric initial condition in (b).
Details concerning the dynamics of this process are presented in Fig. 9. Here we plot the distance between the

filaments versus time. Following our earlier definition of contact points, the distance is computed from the z-cordinates
of the two filament locations that have a small distance of 2.0 from the cylinder surface. The data reveal that the
small asymmetry of the initial conditions induces first slow self-wrapping in the direction favored by the tilt of the
initial filament. Approximately 200 time units later, the self-wrapping speed increases smoothly to saturate at a
steady speed. The symmetric initial condition in Fig. 8(b) yields no change in the filament distance.
To probe the stability of the vortex state in Fig. 8(e), we repeated the simulation with uniformly distributed noise
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added to the initial condition and also a more mature pattern. The temporarily perturbed states showed no indication
of self-wrapping over the course of 500 time units. These findings suggest that the state in Fig. 8(e) is stable and
imply the existence of a low but non-zero threshold for the onset of self-pinning. Notice that such a threshold would
depend in a possibly complicated fashion on the entire initial wave pattern and specifically on the initial filament. It
is also reasonable to assume that the curvature-reducing motion of the free filament(s) is the primary source of the
self-wrapping threshold.
The results summarized in Figs. 8,9 show that direction of self-pinning is determined by the initial condition.

In experiments, seemingly symmetric situations, such as the one shown in Fig. 3(a), are hence sensitive to small
differences that might not be resolved in our optical data. Lastly we note that all of our experiments and simulations
only employ initial conditions for which the filament and the central axis of the pinning cylinder are in the same
plane. Clearly more work is needed to explore basic non-planar cases.

CONCLUSIONS

In experiments with the three-dimensional BZ reaction and numerical simulations on the basis of the Barkley model, we
have shown that scroll waves self-wrap around cylindrical heterogeneities. This surprising effect stabilizes and reshapes
the scroll wave. The process is most pronounced for thin cylinders and seemingly absent for thick ones. During the
self-pinning process, the free filament undergoes significant changes which involve motion along the cylinder as well as
a slower rotation around the cylinder. In excitable systems with heights comparable to the vortex wavelength, these
deformations can induce filament breakage at the boundaries. In larger systems, which for various technical reasons
are difficult to investigate, the slow rotational motion will likely cause additional phenomena such as feedback on the
self-wrapping speed and possibly highly entangled filaments. Moreover we found that during the self-pinning process
the free part of the filament tends to be oriented nearly perpendicular to the cylinder surface. However once the
filament reaches the end of the cylinder, this angle decreases and the filament aims to depart in a tangential direction
(i.e. in the direction of the cylinder axis). Our results also show that the direction of the pinning processes is selected
in a way that maximizes the length of the pinned filament.
Notice that the qualitative mechanism of the self-wrapping process is not understood yet. One possible factor could

be the periodic modulation of the free scroll wave by the nearby pinned vortex. In two-dimensional systems such
interaction can arise between two spiral waves either if the rotation periods are different or if one spiral arm is very
short and exposes its tip to the wave field of the other vortex [38]. The three-dimensional analogs of this spiral defect
drift have not been studied yet but are likely to be complex.
We believe that our findings predict profound consequences for the dynamics of scroll waves in heterogeneous media.

In homogeneous media with positive filament tension, scroll waves self-annihilate or converge towards straight filaments
oriented perpendicular to the system boundaries. These processes decrease the total filament length and greatly
simplify the overall wave pattern. Self-pinning, on the other hand, can increase the filament length tremendously
and shapes the scroll waves according to the complexities of the underlying heterogeneities. One can speculate that
such patterns will show less spatio-temporal correlation and a greater persistence against external removal strategies.
Such features are not only of interest from a fundamental point of view but also relevant in cardiology where, as we
mentioned before, scroll waves induce tachycardia and fibrillation.
Future studies should analyze additional configurations, such as non-planar initial conditions and curved, tube-like

heterogeneities, to expand our knowledge base regarding the self-pinning of scroll waves. Additional investigations
are needed to evaluate the shape of the free filament in large systems and its effect on self-wrapping over longer
distances. Of additional interest is the study of self-pinning in anisotropic systems where the self-pinning direction
might be affected by the local anisotropy of the medium. We hope that our study opens up these questions for
systematic investigations which eventually should yield a deeper understanding of this fascinating phenomenon and
its importance in cardiology.
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FIGURE CAPTIONS

Fig. 1 (color online) (a,b) View through a 8 mm thick BZ system in which a scroll wave (grayish pattern) is pinned
to a glass cylinder (bright rectangle; height 12 mm; radius 1 mm). Frame (a) has been recorded immediately after
the initiation of the scroll wave, frame (b) 116 min later. Image area: 29 × 29 mm2. (c) Filament positions in the
same experiment approximately 0 min (red, innermost curve), 8 min (blue triangles), and 196 min (black squares)
after initiation. (d) Temporal evolution of the maximal distance dx between the filament and the cylinder (squares)
and the maximal extension dy of the filament along the cylinder axis (circles).

