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The study of networks has become a substantial interdisciplinary endeavor that encompasses
myriad disciplines in the natural, social, and information sciences. Here we introduce a framework
for constructing taxonomies of networks based on their structural similarities. These networks can
arise from any of numerous sources: they can be empirical or synthetic, they can arise from multiple
realizations of a single process (either empirical or synthetic), they can represent entirely different
systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to
be important for network function, we base our comparisons on summaries of network community
structures. Although we use a specific method for uncovering network communities, much of the
introduced framework is independent of that choice. After introducing the framework, we apply it to
construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar
networks. We also construct taxonomies within individual categories of networks, and we thereby
expose nontrivial structure. For example, we create taxonomies for similarity networks constructed
from both political voting data and financial data. We also construct network taxonomies to compare
the social structures of 100 Facebook networks and the growth structures produced by different types
of fungi.
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I. INTRODUCTION both situations.

Although there is a long tradition of scholarship on
networks, the last two decades have witnessed substan-
tial advances in network science due to developments in
physics, mathematics, computer science, sociology, and
numerous other disciplines [I} 2]. Given that the ques-
tions asked by researchers in different fields can be sur-
prisingly similar, it would be useful to be able to highlight
similarities in network structures across disciplines in a
systematic way. One way to approach this is to formu-
late a suitable means of comparing networks and to use
this means to develop taxonomies of networks. Such tax-
onomies have the potential to facilitate the identification
of problems from different disciplines that might be ap-
proached similarly in terms of both empirical analyses
and theoretical modeling. For example, if a biological
network depicting covariation of neural activity in differ-
ent regions of the brain is demonstrated to be structurally
similar to a financial network representing correlations
of stock returns, then certain types of edge thresholding
methods or structural null models might be applicable to
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From a historical perspective, classification of objects
has often been central to the progress of science, as
demonstrated by the periodic table of elements in chem-
istry and phylogenetic trees of organisms in biology [3].
It is plausible that an organization of networks has the
potential to shed light on mechanisms for generating net-
works, reveal how an unknown network should be treated
once one has discerned its position in a taxonomy, or help
identify a network family’s anomalous members. Further
potential applications of network taxonomies include un-
supervised study of multiple realizations of a given model
process (e.g., characterizing the similarities and differ-
ences of many different networks drawn from the Erdos-
Rényi random graph model using the same parameter
values), examination of multiple empirical networks with
known similar origins or generative processes, and the de-
tection of anomalous changes in temporally ordered series
of networks. In this paper, we develop a framework for
the creation of network taxonomies [4]. In so doing, we
develop the requisite diagnostic tools and discuss several
case studies that suggest how our methodology can help
illuminate relationships both between and within families
of networks.

In aiming to construct taxonomies of networks, one



has to consider the scales at which one wants to com-
pare differences in network structures. Much research
has focused on extremes—either microscopic (e.g., node
degree) or macroscopic (e.g., mean geodesic distance)
properties—and numerous researchers have, for example,
reported that many empirical networks possess heavy-
tailed degree distributions or the small-world property
[1, 5]. Given the ubiquity of such findings, it is clear
that more nuanced approaches are needed to make use-
ful comparisons between networks. Indeed, interpreta-
tions of microscopic and macroscopic approaches often
implicitly assume that networks are homogeneous and
ignore “mesoscopic” structures in networks. To over-
come some of these limitations, earlier work has focused
on the statistics of small, a priori specified modules
called “motifs” [0l [7], role-to-role connectivity profiles of
nodes [8], the isolation of statistically significant struc-
tures called “backbones” [9], interrelations of network
modules [10], examination of the number of nodes located
within “shells” [I1], and the self-similarity of networks as
characterized by fractal exponents [I2]. The taxonomic
framework that we develop in the present paper builds
on the idea of examining network modules by computing
community structures [13] [14], as was also done in the
work of [I5], and we subsequently compare signatures
derived from community structure across networks. Im-
portantly, although we use a specific method to uncover
network communities, much of the introduced framework
is independent of that choice. Consequently, our com-
parative framework can accommodate a large variety of
community detection schemes.

The remainder of this paper is organized as follows.
First, we discuss the detection of communities in net-
works in order to find coherent groups of nodes that
are densely connected to each other. We then intro-
duce mesoscopic response functions (MRFs), which allow
us to probe how the community structure of a network
changes as a function of a resolution parameter that de-
termines network scales of interest. We then illustrate
MRFs using several examples of networks and compare
the MRFs for several well-known generative models of
networks. We use MRFs to develop a means to measure
distance between a pair of networks, and use this com-
parative measure to cluster networks and thereby develop
taxonomies. Using 746 networks from numerous differ-
ent fields, we construct a taxonomy of these networks.
We then construct taxonomies of networks within fields
using several case studies: voting in the United States
Senate, voting in the United Nations General Assembly,
Facebook networks at US universities, fungal networks,
and networks of stock returns in the New York Stock
Exchange. In each example, we expose structure that is
either illuminating or can be checked against information
from an external source (e.g., previously published inves-
tigations). This suggests that our method for comparing
networks is capturing important similarities and differ-
ences. We conclude with a brief summary and discussion
of our results. In addition, we provide further details

in the Appendices and Supplemental Material. Among
other topics, we examine the robustness of the obtained
taxonomies, address some computational issues, tabulate
some of the basic properties of the networks that we in-
vestigated, and provide references for the network data
sources used in this study.

II. MULTI-RESOLUTION COMMUNITY
DETECTION

Our approach is based on network community structure
[13,14]. A community consists of a set of nodes for which
there are more edges (or, in the case of weighted net-
works, a greater total edge weight) connecting the nodes
in the set than what would be expected by chance. The
algorithmic detection of communities is a particularly ac-
tive area of network science, in part because communi-
ties are thought to be related to functional units in many
networks and in part because they can strongly influence
dynamical processes that operate on networks [13] [14].

In this paper, we detect communities using the multi-
resolution Potts method [13| 14} [T6], a generalization of
modularity optimization [13} 14} [T6HI9]. (Modularity op-
timization is perhaps the most popular approach for de-
tecting communities.) Given a network adjacency matrix
A;j, we find communities by minimizing the Hamiltonian
of the infinite-range N-state Potts spin glass
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where C; indicates the community (state) of node (spin)
i, A is a resolution parameter, and J(\) is the coupling
matrix with entries J;;(\) representing the interaction
strength between node ¢ and node j in the Potts Hamil-
tonian. We use the (undirected-network) null model
P;; = k;k;/(2m), where k; denotes the strength (total
edge weight) of node i and m is the total edge weight in
the network [I7]. By tuning the resolution parameter A,
we can detect communities at multiple scales of a net-
work. Our particular choice of J;; implies that we are
optimizing modularity (with the addition of the resolu-
tion parameter) [13] [14].

To compare networks, we create profiles of summary
statistics that characterize the community structure of
each network at different mesoscopic scales. We also
study a wide variety of networks that contain different
numbers of nodes and edges. (We enumerate the net-
works that we consider in Table II of the Supplemental
Material.) To ensure that we can compare the profiles
for different networks, we sweep the resolution parame-
ter A from a minimum value A, to a maximum value
Amax (discussed in detail below). We define these quan-
tities separately for each network such that the number
of communities 77 into which the network is partitioned



is 1 at Apin and is equal to the total number of nodes N
at Amax. In other words, one can think of A as a param-
eter that controls the fragmentation of a network into
communities.

To find the minimum and maximum resolution-
parameter values, consider the interactions in Eq. .
An interaction is called ferromagnetic when J;; > 0 and
antiferromagnetic when J;; < 0. For each pair of nodes
i and j, we find the resolution A = A;; at which the
interaction J;; is neutral (i.e., J;;(A;;) = 0), leading to
Aij = Aij/P;j. We thereby identify two special resolu-
tions:

Anin = max {Aijln(N) = 1}, (2)

Amax = max {AU} +e€, (3)
ij

where € > 0 is any small number (we use ¢ = 1076 in the
present paper). The resolution Ani, is the largest A;;
value for which community detection yields a single com-
munity; note that this need not be the minimum non-zero
value of A;;. Including the small number € in the defini-
tion of A ax ensures that all edges are antiferromagnetic
at resolution A = A, and thereby forces each node into
its own community.

