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Abstract

We demonstrate the efficiency of the multidomain sampler (MDS) in finding multiple

distinct global minima and low-energy local minima in the hydrophobic-polar (HP) lattice

protein model. Extending the idea of partitioning energy space in the Wang-Landau al-

gorithm, our approach introduces an additional partitioning scheme to divide the protein

conformation space into local basins of attraction. This double-partitioning design is very

powerful in guiding the sampler to visit the basins of unexplored local minima. An H-residue

subchain distance is used to merge the basins of similar local minima into one domain, which

increases the diversity among identified minimum-energy conformations. Moreover, a visit-

enhancement factor is introduced for long protein chains to facilitate jumps between basins.

Results on three benchmark protein sequences reveal that our approach is capable of finding

multiple global minima and hundreds of low-energy local minima of great diversity.

1 Introduction

The function of a protein not only depends on its amino acid sequence, but also strongly relies

on its 3D spatial conformation. However, prediction of protein spatial structures from a given

amino acid sequence has been a challenging computational problem, which is still under intensive

investigation. Direct physical modeling, like molecular dynamics (MD), is powerful in studying

folding kinetics and transition states, but is largely limited to short protein chains and fast folders

(short time scale), due to the vast amount of computation required to construct the atomistic

trajectories [1]. On the other hand, the rough energy landscape of protein folding structures also

poses additional difficulty in search of the native state (energy global minimum) of a protein.

Monte Carlo simulation based on all-atom models is able to partially relax the issue of short

time scale in MD simulation [2, 3], because it does not need to follow the atomistic trajectories

∗To whom correspondence should be addressed (email: zhou@stat.ucla.edu).

1



exactly. To further simplify the problem, coarse-grain lattice protein models are frequently used.

The hydrophobic-polar (HP) model [4] is one of the most popular lattice protein models [5–9],

as it greatly simplifies the amino acid representation and interaction. In this model, amino

acids are abstracted as hydrophobic (H) or polar (P) residues, and the proteins are self-avoiding

chains arranged on a simple cubic lattice. The H-H, H-P, and P-P pairwise interaction energies

are defined as εHH = −1, εHP = 0, and εPP = 0, and only nearest-neighbor interactions are

considered. The total energy of a chain in conformation s is thus given by

E(s) = nHHεHH , (1)

where nHH is the number of H-H contact pairs non-adjacent on the chain. Under this energy

function, a folded HP chain usually consists of a hydrophobic core and a polar shell. It mim-

ics real proteins in native states with hydrophobic residues hidden from the solvent (water).

Computational expense in evaluating energy of the HP model has been largely simplified. Nev-

ertheless, the rough energy landscape of real proteins is somewhat retained, so it is still an ideal

model to test and drive the development of efficient algorithms which target at finding global

minima in a highly rough energy landscape.

Stochastic algorithms that simulate from the HP model generally fall into two categories [5]:

chain-growth algorithms [10–12] and Markov chain Monte Carlo (MCMC) [6–8,13,14]. The idea

of chain-growth algorithms is to construct a protein folding structure from the first residue by

adding one residue at a time. Empty sites in neighbor to the leading residue carry different

probabilities to accept a new residue, depending on the energy change induced by the new

residue. Successful growth of the chain to the targeted length would be a valid sample. If a

dead-end is reached, the growth process starts over from the first residue. Although the method

may be efficient for short HP models, the idea is hard to transfer to the folding of real proteins.

In comparison, an MCMC method starts from a whole chain, and the conformation evolves

according to a specific move set. It is also referred to as a “blind search” method, because it

does not require a priori knowledge on the protein native state, while chain-growth algorithms

are usually designed to preferably form dense conformations. A popular choice of the move set is

the pull move, which is local, reversible, and complete [15]. The pull move folds a chain locally,

creates “humps” on the chain, and gradually forms dense structures. Details on how the pull

move operates can be found in [6]. One drawback of the pull move is that when the chain is in

highly dense conformations (quasi-folded states), only residues on the shell can perform valid

pull moves, while residues in the core are relatively hard to change, and thus, the efficiency

in proposing new conformations is largely reduced. The bond-rebridging move [8, 16] has been

proposed to overcome this difficulty, by breaking and reconnecting bonds in the hydrophobic

core. In this work, we combine the pull move and the bond-rebridging move as the move set for

a lattice protein chain.
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However, a straight-forward Metropolis algorithm on the HP model usually suffers from

being trapped at local minima, because proposals to high-energy barriers surrounding a local

minimum have an exponentially small acceptance probability. Various strategies have been

proposed to alleviate this problem, including multicanonical sampling [17,18], entropic sampling

[19], simulated tempering [20], evolutionary Monte Carlo [21], the equi-energy sampler [6], replica

exchange Monte Carlo [14, 22], the Wang-Landau (WL) algorithm [7, 8], and gradient-directed

Monte Carlo [23].

