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Abstract

We take a single level quantum dot embedded between two metallic leads at different tempera-

tures and chemical potentials which works as a heat engine. Two optimization criteria were used

and their corresponding optimized efficiencies, powers and periods evaluated. Comparison between

similar quantities of the two optimization criteria reveals mixed advantage and disadvantage. We

quantify the engine’s overall performance by suggesting a figure of merit that takes into account

the contribution of each of the three quantities. Based on the proposed figure of merit, one of the

optimization criterion presents a clear advantage. This same criterion is found to be invariably

advantageous when applied to three other representative models.
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A heat engine attains a maximum possible value of Carnot efficiency when it operates

under an extremely slow process. This corresponds to a quasistatic process taking infinite

time to perform one cycle. Hence, power delivered by this quasistatic process is zero.

This theoretical limit is not of practical interest. In real life tasks need to be accomplished

in a finite time. One practical interest is whether there is a maximum possible power

attainable out of a heat engine. Such task need to be performed in a short enough time.

However, performing a task in a short time wastes more energy making it less efficient.

The earliest study in finding efficiency at maximum power was done by Odum and Pinker-

ton in 1955 by taking an Atwood machine as a mechanical converter [1]. This was followed

by the work of Curzon and Ahlborn twenty years later when they derived the efficiency of

an endoreversible engine operating at maximum power (ηCA) to be [2]

ηCA = 1−

√

Tc

Th

, (1)

where Tc and Th are the cold and hot temperatures of the reservoirs. Since then many model

systems have been studied and their corresponding efficiencies at maximum power reported

[[3]-[14]]. It is now becoming clear that there is some sort of universal value for the efficiency

at maximum power similar to that of Carnot efficiency.

Is there a strategy by which these two opposing trends of attaining high (maximum) power

on the one hand and high (maximum) efficiency on the other can be compromised to give an

optimized value for efficiency? Several optimization methods have been proposed, but most

of them lack generality and are only applicable to specific heat devices [15]. Among these

methods, the two most often used for optimizing heat devices either require the evaluation

of the entropy generation which may be difficult for systems far from equilibrium, or depend

on the parameters of the environment which are usually difficult to determine.

About ten years back, Herǹandez et al. have come up with a unified optimization cri-

terion (Ω criterion) to identify the point of operation of an engine where trade-off between

energy cost and fast transport is compromised [16]. This optimization criterion presents

the advantage of being independent of any environment parameter, and does not require

the explicit evaluation of entropy generation. Moreover, results obtained from the appli-

cation of this method on endoreversible Carnot-type engines agree with those obtained by

applying ecological-like criteria which involve the explicit derivation of entropy generation

[17]. For irrveresible heat engines it gives a performance regime lying between the maximum
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efficiency and the efficiency at maximum power, a regime that is considered as optimum for

traditional heat engines [18]. In addition, an important feature of this method is its poten-

tial applicabilty to a large range of engine size starting from nano (molecular motors) up

to macroscopic (traditional Carnot-type engines) devices as suggested in [16]. In a previous

work, we have applied this optimization criterion to a simple model Brownian heat engine

and found its optimized efficiency to lie between efficiency at maximum power, ηmp, and

Carnot efficiency, ηc [19]. Recently, Sànchez-Salas et al. took four repersentative models of

heat engines and investigated their optimized efficiencies and compared them with their cor-

responding efficiencies at maximum power [20]. They showed that the optimized efficiencies

are not only larger than the efficiencies at maximum power but found them to have sort of

universal behavior.

In addition to comparing the optimized efficiency with the efficiency at maximum power,

one should be interested to know how much of the maximum available power is being uti-

lized at this optimum condition. The other physical quantity of interest is the period at

the optimum condition in comparison with the period at maximum power. In this work,

we will take a particular system and apply the Ω criterion for two cases to determine not

only their optimized efficiencies but also the powers and periods at the corresponding opti-

mum conditions. This study will be followed by analysis and comparison of the determined

quantities.

The particular system we consider is a nanothermoelectric engine consisting of a single

quantum dot whose efficiency at maximum power has been explored by M. Esposito et al.

[6]. The system is of interest as it addresses timely issues in several areas such as nan-

otechnology, thermodynamic properties of small systems away from equilibrium, quantum

features and thermoelectric generating devices. Note that one of the four representative

models investigated by Sánchez-Salas et al. is this same system [20]. The model consists of

a quantum dot with a single resonant energy in contact with two thermal reservoirs at differ-

ent temperatures and chemical potentials. The quantum dot can contain one single electron

with a sharply defined energy ε. The exchange of electrons between the leads through the

dot is described by a stochastic master equation and the corresponding thermodynamic

properties such as heat flux and power are obtained from stochastic thermodynamics.