III. MESOSCOPIC RESPONSE FUNCTIONS
(MRFS)

To describe how a network disintegrates into commu-
nities as the value of X\ is increased from A, t0 Amax
(see Fig. [[[a) for a schematic), one needs to select sum-
mary statistics. There are many possible ways to summa-
rize such a disintegration process, and we focus on three
diagnostics that characterize fundamental properties of
network communities.

First, we use the value of the Hamiltonian H(A) (1)),
which is a scalar quantity closely related to network mod-
ularity and quantifies the energy of the system [I3| [14].
Second, we calculate a partition entropy S(A) to charac-
terize the community size distribution. To do this, let ng
denote the number of nodes in community k& and define
pr = ng/N to be the probability to choose uniformly at
random a member node of community k. This yields a
(Shannon) partition entropy of S(\) = — Zz(jf i, log p,
which quantifies the disorder in the associated commu-
nity size distribution. Third, we use the number of com-
munities n(\).

Needing to normalize H, S, and 1 to compare them
effectively across networks, we define an effective energy

Han(n) = e =Py HD
Hmax - Hmin Hmin
where Hmin = H(Amin) and Huyax = H(Amax); an 6ﬁ€C-
tive entropy
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where Spmin = S(Amin) and Smax =
effective number of communities

S(Amax); and an
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where Nmin = 7(Amin) and Nmax = N(Amax)-

Some networks contain a small number of entries A;;
that are orders-of-magnitude larger than most other en-
tries. For example, in the network of Facebook friend-
ships at Caltech [20] 2], 98% of the A;; entries are less
than 100, but 0.02% of them are larger than 8000. These
large A;; values arise when two low-strength nodes be-
come connected. Using the null model P;; = k;k;/(2m),
the interaction between two nodes ¢ and j becomes an-
tiferromagnetic when X\ > A;;/P;; = 2mA;;/(kik;). If
the network has a large total edge weight but both ¢ and
7 have small strengths compared to other nodes in the
network, then A needs to be large to make the inter-
action antiferromagnetic. In prior studies, network com-
munity structure has been investigated at different meso-
scopic scale by considering plots of various diagnostics as
a function of the resolution parameter [13], 14, [16]. In the
present example, such plots would be dominated by in-
teractions that require large resolution-parameter values
to become antiferromagnetic. To overcome this issue, we
define the effective fraction of antiferromagnetic edges

— _ EA(A) - gA(Amin)
é- N g()\) N EA(Amax) - EA(Amin)

o1, (™)

where £4()) is the total number of antiferromagnetic in-
teractions for the given value of A\ in the network. In
other words, it is the number of A;; elements that are
smaller than A. Thus, ¢4(Awpi,) is the largest number
of antiferromagnetic interactions for which the network
still forms a single community, and the effective num-
ber of antiferromagnetic interactions £(\) is the number
of antiferromagnetic interactions (normalized to the unit
interval) in excess of £4(Apin). The function £(A) in-
creases monotonically in A.

Sweeping A from A, to Apax corresponds to sweep-
ing the value of £ from 0 to 1. (One can think of A as
a continuous variable and £ as a discrete variable that
changes with events.) As we perform such sweeping for
a given network, the number of communities increases
from n(§ = 0) =1 ton(§ =1) = N and yields a vec-
tor (Hew(§), Se(§), new(§)) whose components we call
the mesoscopic response functions (MRF) of that net-
work. Because Heg € [0, 1], Sesr € [0, 1], nege € [0, 1], and
¢ € [0,1] for every network, we can compare the MRFs
across networks and use them to identify groups of net-
works with similar mesoscopic structures. In Fig. b),
we show the Zachary Karate Club network [22] for dif-
ferent values of £. As more edges become antiferromag-
netic, the network fragments into smaller communities,
and panel (¢) shows the corresponding MRFs. In Fig.
we show a schematic of the MRF in which we emphasize
its interpretation as a 3-dimensional vector. In Fig. |3 we
show example MRFs for several other networks.
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FIG. 1. (Color online) (a) Schematic of some of the ways
that a network can break up into communities as the value
of A (or ) is increased. (b) Zachary Karate Club network
[22] for different values of the effective fraction of antiferro-
magnetic edges €. All interactions are either ferromagnetic or
antiferromagnetic, i.e. for the values of £ used, there are no
neutral interactions. We color edges in blue if the correspond-
ing interactions are ferromagnetic, and we color them red if
the interactions are antiferromagnetic. We color the nodes
based on community affiliation. (c) The Heg, Sesr, and neg
MRFs, and the interaction matrix J for different values of &.
We color elements of the interaction matrix by depicting the
absence of an edge in white, ferromagnetic edges in blue, and
antiferromagnetic edges in red.

Although minimizing Eq. is an NP-hard problem
[23] and H possesses a complicated landscape of local op-
tima for many networks [24], there exist numerous good
computational heuristics that make finding a nearly-
optimal partition of the network into communities at a
given resolution computationally tractable [I3]14]. Thus
far, we have reported results that were obtained by opti-
mizing modularity using the locally greedy Louvain algo-
rithm [25] because its speed was important for studying
large networks. We have compared the results that we re-
port in the present work to those obtained from optimiz-
ing modularity using spectral and simulated-annealing
algorithms, and obtained similar MRFs and taxonomies
for them (see Appendix [BR for more details).

IV. EXAMPLES OF MRFS

The shapes of the MRFs summarize many factors—
including the fraction of possible edges in a network that
are actually present, the relative weights of inter- ver-

FIG. 2. (Color online) The mesoscopic response function
(MRF) of a given network consists of a 3-dimensional vector
(Hest(§), Ser(€), mem(€)), where £ € [0,1]. By construction,
the MRF starts from the bottom front corner [Hex(€é = 0),
Set(§ = 0), nex(§ = 0)] and ends at the top back corner
Her(§ = 1), Ser(§ = 1), nes(§ = 1)]. The colored surface
plot shows where most MRFs lie. We also show schematic
MRFs in blue (solid curve) and red (dashed curve).

sus intra-community edges, the edge weights compared
with the expected edge weights in the null model, the
number of edges that need to become antiferromagnetic
for a community to fragment, and the way in which the
communities fragment (e.g., whether a community splits
in half or a single node leaves a community when a par-
ticular edge becomes antiferromagnetic). To understand
the effects of some of these factors on the shapes of the
MRFs, we consider some examples.

Of particular interest are plateaus in the neg and Seg
curves that are accompanied by large increases in Heg.
As illustrated in panel [3{a), the New York Stock Ex-
change (NYSE) network from 1980 to 1999 [26] provides
a good example of this behavior. This network is an
instance from the category of similarity networks. We
use this label to describe networks that have been con-
structed by starting from some node-level quantity or at-
tribute and then defining the edges based on some form
of similarity or correlation measure between each pair
of nodes. Similarity networks tend to be complete (or
almost complete) and weighted networks, except when
they have been deliberately thresholded. In this par-
ticular example, each node represents a stock, and the
strength of the edge connecting stocks ¢ and j is linear
in the Pearson correlation between the daily logarithmic
returns of the stocks. (See Sectionfor more details.)
Plateaus imply that as the resolution A is increased (lead-
ing to an increase in Heg), the communities remain un-
changed even though the number and strength of antifer-
romagnetic interactions increase. As A is increased and
more interactions become antiferromagnetic, there is an



increased energy incentive for communities to break up.
Community partitions in such plateaus tend to be robust
and have the potential to represent interesting structures
[13] 14l 1] 27].

In Fig. 3(b), we show MRFs for a “fractal” network
[28], which demonstrates that plateaus in the n.g and Seg
curves need not be accompanied by significant changes in
Heg. Such plateaus can be explained by considering the
distribution of A;; values. If several interactions have
identical values of A;;, then the interactions all become
antiferromagnetic at exactly the same resolution value.
This leads to a significant increase in the effective fraction
of antiferromagnetic edges £ but only a small change in
Heg. If these interactions do not result in additional
communities, then we obtain plateaus in the 7. and Seg
curves.

To demonstrate qualitatively different behavior, we
show the MRFs for the Biogrid Drosophila melanogaster
network and the Garfield Scientometrics citation network
in Fig. [3c) and Fig. [3d), respectively. A common fea-
ture in these MRFs is the sharp initial increase in the
curves that results from the networks initially breaking
into two communities.