Fig. 2 (color online) (a,b) View through a three-dimensional BZ system in which a scroll wave is pinned to two glass
cylinders with an individual length of 14 mm and a radius of 1 mm. Frame (a) has been recorded immediately after
the initiation of the scroll wave, frame (b) 174 min later. Image area: 30 × 30 mm2. (c) Distance between the upper
and the lower filament segments as a function of time. The distance is measured close to the right edge of the left
cylinder (red circles), close to the left edge of the right cylinder (blue squares), and in their middle (black triangles).
(d) Time-space plot constructed along the vertical line in (a,b) that has equal distance to the two cylinders. Time
evolves in downward direction and spans 3 h.

Fig. 3 (color online) (a,b) View through a three-dimensional BZ system in which a scroll wave is pinned to two glass
cylinders with an individual length of 14 mm and a radius of 1 mm. Frame (a) has been recorded immediately after the
initiation of the scroll wave, frame (b) 116 min later. Image area: 32 × 32 mm2. (c,d) Time-space plots constructed
along vertical lines slightly above (c) and below (d) the cylinders shown in (a,b). Time evolves in downward direction
and spans 3 h. (e) Reconstructed filaments at 16 min (black triangles), 76 min (blue squares), and 256 min (red
circles). (f) Temporal evolution of the width of the upper (circles) and lower (squares) filament arches.
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Fig. 4 (color online) Snapshots illustrating the evolution of a self-wrapping scroll wave. Solid (orange) regions are in
an excited state which corresponds to high values of the activator variable u. The unexcitable cylinder (cyan) extends
in z-direction and has a radius of 1.0. Notice the increasing length of the pinned scroll wave. The time elapsed
between frames is 205 time units, which corresponds to approximately 23 rotation periods.

Fig. 5 (color online) Filament movement along the pinning cylinder for cylinder radii of 1.0 (blue), 1.2 (red), and 2.0
(black). The time traces describe the motion of the end point of the free filament near the pinning cylinder. Using
cylindrical coordinates (r, φ, z), (a) illustrates motion along the cylinder axis and (b) characterizes rotation around
the cylinder. In all three cases, the extent of pinning increases over time.

Fig. 6 (color online) Filament evolution for the partially pinned scroll wave shown in Fig. 4(a) Three-dimensional data;
(b) projection into the (x, z-plane). The pinning, unexcitable cylinder (R = 1.0, not shown) extends in z-direction.
The black arrows indicate the principal direction of filament motion. The time interval between subsequent filament
pairs is 35.5 time units. Alternating red and blue colors are used as a visual aid.

Fig. 7 (color online) Filament movement along a pinning cylinder (not shown) of radius 1.0. The cylinder length
equals only half the system length (0 ≤ z ≤ 40). The black arrow indicates the principal direction of filament motion.
The time interval between subsequent filament pairs is 35.5 time units. Alternating red and blue colors are used as a
visual aid.

Fig. 8 (color online) Simulated vortex dynamics for three similar initial conditions. The early filaments are nearly
straight lines tilted +5.7◦ (a,d,g), 0.0◦ (b,e,h), and −5.7◦ (c,f,i) away from a line perpendicular to the pinning cylinder.
The upper row shows the u pattern shortly after initiation. Solid orange areas are excited and the pinning cylinder
(cyan) extends in z direction. The middle row gives the resulting wave patterns approximately 300 time units later.
Notice the different rotation directions of the pinned scroll waves in (d) and (f). The corresponding filament motion
is illustrated in the bottom row using alternating colors (blue and red) to help distinguish subsequent data sets.

Fig. 9 (color online) Temporal evolution of the distance ∆z between the two contact points of the filaments in Fig. 8.
From top to bottom the curves correspond to the initial conditions in Fig. 8(a) (blue), 8(b) (black), and 8(c) (red).
The contact points are defined as the locations on the filament that have a distance of 2.0 to the surface of the pinning
cylinder.
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