We next find expressions for optimized efficiencies (ηopt), optimized powers (Ẇopt) and

optimized periods (τopt) -defined as the inverse of the current from/to the dot- by applying
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optimization criteria for two cases and define a figure of merit to quantify how well the

engine operates under any condition.

In order to implement the optimization criteria, we need to first define the function Ω.

The function Ω makes use of two quantities that are the effective useful power Ėu,eff = (η

- ηmin)Ėin and lost useful power, Ėu,lost = (ηmax - η)Ėin, where Ėin is the input power. An

engine operating in a finite time has its efficiency η lying between the maximum efficiency,

ηmax , and minimum efficiency, ηmin i.e. ηmin ≤ η ≤ ηmax. An objective function, Ω, which

is the difference between these quantities (Ėu,eff − Ėu,lost)

Ω = [2η − ηmin − ηmax]Ėin, (2)

is defined and one searches for a point of operation at which Ω takes a maximum value with

respect to natural independent variables of the system. One usually takes the minimum

efficiency to be zero while the maximum efficiency to be the Carnot efficiency, ηc (hereafter

referred to as case 1). In this case, one considers the physically allowed explorable range of

control parameters of the system to search for the optimum. The objective function for case

1, Ω(1), is then given by:

Ω(1) = [2η − ηc]Ėin, (3)

The second optimization (hereafter referred to as case 2) takes the minimum efficiency to

be the efficiency at maximum power, ηmp, while the maximum efficiency is again ηc. In this

scenario, one considers a limited range of control parameters to be explored for optimization.

The corresponding objective function, Ω(2), is then

Ω(2) = [2η − ηmp − ηc]Ėin. (4)

Using the corresponding expression for the input power (Ėin), efficiency (η), period (τ)

and efficiency at maximum power (ηmp) from [6], we obtain the values of the three physical

quantities ηopt, Ẇopt and τopt for the two optimization scenarios under consideration. As a

starting point we find the power series expansion of optimized efficiency in the limit of small

ηc for the first case of optimization, η
(1)
opt, which is given by

η
(1)
opt =

3

4
ηc +

1

32
η2c + 0.0253116η3c + ϑ(η4c ), (5)
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while for the second case of optimization, η
(2)
opt, is expressed as

η
(2)
opt =

7

8
ηc +

31

800
η2c + 0.0225369η3c + ϑ(η4c ). (6)

The expression of the optimized efficiency for the first case (Eq.(5)) is identical to the one

obtained by Sánchez-Salas et al. [20] for the particular model they studied, a model similar

to ours. This is to be expected as we are using similar expression (Eq.(3)) for Ω criterion to

evaluate η
(1)
opt.

In order to compare the three quantities of interest with their corresponding values at

maximum power, we define three scaled quantities ǫ, ω and π such that ǫ =
ηopt

ηmp

, ω =
Ẇopt

Ẇmp

and π =
τopt

τmp

. We are able to express these scaled quantities as series expansion in the limit

of small ηc. Accordingly, for the first case of optimization they are given by

ǫ(1) =
3

2
−

5

16
ηc − 0.136304η2c + ϑ(η3c ), (7)

ω(1) =
3

4
+

1

8
ηc + 0.0638995η2c + ϑ(η3c ), (8)

and

π(1) = 2−
1

2
ηc − 0.214953η2c + ϑ(η3c ), (9)

while for the second case of optimization they are

ǫ(2) =
7

4
−

9

25
ηc − 0.136304η2c + ϑ(η3c ), (10)

ω(2) =
7

16
+

3

16
ηc + 0.145124η2c + ϑ(η3c ), (11)

and

π(2) = 4−
1

2
ηc − 0.197η2c + ϑ(η3c ). (12)

On the other hand, we can evaluate these scaled quantities numerically for all ranges of

possible values of ηc from the optimization relations. Note that the numerical values of

the scaled quantities determined from the optimization relations for the case when ηc → 0

coincides with the corresponding values found from Eqs. (6) to (11).

Figure 1 shows plots of both ǫ(1), ǫ(2) versus the full range of ηc. Both quantities mono-

tonically decrease approaching the same final value of one as ηc goes to a maximum value
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of unity. The graph clearly indicates that efficiency-wise the second optimization has larger

value than the first optimization over the whole range of ηc. However, while this advantage

is significant for smaller ηc it shrinks to the same value as ηc goes to unity.