Another family of networks, which we will discuss in
more detail in our case studies, are political voting net-
works. These voting networks are also similarity net-
works: we have constructed these networks so that an
edge between two nodes indicates the level of agreement
on votes between two entities, and each edge takes a value
between 0 and 1. In Fig. [3[e), we show the MRFs for the
voting network of the United Kingdom House of Com-
mons during the period 2001-2005 [29]; in Fig. f), we
show the MRFs for the roll-call voting network for the
108" (2003-2004) United States House of Representa-
tives [30H33]. In both cases, we observe that sharp in-
creases in Heg can be accompanied by only small changes
in neg and Seg. To see how this can arise, we again
consider the distribution of A;; values. If the A;; dis-
tribution is multi-modal, there can be a large difference
between consecutive A;; values. A large increase in A
is then needed to increase &, which in turn results in a
large change in H.g. However, the change in neg is small
because this only results in a single additional antiferro-
magnetic interaction.

V. COMPARING NETWORK MODELS

To provide further insights into MRFs, we consider
Erdés-Rényi (ER) [36], Barabdsi-Albert (BA) [37], and
Watts-Strogatz (WS) [38] networks. These network mod-
els are stochastic, and there is a large ensemble of pos-
sible network realizations for each choice of parameter
values in these models. However, even with the ensu-
ing structural variation, networks generated by a given
one of these three models exhibit similar properties at
mesoscopic and macroscopic scales, so we expect MRFs
for different realizations of a given model to be similar.
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FIG. 3. (Color online) Example mesoscopic response func-
tions (MRFs). The curves show Heg (pink, dashed), Ses
(blue, dash-dotted), and nes (black, solid) as a function of the
effective fraction of antiferromagnetic edges ¢ for the following
networks: (a) New York Stock Exchange (NYSE), 1980-1999
[26]; (b) Fractal (10,2,8) [28]; (c) Biogrid D. melanogaster
[34); (d) Garfield scientometrics citations [35]; (e) United
Kingdom House of Commons voting, 2001-2005 [29]; (f) Roll-
call voting of 108th United States House of Representatives
[30-33].

In Fig. [ we compare the MRFs for 1000 realizations
of each model for networks with N = 1000 nodes and
mean degree (k) = 10. For the WS networks, we set
the edge rewiring probability at p = 0.1. As illustrated
in Fig. [ we obtain a narrow range of possible MRFs
for fixed parameter values. This comparison illustrates
that the MRF profiles of the three different models are
distinctive. In addition, for each model there is little
variation in the behavior of the MRFs across different
network realizations with the same parameter values.

It is also instructive to consider variation in MRF
shapes for a particular network model for different pa-
rameter values. We focus on WS networks because they
illuminate the effect of the distribution of A;; values on
the shapes of the MRFs. In Fig.[f] we show MRF's for WS
networks for different values of the edge rewiring proba-
bility p. (We continue using N = 1000 and (k) = 10.) We
also show the distribution of A;; values for each network.

For small rewiring probabilities, the MRFs have lots
of steps. As with prior examples, we can see how this
feature arises by considering the distribution of A;; val-
ues. When the rewiring probability is small, many nodes
possess the same degree, which results in the presence
of many interactions with identical A;; values (see the
bottom left panel of Fig. . Because several interac-
tions have identical A;; values, these interactions all be-
come antiferromagnetic at exactly the same resolution-
parameter value, so the behavior of MRFs only changes
for a small number of £ values. As the rewiring probabil-
ity p is increased, the degree and A;; distributions become
more heterogeneous, which leads to smoother MRFs. For
a rewiring probability of p = 1, the WS network is just
an ER network.
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FIG. 4. (Color online) MRFs for 1000 realizations of Erdds-
Rényi (ER), Barabési-Albert (BA), and Watts-Strogatz (WS)
networks. Each network has N = 1000 nodes and mean de-
gree (k) = 10. For each value of &, the upper curves show
the maximum values of Hes (top row), Seg (middle row),
and 7eg (bottom row) for all networks in the ensemble; the
lower curves show the corresponding minimum value, and the
dashed curves show the corresponding mean.
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FIG. 5. (Color online) Upper panels: MRFs for Watts-

Strogatz networks for different values of the rewiring proba-
bility p. Each network has N = 1000 nodes and mean degree
(kY = 10. Lower panels: distributions of A;; values for each
network. As expected, the MRF's for p = 1 are identical to
those of an Erd6s-Rényi network with N = 1000 and (k) = 10.

VI. MEASURING DISTANCE BETWEEN
NETWORKS

In the framework that we have introduced in this pa-
per, comparing two networks at the mesoscopic level
amounts to characterizing the differences in behavior of
the corresponding MRFs. To quantify such differences,
we define a distance between two networks with respect
to one of the summary statistics as the area between the
corresponding MRF's. For example, the distance between
two networks ¢ and j with respect to the effective energy
Hegr is given by

d§=ér%ao—ﬂ&@ma (8)

For the effective entropy and effective number of com-
munities, the distances are given by dfj = fol 1Si(8) —

S(©)|dé and d}; = [ Inig(€) — mlg(€)] d, respectively.

We represent the resulting three sets of distances (com-
puted for each pair of networks from the 746 networks
that we consider, see Table I) in matrix form as D™,
D%, and D". These distance measures have several de-
sirable properties. First, they compare MRFs across all
network scales (i.e., for all values of £); second, each dis-
tance is bounded between 0 and 1; third, the distances
are easy to interpret, as each of them corresponds to the
geometric area between (a certain dimension of) a pair
of MRFs; and finally, we find a posteriori that these dis-
tances can be used to cluster networks accurately (see
the discussions below).

We have computed MRFs for the energy H, entropy S,
and number of communities 7, but we can proceed simi-
larly with any desired summary statistic. If two diagnos-
tics provide similar information, then one of them can
be excluded without significant loss of information. We
checked whether the summary statistics were sufficiently
different, for the set of networks considered here, for it to
be worthwhile to include all of them by calculating the
Pearson correlation coefficient between their correspond-
ing distance measures. The correlations between the
pairs of distances are r(dz']‘», dfj) = 0.36, r(dZ—j—, dj;) =0.24,
and r(df},d?j) = 0.58. These correlations are not suf-
ficiently high to justify excluding any of the summary
statistics.

In the interest of parsimony—and given the non-
vanishing correlations between the distance measures—
we reduce the number of distance measures using prin-
cipal component analysis (PCA) [39]. Starting with N
networks, we create a %N (N — 1) x 3 matrix in which
each column corresponds to the vector representation
of the upper triangle of one of the distance matrices
D* D D", and we perform a PCA on this matrix.
We then define a distance matrix D? with elements
dy; = wydlt + wsdy; + wyd];, where the weights are the
coefficients for the first principal component, and we nor-
malize the sum of squared coefficients to unity. The co-
efficients are wy = 0.24, wg = 0.79, and w,, = 0.57. The
first component accounts for about 69% of the variance,
so the distances DP provide a reasonable single-variable
projection of the distances D*, D®, and D".

It is important that the distance measures for compar-
ing networks are robust to small perturbations in network
structure. Because many of the networks that we study
are constructed empirically, they might contain false pos-
itives and false negatives. In other words, the networks
might falsely identify a relationship where none exists,
and they also might fail to identify an existing relation-
ship. Consequently, the topology and edge weights of an
observed network might be slightly different than those
of the actual underlying network. To test the robustness
of our distance measures to such observational errors, we
recalculate the MRF's for a subset of relatively small un-



weighted networks in which, for each network, we rewire
a number of edges corresponding to a given percentage of
the total number of edges (5%, 10%, 20%, 50%, or 100%).
See Appendix [A| for more details. (We study networks
with up to 1000 nodes and only consider a subset of 25
networks because of the computational costs of rewiring
a large number of networks multiple times; however, we
have performed the same investigation for 5 different sub-
sets of 25 networks and obtained similar results. We list
the networks in each subset in Table I of the Supplemen-
tal Material.) We investigate two rewiring mechanisms:
one in which the degree distribution is maintained, where
we also ensure after each rewiring that the network forms
a single connected component; and another in which the
only constraint is that the network continues to consist
of a single connected component after each edge rewiring
[40]. We find in both cases that the structures of the
block-diagonalized distance matrices for the 25 networks
(see Figs and in Appendix are robust to random
perturbations of the networks, thereby suggesting that
our MRF distance measures are not sensitive to small
structural perturbations.