In reality, due to the continuum nature of folding of real proteins, there is only one global

minimum (the native state). However, under moderate interruption of environmental conditions

(e.g., temperature, pH value, ion concentrations), proteins may have a good chance to misfold

into metastable states with energy close to the global minimum and lose their desired function,

which is the cause of many diseases. The native state is typically only 5-10 kcal/mol lower

in energy than a misfolded state [24]. Therefore, knowledge about those metastable states

is very important for understanding the protein thermodynamics and further development of

medications to help correct misfolded proteins. In this work, we develop an MCMC method

to find multiple global minima and a large number of local minima with energy close to the

global minima of the HP model. With the use of a new distance measure, minima found by

our method all have distinct hydrophobic cores and represent conformations with non-trivial

structural differences. This clearly distinguishes our method from existing MCMC methods

which focus on thermodynamic estimation and often provide only a few minima, such as those

reviewed above.

2 Methodology

We apply a recently developed algorithm, the multidomain sampler (MDS) [25], to the HP

model. The MDS carries on and develop the idea of the WL algorithm [26, 27]. It not only

performs a random walk over energy space, but also over different basins of attraction of local

minima. The effectiveness of this algorithm in statistical inference and in constructing Ising

energy landscapes has been demonstrated in our previous work [25,28]. In this paper, we show

that the MDS with suitable modifications can also serve as a powerful method for finding multiple

global/local minima, because it avoids redundant visits to basins with adequate samples and

pushes the sampler to less-explored portions of the state space. After a description of the MDS

in the context of the HP model, we develop new strategies to achieve an efficient search for a

large number of minimum-energy folding conformations.

2.1 Multidomain sampler

For a given energy function, the MDS can be used as an algorithm to search for its K low-

est energy minima. We use dynamically updated information of K local minima, denoted as
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v1, . . . , vK , to partition the state space into K + 1 domains, D1, . . . ,DK , and their complement

D0. For any state s, if it finds vk by steepest descent, we say s ∈ Dk. In other words, Dk

is the basin of attraction of vk. To enable steepest descent in a discrete model like the HP

model, neighbors of a given state s need to be defined. For the HP model, the set of neighbors

of s is defined as all the conformations that can be accessed by a single pull move from the

conformation s, as pull moves only locally mutate the original state. Then a steepest descent

algorithm is implemented by recursive application of single pull moves that give the maximum

energy decrease in each step until a local minimum is reached. When a new minimum with en-

ergy lower than the maximum energy of the K stored local minima is found, the new minimum

replaces the highest-energy minimum in the original set. Hence, the set V = {vk : k = 1, . . . ,K}

always keeps the K minima with the lowest energy so far. When the steepest descent finds a

local minimum with energy higher than those in V, the conformation s is assigned to D0. On

the other hand, similar to the WL algorithm, the energy space is also partitioned by a ladder of

energies, u1 < ... < uL < uL+1 = ∞. Usually the global minimum of a given chain is unknown,

so the ladder is dynamically updated during the simulation process to ensure the lowest mini-

mum found so far is in [u1, u2). The objective for this double-partitioning design is to drive the

sampler to perform a random walk over all non-empty subregions,

Dkj = {s ∈ Dk : E(s) ∈ [uj , uj+1)},

k = 0, . . . ,K, j = 1, . . . , L, and also to encourage the sampler to explore thoroughly the basins

of newly found low-energy minima.