Figure 2 compares how much of the maximum available power is being utilized by the

two optimization criteria. The plot of ω(1) versus ηc clearly shows that the first optimization

criterion utilizes a minimum of 75% of the available maximum power at small values of ηc

and performs even better (up to 100%) as ηc goes to one. On the other hand, the plot of ω(2)

versus ηc shows that the second optimization criterion utilizes less than half of the maximum

available power over the major (75%) range of ηc only doing better (up to ∼ 65%) for ηc

close to one.

Figure 3 shows plots of π(1) and π(2) versus ηc. Under the first optimization criterion,

the engine performs its task in a cycle twice that of the period at maximum power in the

limit of small ηc and its cycle monotonically decreases to that of one period at maximum

power as ηc goes to one. On the other hand, the second optimization takes between two and

a quarter to four times that of the period at maximum power over the whole range of ηc.

Note that completing a task in shorter period must be advantageous.

Efficiency-wise the engine performs better under the second optimization criterion than

when subject to the first criterion (Fig. 1). On the other hand, under the first criterion

the engine performs better both power-wise and period-wise than when under the second

optimization criterion (Figs. 2 and 3). In order to decide which optimization criterion

presents the best trade-off, we introduce a figure of merit that makes use of the three

quantities. The figure of merit (fm) that we suggest is, thus, defined by

fm =
ǫω

π
. (13)

Note that the particular optimization criterion which presents a larger value of fm has an

overall advantage over the other optimization criterion.

Figure 4 depicts the figures of merit, f
(1)
m and f

(2)
m , versus ηc for the two optimization

criteria. Comparing the plots one clearly sees that the first optimization has a better ad-

vantage over the second for the whole range of ηc. In fact the figure of merit of the first

optimization is larger by about three fold than the fm of the second optimization over all

range of ηc.
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FIG. 1. Plots of the ratio of optimized efficicency to the efficiency at maximum power for the two

optimization criteria versus ηc.
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FIG. 2. Plots of the ratio of optimized power to the maximum power for the two cases of opti-

mization criteria versus ηc.

One wonders whether comparison between the two figures of merit for other models of

heat engines exhibits similar features to the one depicted in Fig. 4. In order to find out

if there is any general feature, we took three other representative models: (i) stochastic

heat engine cycle of Schmiedl and Seifert (SS) [3], (ii) Feynman ratchet and pawl model

considered by Tu (T) [4] and (iii) Brownian heat engine model of Asfaw and Bekele (AB)

[19] and evaluated their corresponding figures of merit over that whole range of ηc. Fig. 5

shows plots of these quantities versus ηc. While the figures of merit for the models of T and
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FIG. 3. Plots of the ratio of optimized period to the period at maximum power for the two cases

of optimization criteria versus ηc.
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FIG. 4. Figures of merit fm for the two cases of optimization ctiteria versus ηc.

SS show monotonically increasing functions with increase in ηc similar to that of Fig. 4,

AB’s model has weak nonmonotonic nature with change in ηc. However, the figure of merit

corresponding to the first optimization is about three times as large as that of the fm of the

second optimization for all the models we considered.

The consistent advantage of the first optimization over the second expressed in terms of

fm can be understood as follows: an optimization carried out by tuning the parameters of the

system over a wide range of allowed values is better than a one made using a smaller range.

Obviously, the range of possible values of η is directly related to the ranges of accessible

values of systems parameters. These simple observations explain why the first optimization
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is systematically better regardless of the model under consideration. We further suggest

that the above might be true for all energy converters. Seen this way, the figure of merit

seems to be an appropriate and universal quantifier of the performance of heat engines.
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FIG. 5. Plots of figures of merit f
(1)
m and f

(2)
m for the three model heat engines (SS[3], T[4], AB[19]).

In summary, we have explored the performance (efficiency-wise, power-wise and period-

wise) of a thermoelectric engine by applying two optimization criteria. By defining a figure

of merit that takes account the contributions of these quantities we have found that the

first optimization criterion has a clear advantage over the second not only for the thermo-

electric engine but also for three other representative models we considered. Our study,

then, suggests that the first optimization criterion might have a universal advantage over

the second by about three fold for all heat engines. Lastly, it would be interesting to test the

universality of our result for other engines such as molecular motors and chemical engines.
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