VII. CLUSTERING NETWORKS

We assign each of the 746 networks to a category based
on its type (see Table[ll). Due to the varying availability
of different types of network data, the included networks
are not evenly distributed across these categories. Many
of the networks are either different temporal snapshots
of the same system or different realizations of the same
type of network. To have a more balanced distribution
across the different categories, we focus on 189 of the 746
networks. We only include categories for which we have
8 or more networks, and we selected a subset of networks
(uniformly at random) from the larger categories. We
also exclude all synthetic networks. See Section IV of
the Supplemental Material for the list of networks that
we consider and Fig. 1 in Section II of the Supplemen-
tal Material for a dendrogram showing a taxonomy we
constructed using all 746 networks.

Our primary reason for assigning each network to a
category is to use such an external categorization to help
assess the quality of taxonomies produced by the unsu-
pervised MRF clustering. For each way of computing
distance, we construct a dendrogram for the set of net-
works using average linkage clustering, which is an ag-
glomerative hierarchical clustering technique [13], [41][42).
In Fig. [6] we show a dendrogram obtained from the dis-
tance matrix DP. The colored rectangle underneath each
leaf indicates the network category. Contiguous blocks
of color demonstrate that networks from the same cat-
egory have been grouped together using the MRF clus-
tering method, and the presence of such contiguous color
blocks is an indication of the success of the MRF clus-
tering scheme.

The assignment of the networks to one of these cate-

TABLE I. Network categories, the total number of networks
assigned to each category, and the number of networks from
each category included in the taxonomy in Fig. @ For the
full taxonomy that uses all 746 networks, see Fig. 1 of the
Supplemental Material.

’Category All networks | Taxonomy networks‘
Political: voting 285 23
Facebook 100 15
Fungal 65 12
Synthetic 58 0
Financial 54 6
Metabolic 43 15
Social 26 26
Political: cosponsorship 26 26
Other 23 0
Protein interaction 22 22
Political: committee 16 16
Brain 12 12
Language 8 8
Collaboration 8 8
Total 746 189

gories is of course to some extent subjective, as several
of the networks could belong to more than one category.
For example, we could categorize the network of jazz mu-
sicians [43] as either a collaboration network or a social
network. The initial selection of network categories is
also somewhat subjective. One could argue that if one
has a social network category, then it is not necessary
to have a collaboration network category as well because
a collaboration network is a type of social network. We
have attempted to maintain a balance between having
too many categories and having too few of them. When
such ambiguities have arisen, we have systematically cho-
sen the more specific of the relevant categories (e.g., we
placed the jazz musician network in the category of col-
laboration networks rather than in the category of social
networks).

VIII. TAXONOMIES OF EMPIRICAL

NETWORKS

All of the networks in some categories appear in blocks
of adjacent leaves in the dendrogram in Fig.[6] For exam-
ple, there is a cluster of political voting networks at the
far left of the dendrogram. This cluster includes voting
networks from the US Senate, the US House of Repre-
sentatives, the UK House of Commons, and the United
Nations General Assembly (UNGA). The clustering of
these voting networks suggests that there are some com-
mon features in the network representations of the differ-
ent legislative bodies. We also obtain blocks that consist
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FIG. 6. (Color online) Taxonomy for 189 networks. We construct the dendrogram (tree) using the distance D? and average
linkage clustering. We order the leaves of the dendrogram to minimize the distance between adjacent nodes and color the leaves

to indicate the type of network.

of all political committee networks and all metabolic net-
works.

There are also several categories for which all except
one or two networks cluster into a contiguous block. For
example, all but two of the fungal networks appear in the
same block and all but one of the Facebook networks are
clustered together. The isolated Facebook network is the
Caltech network, which is the smallest network of this
type and which appears in a group next to that contain-
ing all of the other Facebook networks. We remark that
the social organization of the community structure of the
Caltech Facebook network has been shown to be different
from those of the other Facebook networks [20], 21].

Networks of certain categories do not appear in near-
contiguous blocks. For example, protein interaction net-
works appear in several clusters. These networks rep-
resent interactions within several different organisms, so
we would not expect all of them to be clustered together.
Moreover, the data that we employed includes examples
of protein interaction networks for the same organism in
which the interactions were identified using different ex-
perimental techniques, and these networks do not cluster
together. This supports previous work suggesting that
the properties of protein interaction networks are very
sensitive to the experimental procedure used to identify

the interactions [44], 45]. Social networks are also dis-
tributed throughout the dendrogram. This is unsurpris-
ing given the extremely broad nature of the category,
which includes networks of very different sizes with edges
representing a diverse range of social interactions. The
leftmost outlying social network is the network of Marvel
comic book characters [46], which is arguably an atypical
social network.

The grouping (and, to some extent, the non-grouping)
of networks by category suggests that the PCA-distance
DP between MRFs of different networks produces a sen-
sible taxonomy. It is important to ask, however, whether
a simpler approach based on a single network diagnos-
tic, such as edge density, can be comparably successful
at constructing a taxonomy. In Appendix |D| we demon-
strate using some well-known diagnostics that this does
not appear to be the case, as the diagnostics we tried
were unable to reproduce or explain the classifications
that we produced using the MRFs.

In order to compare the aggregate shapes of the MRFs
across categories, we show the bounds of the Heg, Sefr,
and nes curves for each category in Fig. []] We again
consider all empirical network categories with at least 8
networks in them. This illustrates that the MRFs for
some classes of networks (such as political cosponsor-



ship and metabolic networks) are very similar to each
other, whereas there are large variations in the MRFs for
other categories (such as social and protein interaction
networks). The variety of different MRF's for the social
and protein interactions is consistent with the fact that
their constituent networks are scattered throughout the
dendrogram in Fig. [6]

Social Facebook Political: voting
Political: co-sponsorship Political: committee Protein interaction
; / - o ”‘,
Metabolic Brain Fungal
/,’ / 7’/1' '/
Financial Language Collaboration
E == eff- Seff ] neff E

FIG. 7. (Color online) MRFs for all of the network categories
containing at least 8 networks (see Table . At each value of
&, the upper curve shows the maximum value of Heg (pink,
left panel in each category), Sest (blue, center panel), and 7es
(black, right panel) for all networks in the category and the
lower curve shows the minimum value. The dashed curves
show the corresponding mean MRFs.

IX. CASE STUDIES

We now consider several case studies, in which we gen-
erate taxonomies for multiple realizations of particular
types of networks and multiple time slices of particular
networks. This enables us to compare these networks and
(in some cases) illustrate possible connections between
network function and mesoscopic network structure.

A. Voting in the United States Senate

Our first example deals with roll-call voting in the
United States Senate [30-33, [47]. Establishing a taxon-
omy of networks detailing the voting similarities of indi-
vidual legislators complements previous studies of these
data, and it facilitates the comparison of voting similar-
ity networks across time. We consider Congresses 1-110,
which cover the period 1789-2008. As in Ref. [33], we
construct networks from the roll-call data [30, [3I] for
each two-year Congress such that the adjacency matrix
element A;; € [0, 1] represents the number of times Sen-
ators 7 and j voted the same way on a bill (either both in

favor of it or both against it) divided by the total num-
ber of bills on which both of them voted. Following the
approach of Ref. [31], we only consider “non-unanimous”
roll call votes, which are defined as votes in which at least
3% of the Senators were in the minority.

Much research on the US Congress has been devoted
to the ebb and flow of partisan polarization over time
and the influence of parties on roll-call voting [32] [33].
In highly polarized legislatures, representatives tend to
vote along party lines, so there are strong similarities in
the voting patterns of members of the same party and
strong differences between members of different parties.
In contrast, during periods of low polarization, the party
lines become blurred. The notion of partisan polariza-
tion can be used to help understand the taxonomy of
Senates in Fig. in which we consider two measures
of polarization. The first measure uses DW-Nominate
scores (a multi-dimensional scaling technique commonly
used in political science [31],[32]), where the extent of po-
larization is given by the absolute value of the difference
between the mean first dimension DW-Nominate scores
for members of one party and the same mean for mem-
bers of the other party [30H32]. In particular, we use the
simplest such measure of polarization, called MPR polar-
ization, which assumes a competitive two-party system
and hence cannot be calculated prior to the 46*" Senate.
The second measure we consider is network modularity
@, which was recently shown to be a good measure of
polarization even for Congresses without clear party di-
visions [33]. Modularity is given in terms of the energy H
in Eq. (1) by @ = =H (A =1)/(2m). These two measures
exhibit fairly close agreement on the level of polarization
of each Congress for which they can both be calculated
33].