The mechanism to generate a random walk over all Dkj is similar to the generalized Wang-

Landau (GWL) algorithm [29, 30], in which each energy interval may contain multiple energy

levels. Let θkj ∝
∑

s∈Dkj
e−βE(s) denote the statistical weight (unnormalized) of Dkj in the

Boltzmann distribution at temperature T = 1/β. A flat histogram can be generated if the

probability of visiting a state s ∈ Dkj is proportional to e−βE(s)/θkj . The weights θkj can be

estimated by a WL-type iterative algorithm. At the tth iteration, θkj is estimated by θ
(t)
kj (θ

(1)
kj

is set to 1 for all k and j). If the state at this iteration is xt ∈ Dkj and a new state y ∈ Dℓi is

proposed, the Metropolis ratio from xt to y is

r(xt → y) = min







1, eβ[E(xt)−E(y)]
θ
(t)
kj

θ
(t)
ℓi

P (y → xt)

P (xt → y)







, (2)

where P (y → xt) is the proposal probability from y to xt and P (xt → y) the proposal probability

from xt to y. In addition to the pull move, our proposals for new conformations also include

the bond-rebridging move [8, 16], which is a good complement as it is more efficient than the

pull move for updating dense conformations. The probability to propose a pull move, denoted

by Ppm, is fixed to 0.9 throughout our simulation. Denote by xt+1 the updated state according
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to the above Metropolis ratio. Then

ln θ
(t+1)
kj = ln θ

(t)
kj + 1(xt+1 ∈ Dkj) ln f (3)

is used to update the estimation of θkj for all k, j, where f > 1 (ln f > 0) is the modification

factor and 1(xt+1 ∈ Dkj) = 1 if xt+1 ∈ Dkj and 0 otherwise. It is easy to see that the Metropolis

ratio increases with θ
(t)
kj /θ

(t)
ℓi . Thus, if the basin Dk has already been visited frequently, a

proposed y to another basin will have a higher acceptance rate. Unlike those works that use

the WL algorithm to determine the density of states of the HP model [8, 31, 32], we do not

reduce f to achieve convergence in thermodynamic estimation. Since our goal here is to find

as many minima as possible, while sampling is less of a concern, we keep f ≡ e (ln f ≡ 1)

throughout the simulation to ensure fast growth in θ
(t)
kj and therefore an fast exploration over

many basins. Under this setting, the log-weight ln θ
(t)
kj simply records the number of visits to

Dkj until the current iteration. This makes it convenient to update these weights when the set

of stored minima V is updated. Here, note that steepest descent with the pull move is used to

determine the basin of the proposed conformation y. Suppose it finds the local minimum v(y).

If v(y) replaces an existing minimum vm in V, then we add the current log-weights of the basin

Dm, i.e., ln θ
(t)
mj for all j, to the log-weights of D0, because Dm now becomes a part of D0, and

reset ln θ
(t)
mj = 0 as the initial weights for the basin of the new minimum v(y).

In other applications when sampling is the primary goal, we can first run the MDS with

f ≡ e for a while, updating dynamically the set of minima V, and then gradually reduce f with

V fixed to achieve convergence in sampling. This strategy has been adopted in our previous

work [25] on structural sampling of Bayesian networks, where we have obtained reliable and

accurate estimation of various statistics of interest. This shows that minima found by fixing

f ≡ e are often good representatives for the low-energy portion of the overall landscape.

2.2 Visit-enhancement factor

In principle, large K is preferred, because more local minima can be recorded, which would be

helpful to guide the random walk. However, the conformation space of a HP lattice protein,

as well as the total number of local minima, grows exponentially with the chain length [33].

Clearly, K cannot scale exponentially due to limited computing resources. For a long chain

(e.g., 100 residues),
⋃K

k=1Dk usually represents only a small portion of the conformation space,

and its complement D0 takes up the major part. Various portions in D0 may be connected to

unknown global minima or low-energy local minima, and thus, adequate transitions between D0

and other basins are important. In fact, considering the huge number of conformations in D0,

it is unfair to treat it as an ordinary domain for building a flat histogram. Consequently, we

increase the chance to visit D0 by the use of a visit-enhancement factor A.

Suppose the desired frequency of visiting each Dkj (k ≥ 1) is ψ and that of each D0j is Aψ
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(A > 1). To achieve the desired frequencies, one can modify (3) to

ln θ
(t+1)
kj = ln θ

(t)
kj + [1(xt+1 ∈ Dkj)− ψ] ln f, for k ≥ 1, (4)

ln θ
(t+1)
0j = ln θ

(t)
0j + [1(xt+1 ∈ D0j)−Aψ] ln f, (5)

as shown by Liang et al. [29]. Since adding a constant ψ ln f to the right-hand sides of the above

recursions does not change the Metropolis ratio (2) for the (t+ 1)th iteration, we may still use

(3) for k ≥ 1 but use

ln θ
(t+1)
0j = ln θ

(t)
0j + [1(xt+1 ∈ D0j)− (A− 1)ψ] ln f (6)

forD0. The exact value of ψ is determined by the numbers of non-empty subregions inDk (k ≥ 1)

and D0, which may change when the set of stored minima V is updated. Since the visit-

enhancement factor A is essentially a tuning parameter to tune the search from depth-first to

breadth-first as A increases, we simply fix ψ to 1/(A+K), which is the exact value when L = 1.