In Fig. au)7 we include bars under the dendrograms to
represent the two polarization measures, both of which
have been normalized to lie in the interval [0,1]. The
bars demonstrate that Senates with similar levels of po-
larization (measured in terms of both DW-Nominate
scores and modularity values) are usually assigned to the
same group, suggesting that our MRF clustering tech-
nique groups Senates based on the polarization of roll-call
votes. We have also colored dendrogram groups accord-
ing to their mean levels of polarization using modularity,
where the brown group in the dendrogram corresponds
to the most highly polarized Senates and the blue group
corresponds to the least polarized Senates. Although
one ought to expect similarity in the results from the
modularity-based measure of polarization and the MRF
clustering, it is important to stress that the MRF cluster-
ing method is based on different principles; modularity
quantifies the extent to which a given network is “mod-
ular”, whereas the MRF clustering explicitly compares
the differences in modular structures between any two
networks at all scales.

In Fig. [8(a), we also show the clusters that we ob-
tained for the Senate. They closely match the different
periods of polarization that have been identified using
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FIG. 8. (Color online) (a) Dendrogram for Senate roll-call
voting networks for the 15°-110"" Congresses. Each leaf in
the dendrogram represents a single Senate. Two horizontal
color bars below the dendrograms indicate polarization mea-
sured in terms of modularity (upper bar) and DW-Nominate
scores (lower bar). We color the branches in the dendrogram
corresponding to periods of similar polarization. (b) Polar-
ization of the US Senate as a function of time. The height
of each stem indicates the level of polarization measured us-
ing modularity, and the color of each stem gives the cluster
membership of each Senate in (a). The black curve shows the
DW-Nominate polarization. Note that we have rescaled both
measures to the interval [0, 1].

modularity and DW-Nominate [33]. The cluster with
the highest mean polarization (shown in brown) consists
of Senates 7, 26-29, 44, 46-51, 53, 55, 66, and 104-110.
The 104" 110" Congresses correspond to a period of ex-
tremely high polarization following the 1994 “Republican
Revolution”, in which the Republican party earned ma-
jority status in the House of Representatives for the first
time in more than 40 years [30] 32, 33]. The cluster with
the second highest mean polarization (shown in red) in-
cludes several contiguous blocks of Senates, such as those
from Congresses 21-25, 35-39, and 56-61. The 215t-25h
Congresses (1829-1839) corresponded to a period of par-
tisan conflict between supporters of John Quincy Adams
and Andrew Jackson; it lasted until the emergence of the
Whigs and the Democratic party in the 25" Congress
[33] [48]. The American Civil War started during the
37" Congress, and a third party known as the Populist
Party was strong during the 56'"-58" Congresses.

The main differences between different clusters occur
in the Heg response functions. For the most polarized
Senates, there is a sharp shoulder in the H.g MRF that
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becomes less pronounced as the polarization decreases.
We illustrate this in Fig. [0] in which we compare the
Hegr MRFs for the (low-polarization) 85" and (high-
polarization) 108" Senates. The shoulder in the Heg
curve for the 108" Senate is very pronounced, which can
be explained by considering the distribution of A;; values.
The 108" Senate has a bimodal A;; distribution that con-
tains a trough at A;; = 1. Recall that A;; = A;;/P;;, so
A;; compares the observed voting similarity A;; of legisla-
tors ¢ and j with the similarity P;; = k;k;/(2m) expected
from random voting. If A;; < 1, legislators ¢ and j vote
differently more frequently than expected (with respect
to the chosen null model); if A;; > 1, they vote more
similarly than expected. Therefore, the peaks in the A;;
distribution above and below 1 correspond, respectively,
to intra-party and inter-party voting blocs. In a Senate
with low polarization, legislators from different parties
often vote in the same manner, so the values of A;; no
longer separate two distinct types of behavior.

We also examined roll-call voting networks in the US
House of Representatives and found many similar fea-
tures as the ones that we have presented for the US Sen-
ate. For example, the highly polarized 104*"-110*" Con-
gresses, which followed the “Republican Revolution”, ap-
pear in the same cluster for both the House and Senate.
We also observed some differences in the clusters for the
two chambers. For example, the 78""-102"d Senates all
appeared in the same cluster. For the House, however,
Congresses 80, 88, 89, and 98-102 did not appear in the
same cluster as the other Congresses between 78 and 102;
instead, they appeared in a cluster that also included the
26'P-28*"" Houses. This was a particularly eventful pe-
riod: the 25" Congress saw the emergence of the Whigs
and the Democratic Party, and the abolitionist movement
was also prevalent (e.g., the Amistad seizure occurred in
1839 during the 26" Congress).
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FIG. 9. (Color online) Comparison of the (low-polarization)
85" Senate and the (high-polarization) 108*® Senate. The
panels show (a) the Heg MRFs and (b) the cumulative dis-
tributions of A;; values.



B. Voting in the United Nations General Assembly

The United Nations General Assembly (UNGA) is one
of the principal organs of the United Nations (UN), and
it is the only part of the UN in which all member na-
tions have equal representation. Although most resolu-
tions are neither legally nor practically enforceable be-
cause the General Assembly lacks enforcement powers on
most issues, it is the only forum in which a large number
of states meet and vote regularly on international issues.
It also provides an interesting point of comparison with
roll-call voting in the US Congress, as the level of agree-
ment on UN resolutions tends to be much higher than
that in the Senate and House [49].

We study voting for the 15°-63" sessions (covering the
period 1946-2008), where each session corresponds to a
year [50]. For each session, we define an adjacency ma-
trix A whose elements A;; represent the number of times
countries ¢ and j voted in the same manner in a session
(i.e., the sum of the number of times both countries voted
yea on the same resolution, both countries voted nay on
the same resolution, or both countries abstained from
voting on the same resolution) divided by the total num-
ber of resolutions on which the UNGA voted in a session.
The matrix A, with elements A;; € [0,1], thereby rep-
resents a (similarity) network of weighted edges between
countries.

—1979-1991 gexcl. 1 980;
—1992-2008 (excl. 1995
—1946, 1948, 1950

FIG. 10. (Color online) Dendrogram for the United Na-
tions General Assembly resolution voting network for the 15—
63" sessions (excluding the 19'" session), covering the period
1946-2008. Each leaf in the dendrogram represents a sin-
gle session. In the text, we discuss the coloring of groups of
branches in the dendrogram.

We cluster UNGA sessions by comparing MRFs for
the corresponding voting networks. In Fig. we plot a
dendrogram of the UNGA sessions and highlight some of
the clusters, which correspond to notable periods in the
recent history of international relations. The red cluster
in the middle of the dendrogram consists of all post-Cold
War sessions (1992-2008) except 1995. This group forms
a larger cluster with some UNGA sessions from the 1970s
and a cluster consisting of 1946, 1948, and 1950. These
three sessions (shown in magenta) are all noteworthy:
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1946 was the first session of the UNGA, the Universal
Declaration of Human Rights was introduced during the
1948 session, and the “Uniting for Peace” resolution was
passed during the 1950 session. At the rightmost part
of the dendrogram, we color in black a group that con-
sists of all sessions from 1979 to 1991 (excluding 1980).
The beginning of this period marked the end of Détente
between the Soviet Union and the US following the for-
mer’s invasion of Afghanistan at the end of 1979, and
the end of this period saw the end of the Cold War. The
large blue cluster in the leftmost part of the dendrogram
consists primarily of sessions from before 1971 (though it
also includes the sessions in 1977 and 1995).

C. Facebook

We now consider Facebook networks for 100 US uni-
versities [20, 2I]. The nodes in each network represent
users of the Facebook social networking site, and the un-
weighted edges represent reciprocated “friendships” be-
tween users at a single-time snapshot in September 2005.
We consider only edges between students at the same
university, as this allows us to compare the structure of
the networks at the different institutions. These networks
represent complete data sets obtained directly from Face-
book. In contrast to the previous examples, we are not
comparing snapshots of the same network at different
times but are instead comparing multiple realizations of
the same type of network that have evolved indepen-
dently. Such real-world ensembles of network data are
rare, and constructing a taxonomy will hopefully allow
us to compare and contrast the social organization at
these institutions.
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FIG. 11. (Color online) Dendrogram for 100 Facebook net-
works of US universities at a single-time snapshot in Septem-
ber 2005. We order the leaves of the dendrogram to minimize
the distance between adjacent nodes. The color bars below
the dendrogram indicate (top) the number of nodes in the
networks N and (bottom) the fraction of possible edges that
are present d.

In Fig. we show the dendrogram for Facebook net-
works that we produced by comparing MRFs. The two
color bars below the dendrogram indicate (top) the num-
ber of nodes N in each network and (bottom) the fraction



of possible edges d that are present (i.e., edge density).
The Facebook networks range in size from 762 to 41,536
nodes, and the edge density varies from 0.2% to 6%. In
contrast to previous examples, we observe in this case
that two simple network properties appear to explain
most of the observed clustering of the networks. An im-
portant feature of this example is that the Heg, Sef, and
Net MRF's are each very similar in shape and lie in a nar-
row range across all 100 institutions (see Fig. [7). Such
extreme similarity is remarkable—as one can see in Fig.[7]
this contrasts starkly with most of the other examples—
and it suggests that all of the Facebook networks have
very similar mesoscopic structural features. If one also
considers demographic information, then one can find in-
teresting differences between the networks [20, 21], but
the structural similarity is striking.

D. Fungi

We also examined fungal mycelial networks extracted
from time series of digitized images of colony growth. In
these undirected, planar, weighted networks, the nodes
represent hyphal tips, branch points, or anastomoses (hy-
phal fusions), and the edges represent the interconnecting
hyphal cords weighted by their conductivity [5IH53]. For
comparison, we also digitized weighted networks of the
acellular slime mold Physarum polycephalum [54]. Fun-
gal networks look like trees but contain additional edges
(known as cross-links) that generate cycles.

As shown in Fig. a), we find using our method
that replicate networks from different species at compa-
rable time points are grouped together. Furthermore,
the aggregate clustering pattern reflects increasing lev-
els of cross-linking that are characteristic of different
species, as illustrated in Fig. b); this ranges from the
low levels in Resinicium bicolor to intermediate levels in
Phanerochaete velutina and highly cross-linked networks
formed by Phallus impudicus. By constructing a den-
drogram for only one species but including data from
repeated experiments and over time (see Fig. [12{c)), we
observe a progression from trees at early developmen-
tal times to an increasingly cross-linked network later in
mycelium growth [5I, B5]. In early growth, the devel-
opmental stage appears to dominate the clustering pat-
tern, as networks from different replicates but of similar
age are grouped together. At later times, however, net-
works show a high aggregate level of similarity, and the
fine-grained clustering predominantly reflects the subtle
changes in structure evolving within each replicate.

E. New York Stock Exchange

As our final example, we consider a set of stock-return
correlation networks for the New York Stock Exchange
(NYSE), which is the largest stock exchange in the world
(as measured by the aggregate US dollar value of the
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FIG. 12. (Color online) (a) Dendrogram of networks for six
different species of Saprotrophic basidiomycetes and the slime
mold Physarum polycephalum. Each leaf represents a repli-
cate experiment. The colors and numbers correspond to the
species as follows: (1) Resinicium bicolor, (2) Physarum poly-
cephalum, (3) Phallus impudicus, (4) Phanerochaete velutina,
(5) Stropharia caerulea, and (6) Agrocybe gibberosa. (b) Im-
ages illustrating the network structure of the different species
[52]. (c) Dendrogram of network development in six replicate
time series of Phanerochaete velutina. We color the leaves by
time, and the color bar underneath the leaves indicates ex-
periment number (1,...,6). In the inset, we show extracted
networks that illustrate the transition from simple branching
trees to increasing levels of interconnection (i.e., cross-linking)
with time.

securities listed on it). Each node represents a stock,
and the strength of the edge connecting stocks ¢ and j is
linear in the Pearson product-moment correlation coeffi-
cient between the daily logarithmic returns of the stocks
[26]. We consider N = 100 stocks during the time period
1985—-2008 and construct a network for each 6 months of
data. This yields a sequence of fully-connected, weighted
adjacency matrices whose elements quantify the similar-
ity of two stocks (normalized to the unit interval for each
time window).

We show the dendrogram for the NYSE networks in
Fig. The first division of these networks classifies
them into two groups (which we have colored in blue and



red). The red cluster appears to correspond to periods
of market turmoil, including the networks for the sec-
ond half of 1987 (including the Black Monday crash of
October 1987), all of 2000-2002 (including and follow-
ing the bursting of the dot-com bubble), and the second
half of 2007 and all of 2008 (including the recent credit
and liquidity crisis). The value of the NYSE composite
index, which measures the aggregate performance of all
common stocks listed on the NYSE [56], supports our hy-
pothesis that the red cluster is associated with periods of
market turmoil. Indeed, the networks in the red cluster
correspond (with one or two exceptions) to the periods
of high volatility of the composite index (see Fig. .
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FIG. 13. (Color online) Dendrogram for 48 NYSE networks
during the period 1985-2008 [26]. Observe the clear split of
the dendrogram into two clusters (a blue group on the left
and a red group on the right). Leaf color indicates mean
daily volatility of the composite index.

X. CONCLUSIONS

We have developed an approach that facilitates the
comparison of diverse networks by summarizing network
community structure using what we call mesoscopic re-
sponse functions (MRFs). We have demonstrated how
this approach can be used to group networks both across
categories and within categories. Our work builds on
prior research on network community structure, which
has focused predominantly on algorithmic detection of
the communities rather than on subsequently using the
communities for applications (such as comparing sets of
networks).

The development of algorithmic methods to detect
communities is frequently motivated by the idea that the
community structure of a network representing a system
has some bearing on the function of the system. If dif-
ferent networks perform different functions—and if their
functions are constrained, at least in part, by their meso-
scopic structure—then it should be possible in principle
to derive a functional classification of networks based on
community structure. Although this has mostly been
presented as a presumption in the existing literature, it
is actually an empirically testable hypothesis. Indeed,
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we have shown in the present paper that one can sys-
tematically exploit mesoscopic structure to obtain useful
comparisons of networks. This allows one to derive tax-
onomies for networks that also appear to have correspon-
dence with functional similarities. We observed that net-
works that were not grouped with other members of the
same class appeared to be unusual in some respects, and
we also demonstrated that we could detect historically-
noted financial and political changes from time-ordered
sequences of networks.

We believe that our framework has the potential to
aid in the exploration and exploitation of similarities in
network structures across both network types and disci-
plinary boundaries.
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Appendix A: Robustness of Clustering

To examine the robustness of our clustering to false
positives (false links) and false negatives (false non-links),
we consider two network rewiring mechanisms, and we
apply the rewiring to each network in a subset of 25 net-
works highlighted in Table 2 of the Supplemental Ma-
terial. The first step in the procedure is to randomly
rewire a number of edges corresponding to a given per-
centage (5%, 10%, 20%, 50%, or 100%) of the total num-
ber of edges in the network, subject to the constraints
that we preserve the networks’s degree distribution and
the fact that it consists of a single connected component
[57]. (That is, such a rewiring of a number of edges equal
to x% of the L edges in a network means that we perform
[xL] rewiring steps; the same edge can be rewired multi-
ple times.) Second, we randomly rewire a given number
of the edges subject only to the constraint that we the
rewired network still consists of a single component.

Because we are perturbing the original network, we fo-
cus on the distance matrices D*, DS, and D" as they can
be calculated directly for each network. We consider 25



of the 746 original networks of varying sizes and edge den-
sities; we highlight these networks in bold in Table IT of
the Supplemental Material. In Fig.[T4] we show the dis-
tance matrices for this subset of networks when different
percentages of edges have been rewired with the degree
distribution preserved. The first column shows the ma-
trices for the original networks. (Note that the node or-
derings for D*, D®, and D" are not necessarily the same
in Fig. [L4] because of the block-diagonalization of matri-
ces.) The subsequent columns show the mean distance
matrices as increasing numbers of edges are rewired; for a
given row, the node ordering in each column is fixed. The
distance matrices for the randomizations are the mean
pairwise distances between networks, where the mean is
calculated over all possible pairs between 10 perturba-
tions of each network. More precisely, let A and B rep-
resent two different (unperturbed) networks and let the
sequences Ay, As, ..., Ajg and By, Bo, ..., Biy represent
10 realizations of the perturbation process (e.g., at the
5% level) for the networks. To calculate the distance
between A and B under perturbation, we find for each
j€{1,...,10} the distances between A, and B, A; and
By, ..., and A; and Bjp. We then calculate the mean
of the ensuing 10 x 10 = 100 distance values. Based on
visual inspection of Fig. the matrices for the first few
columns for all of the distances are fairly similar to the
original distance matrices. This suggests some notion of
robustness in our clustering technique. We study only 25
networks because of the computational costs of rewiring
a large number of networks multiple times; however, we
have performed the same investigation for 5 different sub-
sets of 25 networks and obtained similar results. We list
the networks in each subset of 25 in Table I in the Sup-
plemental Material.