The weight θ
(t+1)
0j decreases if the domain D0 is not visited. The larger the A is, the faster θ

(t+1)
0j

decreases. Hence, acceptance of proposals to D0 becomes easier over time. The domain D0

contains high-energy “open” protein conformations, and the chain needs to first unfold from a

“close” form and then may be able to fold into a different conformation. Therefore, D0 serves

as a pathway for the sampler to jump between different local basins and visit unexplored part

of the space.

Now we give a complete outline of the MDS for the HP model. Define the domain partition

index of a state s by I(s) = k if s ∈ Dk and the energy partition index J(s) = j if E(s) ∈

[uj , uj+1). Given xt and {θ
(t)
kj }, one iteration of our algorithm is composed of the following

steps.

1. Propose a conformation y with probability Ppm by a pull move or with probability 1−Ppm

by a bond-rebridging move.

2. Perform a steepest descent search to find v(y). Update the set of local minima V and the

energy ladder if needed. Then determine the domain partition index I(y) and the energy

partition index J(y).

3. Accept or reject y via the Metropolis ratio (2) with k = I(xt), j = J(xt), ℓ = I(y) and

i = J(y) to obtain the updated conformation xt+1. Use (3) and (6) to update the weights

θ
(t+1)
kj for all k, j.

2.3 H-residue subchain distance

In step 2 of the algorithm outline, when a new conformation y is proposed and v(y) is found, a

one-by-one comparison between v(y) and V is performed to determine whether v(y) matches any
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Figure 1: Different folding structures in a strict distance definition but having zero HSC distance.
H and P residues are represented by � and ©, respectively.

of the K stored minima. The comparison is achieved by computing a distance metric d(s(1), s(2))

between two conformations s(1) and s(2). If d(s(1), s(2)) = 0, then we say s(1) matches s(2).

Obviously, identical conformations should match each other under any distance metric. For

a specific distance, if d(s(1), s(2)) = 0 only when s(1) and s(2) are identical, then we say it is

a strict distance definition; otherwise it is a loose distance definition. An example of a strict

distance definition is described in [4]. Each residue is coded using the direction of its following

bond with respect to its previous bond, which is either 0 (collinear), +1 (right turn), or −1 (left

turn). Therefore, each conformation can be described by a vector, and the distance between two

conformations is defined by the L1 norm (sum of the absolute value of each component) of the

difference between their corresponding vectors. However, in the HP model, only the arrangement

of H residues determines the total energy of the chain, and P residues are “dummy”. A strict

distance metric differentiates similar conformations like the two shown in Figure 1, which have

the same H-residue arrangement but differ in P-residues. In our algorithm, since only a limited

number K of local minima can be stored to guide the search, it is a good idea to make them

as diverse as possible, so that the K local minima can represent a larger portion of the space

as a whole. We thus introduce a new distance metric that only measures the difference in the

H-residue subchain (HSC) when comparing two conformations. Consequently, the basins of

minima having the same arrangement of the HSC are merged into one domain in our algorithm.

Assuming the length of a chain is l, which contains n H-residues, the HSC of the chain

s = (s1, s2, . . . , sl) is defined as sH = (s1,H , s2,H, . . . , sn,H), where sj,H is the jth H-residue. For

two conformations of the chain, s(1) and s(2), their HSC distance is

d(s(1), s(2)) =
n−1
∑

j=2

dj(s
(1)
H , s

(2)
H ), (7)

with s
(k)
H (k = 1, 2) being the conformation of the HSC. The definition of dj(s

(1)
H , s

(2)
H ) is described

below and illustrated in Figure 2(a). Let ~w
(k)
j = s

(k)
j,H − s

(k)
j−1,H, where s

(k)
j,H is the vector of the

coordinates of the jth H-residue in conformation s(k). When calculating dj(s
(1)
H , s