To carry out a more thorough randomization of each
network, we now rewire every edge in the network 10
times on average. In Fig. we show the D7, D, and
D" mean-distance matrices for this number of rewirings.
We again calculate the mean distance using the method
described in the previous paragraph. The first column
again shows the distance matrices for the original net-
works. The second and third columns show the distance
matrices for randomizations in which the degree distribu-
tion is preserved and destroyed, respectively. The node
orderings of the matrices in the second and third columns
are again the same as the orderings for the matrix of
the first column of the corresponding row. The second
column in Fig. [T5] demonstrates that some block struc-
ture remains in the distance matrices when the degree
distribution is preserved. The third column shows that
much of this structure is destroyed (though some block
structure is still visible) when the degree distribution is
not preserved. When the networks are “fully random-
ized” in this way—with the only constraint being that
each rewired network must consist of a single connected
component—one is in effect producing random graphs.
These random graphs might, however, still have some
common properties, such as the number of nodes and
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FIG. 14. (Color online) Block-diagonalized mean distance
matrices D* (top row), D¥ (middle row), and D" (bottom
row) for the 25 networks listed in bold in Table II of the Sup-
plemental Material. The columns show the mean-distance
matrices following randomizations of the original network in
which a given percentage of edges are rewired and the degree
distributions of the networks are preserved. (We also con-
strain each rewired network to consist of a single connected
component.) The ordering of the nodes in the plots is fixed
for each row. The first column shows the distance matrix for
the original networks. The distance matrices for the random-
izations are the mean pairwise distances between networks.

the edge density.

Appendix B: Computational Heuristics

1. Robustness of Network MRFs

We detected all communities in the main text using
the locally greedy Louvain algorithm [25]; however, sev-
eral alternative heuristics exist, so we now investigate
whether the choice of heuristic has any effect on the re-
sults. In Ref. [24], Good et al. demonstrated that there
can be extreme near-degeneracies in the energy function,
in particular an exponential number of low-energy (i.e.,
high-modularity) solutions. Given this, it is unsurpris-
ing that different energy-optimization heuristics can yield
very different partitions for the same network. Good et
al. suggested that the reason for this behavior is that
different heuristics sample different regions of the energy
landscape. Because of the potential sensitivity of results
to the choice of heuristic, one should treat individual par-
titions by particular heuristics with caution. However,
one can have more confidence in the validity of the parti-
tions if different heuristics produce similar results. Here
we compare the results for the Louvain algorithm [25]
with those for a spectral algorithm [I8] and simulated
annealing [58].

In Fig. we show MRFs for three networks calculated
using Louvain [25], spectral [I8] and simulated annealing
algorithms [58]. For all three networks, the three algo-
rithms agree very closely on the shapes of the H, S, and
17 MRFs. The MRF's are most similar for the roll-call vot-
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FIG. 15. (Color online) Block-diagonalized distance matri-
ces D™ (top row), D (middle row), and D7 (bottom row)
for the 25 networks listed in bold in Table II of the Supple-
mental Material. The first column shows the distance matri-
ces for the original networks. The second column shows the
mean distance matrices following randomizations of the orig-
inal networks in which 10 times the total number of edges in
the networks have been rewired such that the degree distri-
butions are preserved and the rewired networks each consist
of a single connected component. The third column shows
the mean distance matrices following randomizations of the
original networks in which 10 times the total number of edges
in the networks have been rewired but only the fact that the
networks consist of single connected components is preserved
(i.e., the degree distributions are not preserved). The dis-
tance matrices for the randomizations are composed of the
mean pairwise distances between the networks.

ing network of the 10204 US Senate [31H33], and the H
MREF is almost identical for the three heuristics. In gen-
eral, we observe the largest differences in the shapes of
the MRF's when using the spectral algorithm. The spec-
tral algorithm that we used begins by finding a partition
of the network into exactly two components such that the
energy is minimized (among all bipartitions). It then re-
cursively partitions the smaller networks into two groups
until no decrease in energy can be obtained through bi-
partitioning. At each step, this algorithm only finds the
optimal partition of each community into two smaller
communities even though a split into more communities
could yield a lower energy. Given this, it is unsurpris-
ing that the spectral algorithm often identifies partitions
further from the optimum than the other heuristics. For
the remainder of this section, we therefore only compare
the Louvain and simulated annealing algorithms.
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FIG. 16. (Color online) Comparison of the MRFs produced
using spectral [I8], Louvain [25], and simulated annealing
[68] optimization heuristics. We show the MRFs for the (a)
Zachary Karate Club network [22], (b) the roll-call voting
network of the 102°9 US Senate [31H33], and (c) the Garfield
small-world citations network [35].

2. Robustness of Resulting Network Taxonomies

Although Fig. shows good agreement between the
shapes of the MRFs that we obtain from the different
computational heuristics, we nevertheless check that the
small differences that do occur do not have a significant
effect on the resulting network taxonomy. Because of the
computational cost of detecting communities using sim-
ulated annealing, we investigate the effect on the taxon-
omy using a subset of small networks. We highlight all of
the networks that we consider with an asterisk (*) in Ta-
ble IT of the Supplemental Material. (The largest network
that we include is the cat brain cortical/thalmic network
[59], which has 1,170 nodes.). Indeed, MRFs for small
networks tend to be much noisier than those for large
networks—see, for example, Fig. [L6{a), which shows the
MRFs for the 34-node Zachary Karate Club network—
so we expect that any differences between algorithms are
likely to be more pronounced for small networks.

In Fig. we show dendrograms obtained using the
Louvain and simulated-annealing modularity optimiza-
tion algorithms for a subset of 15 networks. On visual
inspection, the dendrograms appear to be very similar,
as there are only a few small differences in the heights
at which leaves and clusters combine. To quantify the
similarity between a pair of dendrograms with underly-
ing distance matrices s and t, we define a correlation
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FIG. 17. (Color online) Comparison of the dendrograms pro-
duced using a Louvain algorithm (top panel) and simulated
annealing (bottom panel) for a subset of 15 networks. The
only difference between the two dendrograms is the order in
which the “Communication within a sawmill on strike” and
the “BA: (100,2)” networks cluster and the distances at which
the other networks cluster.

coefficient ¢ as
oo iy (31 —5) (i — 1) 7
\/[Zi<j (565 - 5)2} {ZK]‘ (tis = 5)2}

where § is the mean of the distances s;; and ¢ is the mean
of the distances t;;. Dendrograms derived from identi-
cal distance matrices have correlation coefficient ¢ = 1.
The correlation for the example dendrograms shown in
Fig.[[7]is 0.997. To get a better sense of the extent of this
correlation, we compare the observed correlations with
those obtained for randomized dendrograms. To make
the comparison, we first produce a distribution of corre-
lation coefficients ¢ between a large number of empirical
(unrandomized) dendrograms produced by the Louvain
and simulated-annealing algorithms. Because of the com-
putational costs of calculating the MRF's for the simu-
lated annealing algorithm, we only consider the subset of
25 networks identified above. We select 15 networks uni-
formly at random from this subset of 25 networks and

(B1)
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generate two dendrograms similar to those in Fig.
one corresponds to the distance matrix produced by the
Louvain algorithm and the other corresponds to the dis-
tance matrix produced by simulated annealing. We then
calculate the correlation coefficient between the two dis-
tance matrices. We repeat this process 10,000 times to
obtain 10,000 correlation coefficients, whose distribution
we show using the hollow red histogram in Fig. This
procedure makes it possible to compare a large number
of dendrograms at the computational cost of calculating
simulated annealing MRFs for a total of 25 networks,
highlighted with asterisks in Table 2 of the Supplemen-
tal Material.

We then compare this observed distribution of correla-
tion coefficients to a randomized reference. We focus on
the correlation between empirical Louvain dendrograms
(i.e., empirical dendrograms resulting from distance ma-
trices produced by the Louvain method) and random-
ized simulated-annealing dendrograms (i.e., dendrograms
resulting from distance matrices produced by the simu-
lated annealing algorithm that have been subsequently
randomized). We proceed as follows: for each of the
10,000 dendrogram pairs that we assembled from sub-
sets of 15 networks, we create 100 randomizations of the
simulated-annealing dendrogram, and we then calculate
the correlation coefficient between each of these random-
ized dendrograms and the corresponding empirical Lou-
vain dendrogram. The resulting distribution from 10,000
repetitions is the solid blue histogram in Fig. To ran-
domize the simulated-annealing dendrogram, we used the
double-permutation procedure described in Refs. [60} 61].
This procedure has two steps. First, we randomize the
distances at which the different clusters are combined.
For example, consider an unrandomized dendrogram in
which clusters A and B are combined at a distance of 0.45
and clusters C and D are combined at a distance of 0.65;
after the randomization, A and B might be combined at
a distance of 0.65 and C and D might be combined at
a distance of 0.45. Second, we randomize the networks
corresponding to each leaf in the dendrogram. This two-
step randomization procedure maintains the underlying
distances and the topology of the dendrogram.

As mentioned above, we show the distributions of cor-
relation coefficients between empirical Louvain dendro-
grams and the empirical (unrandomized) and random-
ized simulated-annealing dendrograms in Fig. The
correlation is clearly much higher for the empirical case,
as there is only a very slight overlap in the tails of the two
distributions. The correlation between the Louvain and
simulated-annealing dendrograms is greater than 0.99 for
about 63% of the studied dendrograms.

Appendix C: Diagnostic for Assessing the Clustering
from Different Distance Measures

An examination of the leaf colors of the dendrogram
in Fig. [7]illustrates that the employed distance measure
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FIG. 18. (Color online) Comparison of the distributions of
correlation coefficients between empirical Louvain dendro-
grams and empirical (red, hollow) and randomized (blue,
solid) simulated-annealing dendrograms. See the text for de-
tails.

groups together networks from a variety of categories,
including political voting networks, political committee
networks, Facebook networks, metabolic networks, and
fungal networks. A visual comparison provides a rea-
sonable starting point for assessing the effectiveness of
different distance measures at clustering networks. To
quantify how effectively each distance matrix (D*, D¥,
D", and DP) clusters networks of the same type, we in-
troduce a clustering diagnostic, which we denote by a(h),
to be explained shortly. Because the assignment of net-
works to categories is subjective and because some of
the categories include networks of very different types, it
would be inappropriate to assess the effectiveness of a dis-
tance measure based on how well it clusters networks in
very broad categories. We thus focus our examination on
narrower categories whose constituent networks are clus-
tered fairly tightly in Fig.[7] This includes the following
8 categories of networks: Facebook, metabolic, politi-
cal cosponsorship, political committee, political voting,
financial, brain, and fungal.

The clustering diagnostic depends on where one “cuts”
the dendrograms. We start by constructing a dendro-
gram for each of the four distance matrices D™, D*,
D" and DP?. Performing a horizontal cut through a den-
drogram at a given height h splits the dendrogram into
multiple disconnected clusters (h is measured in terms of
ultrametric distances; see Fig. . For each such cluster,
we calculate the proportion of networks from a particular
category that are contained in it. For example, if a cut
produces three clusters and if we consider the Facebook
category, then we might find that one cluster contains
two tenths of the Facebook networks, a second cluster has
three tenths of those networks, and the third cluster has
the remaining half of those networks. We calculate these
membership fractions for each network category and for
each cluster. We then identify, for each category, what we
called the plurality cluster, which is defined as the cluster
that includes the largest fraction of networks from that
category. In the above example, the third cluster is the
plurality cluster for the Facebook category. Our diagnos-
tic a(h) is then defined by adding across all 8 categories
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the fraction of networks in the plurality clusters:

8
a(h) =3 _ (), (c1)

where ~y;(h) is the plurality fraction for the jth category
of networks for the given cut at height h of the dendo-
gram.

We perform similar calculations for each level of the
dendrogram and use the resulting values of «(h) to as-
sess the effectiveness of the different distance measures at
clustering the networks. For example, at the root of the
dendrogram, all of the networks are in a single cluster,
so the maximum fraction of networks in the same cluster
is 1 for every network category. Given the above choice
of 8 categories, this yields a = 8. However, as one con-
siders lower levels of the dendrogram, the clusters break
up more and more, so the fraction of networks in the
plurality cluster in each category typically decreases. Ef-
fective distances measures ought to result in relatively
high values for a(h).

In Fig. we compare the values of a(h) at each level
of the dendrogram for D*, D, D", and D?. For each of
the different subsets of networks and for most of the den-
drogram levels, the PCA-distance D? is the most effective
of the employed distance measures at clustering networks
of the same category. This agrees with our visual assess-
ment (i.e., our identification of contiguous blocks of color)
of the different measures.

Appendix D: Using Simple Characteristics to
Cluster Networks

We established in Section [VIIIl that the PCA-distances
DP between MRFs can produce sensible network tax-
onomies, and we now consider briefly whether the ob-
served taxonomies can be explained using simple sum-
mary statistics. We consider only a few specific prop-
erties, though of course there are myriad other network
diagnostics that one might consider.

Perhaps the three simplest properties of an undirected
network are the following: (1) whether it has weighted
or unweighted edges; (2) the number of nodes N; and (3)
the edge density d = 2L/[N(N —1)] (where L is the num-
ber of edges, which we distintinguish from the total edge
weight m in weighted networks). The top colored row in
Fig. [20[indicates that many of the weighted networks are
clustered together at the far left of the dendrogram. How-
ever, there are also weighted networks scattered through-
out the dendrogram, so whether a network is weighted or
unweighted does not explain the observed classification.
The third colored row provides a clearer explanation for
the cluster of networks at the left: These are not sim-
ply weighted networks, as they are in fact similarity net-
works, so that nearly all possible edges are present and
have weights indicating connection strengths. However,
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FIG. 19. (Color online) Comparison of the effectiveness of
the employed distance measures at clustering networks of the
same category. As discussed in this text, we quantify this
using the clustering diagnostic a(h). We calculate dendro-
grams from four distance matrices (D*, D°, D", and DP)
and compare the resulting values of a(h) for different sets of
categories. (a) The value of the clustering diagnostic a(h)
as a function of dendrogram cut level h (i.e., where the den-
drogram is split to clusters) for the following 8 categories of
networks: Facebook, metabolic, political cosponsorship, po-
litical committee, political voting, financial, brain, and fungal.
(b) The value of «(h) for the largest 5 of the above 8 cate-
gories (Facebook, metabolic, political cosponsorship, political
committee, and political voting) and (c) for the smallest 5 of
the above 8 categories (Facebook, metabolic, financial, brain,
and fungal). The maximum possible value of a(h) in each
panel is equal to the number of categories considered in each
panel. The values of a(h) obtained using the PCA-distance
matrix D? (gray solid curve) are usually higher than those ob-
tained using the other three distance measures. This suggests
that PCA distance is the most effective of the four employed
clustering measures.

this property alone cannot explain the observed classi-
fication, as several of the weighted networks containing
nearly all possible edges do not appear at the far left
of the dendrogram. In fact, there are many clusters in
the dendrogram that contain networks with very different
fractions of possible edges. The total number of nodes,
shown by the second colored row in the figure, again ex-
plains some of the clustering, as networks with similar
numbers of nodes are clustered together in some regions
of the dendrogram. However, there are also numerous
examples in which networks with the same number of
nodes appear in different clusters. Therefore, none of
these three simple network diagnostics can explain the
observed classification by itself.
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FIG. 20. (Color online) Taxonomy for 189 networks. We
constructed the dendrogram using the distance matrix D?
and average linkage clustering. We order the leaves of the
dendrogram to minimize the distance between adjacent nodes,
and we color the leaves to indicate the type of network. The
three color bars below the dendrogram indicate whether the
network corresponding to each leaf is weighted or unweighted
(top), the number of nodes in the networks N (middle), and
the fraction of possible edges that are present d (bottom).
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