(2)
H ), s(2) is
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s
(1)
j−1,H

s
(2)
j−1,H

~w
(2,r)
j~w

(1)
j ,

s
(1)
j,H ,s

(2)
j,H

s
(1)
j+1,H

s
(2)
j+1,H

~w
(1)
j+1

~w
(2,r)
j+1

dj(s
(1)
H , s

(2)
H ) = ‖~w

(2,r)
j+1 − ~w

(1)
j+1‖

(a)

s
(1)
j+1,H

s
(2)
j+1,H

~w
(1)
j+1~w

(2,r)
j+1

(b)

~w
(3,r)
j+1

dj(s
(1)
H , s

(2)
H ) + dj(s

(1)
H , s

(3)
H ) ≥ dj(s

(2)
H , s

(3)
H )

s
(3)
j+1,H

Figure 2: (Color online) (a) Schematics of the HSC distance definition. HSC in two conforma-
tions is represented by circles of different sizes and colors. Conformation s(2) in red has been

rotated so that ~w
(2,r)
j is parallel to ~w

(1)
j . Dashed lines indicate that the H-residues are not neces-

sarily adjacent to each other. The Euclidean norm of the dotted line segment gives dj(s
(1)
H , s

(2)
H ).

(b) Triangle inequality in the HSC distance definition. Conformations in red and blue have been
rotated. Three conformations involved are distinguished by circles with different sizes.

rotated so that ~w
(2)
j is parallel to ~w

(1)
j [see Figure 2(a)]. Denote ~w

(k)
j and ~w

(k)
j+1 after rotation by

~w
(k,r)
j and ~w

(k,r)
j+1 . Then, dj(s

(1)
H , s

(2)
H ) = ‖~w

(2,r)
j+1 − ~w

(1)
j+1‖, where ‖ · ‖ is the Euclidean norm of a

2D vector. The HSC distance satisfies the general requirements of a distance definition. First,

it is always non-negative. Second, if instead, s(1) is rotated to align ~w
(1)
j to ~w

(2)
j , it is easy to

show that

dj(s
(2)
H , s

(1)
H ) = ‖~w

(1,r)
j+1 − ~w

(2)
j+1‖ = ‖~w

(2,r)
j+1 − ~w

(1)
j+1‖ = dj(s

(1)
H , s

(2)
H ). (8)

The distance is symmetric at each residue and thus symmetric for the whole chain. Third, when

comparing three conformations s(1), s(2) and s(3), s(2) and s(3) are rotated to align ~w
(2)
j and ~w

(3)
j

to ~w
(1)
j . Note that the inequality

dj(s
(1)
H , s

(2)
H ) + dj(s

(1)
H , s

(3)
H ) = ‖~w

(2,r)
j+1 − ~w

(1)
j+1‖+ ‖~w

(3,r)
j+1 − ~w

(1)
j+1‖

≥ ‖~w
(2,r)
j+1 − ~w

(3,r)
j+1 ‖ = dj(s

(2)
H , s

(3)
H ) (9)

holds at each residue, which implies that the distance definition satisfies triangle inequality. See

Figure 2(b) for an illustration. The HSC distance definition is also extensible to a 3D chain,

with an additional rotation operation. Similarly, we first align ~w
(2)
j to ~w

(1)
j . Then rotate s(2)

around ~w
(2,r)
j such that ‖~w

(2,r)
j+1 − ~w

(1)
j+1‖ is minimized, which occurs when ~w

(2,r)
j+1 is in the plane

spanned by ~w
(1)
j and ~w

(1)
j+1. After the rotation, the same HSC distance definition can be used.

To demonstrate the efficiency of our algorithm, we compare it with a two-step search algo-

rithm, which first uses the GWL algorithm [29] with f ≡ e to sample conformations and then
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find the associated minimum of each conformation by steepest descent. This two-step approach

does not utilize the partition by the basins of attraction of local minima, but other parame-

ter settings are exactly identical to those used in the MDS. The probability to accept a new

conformation y given the current xt is

r(xt → y) = min







1, eβ[E(xt)−E(y)]
θ
(t)
J(xt)

θ
(t)
J(y)

P (y → xt)

P (xt → y)







, (10)

where J(·) gives the energy partition index and θ
(t)
j is the current estimate of the weight of the

jth energy interval, j = 1, . . . , L. These weights are then updated by

ln θ
(t+1)
j = ln θ

(t)
j + 1(J(xt+1) = j) (11)

as ln f ≡ 1, where xt+1 is the updated conformation according to the above Metropolis ratio.

3 Results

The proposed algorithm was applied to three benchmark 2D protein sequences: seq48, seq64,

and seq100b [6]. See Table 1 for their residue sequences. The number of MC steps was 5× 106

for each individual run. The energy ladder generally included 10 evenly distributed intervals

and we chose K = 500. The initial conformations were straight chains for all sequences in all

runs.

Table 1: Residual sequences of three benchmark lattice proteins

name residue sequence

seq48 PPHPPHHPPHHPPPPPHHHHHHHH

HHPPPPPPHHPPHHPPHPPHHHHH

seq64 HHHHHHHHHHHHPHPHPPHHPPHH

PPHPPHHPPHHPPHPPHHPPHHPPH

PHPHHHHHHHHHHHH

seq100b PPPHHPPHHHHPPHHHPHHPHHPHH

HHPPPPPPPPHHHHHHPPHHHHHHP

PPPPPPPPHPHHPHHHHHHHHHHHP

PHHHPHHPHPPHPHHHPPPPPPHHH

3.1 Performance evaluation

We first examined the effect of the visit-enhancement factor A on finding low-energy minima.

Figure 3(a) shows the energy distributions of the K lowest-energy minima of seq64 found by the

MDS across a wide range of values of A, from 1 to 100. The counts reported are the sums of
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Figure 3: (Color online) (a) Energy distributions of the K lowest minima found for different
visit-enhancement factor A. The counts are the sums of five individual runs. The curves for
A ≤ 30 are summarized into a single curve of the mean values, due to their similarity, with
standard deviations indicated by error bars. (b) Number of global minima found for different
A, where the error bar of a data point is the estimated standard deviation of the total count. A
missing error bar implies that the standard deviation is very small.

five individual runs. Figure 3(b) shows the total number of global minima (energy Eg = −42)

found over five individual runs with different A. The sampler showed optimal and comparable

performance in finding global and low-energy minima for A between 5 and 30, and it found

significantly fewer low-energy minima for A ≥ 50. In the extreme scenario, the sampler failed to

find any global minima when A ≥ 80. This is expected as the sampler tends to spend too much

time in the complement domain D0 when A is too big, and thus, may not explore thoroughly

those basins of low-energy minima. In practice, we found that the optimal value of A is not

sensitive to the length of a chain and thus fixed A = 20 for simulating all the sequences in this

study.

Table 2 gives a summary of the results for all three sequences. The energy of the lowest

minimum found in the literature [6–8, 13, 34] for each sequence is reported in the table. If our

algorithm finds a minimum with that energy, we call it a global minimum. The total numbers

of global minima found by the MDS over five individual runs were 70, 271, and 12 for seq48,

seq64, and seq100b, respectively. This shows that the MDS indeed is able to identify multiple,

sometimes many, global minima. Note that our algorithm stored 500 local minima (including

global minima) in every run. Statistics such as the average and the standard deviation of the

energies of all 2500 minima over five runs are reported in the table. The average energies were

often only one to two units higher than the global minima and the standard deviations were

also small. This shows that our algorithm also detected a large number of local minima with

energy very comparable to that of the global minima. On the other hand, the average pairwise

HSC distance between the identified minima confirms that these folding conformations were
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quite different in their hydrophobic cores. These results clearly demonstrate that the HP model

has a large number of minimum-energy conformations, and thus, it is a great advantage for

understanding the overall energy landscape to be able to find a substantial number of these

minima with high diversity.

Table 2: Statistics of minima found by the MDS and the GWL

sequence method E∗

g Eg Ng Ē SD distance

seq48 MDS −23 −23 70 −22.0 0.4 23.6
GWL −23 32 −21.2 0.4 24.5

seq64 MDS −42 −42 271 −40.6 0.7 31.8
GWL −42 4 −38.2 0.7 40.1

seq100b MDS −50 −50 12 −47.7 1.0 43.7
GWL −48 0 −45.0 1.2 54.0

E∗

g : reported lowest minimum energy in the literature; Eg: global minimum energy found in this
work; Ng: total number of global minima found; Ē: average energy of all stored local minima;
SD: standard deviation of the energies of all stored local minima; distance: average pairwise
distance between stored local minima. Results from five runs are pooled together in the table.

To further benchmark the performance of the MDS, we applied the GWL-based two-step

approach to the same set of sequences, with the same number of MC steps and the same

energy ladders. A side-by-side comparison between the two methods is given in Table 2. It

is noted that the MDS always found much more global minima than the GWL algorithm did,

and the latter failed to find any global minima for seq100b. The average energy of identified

local/global minima by our algorithm was lower than the GWL algorithm, which demonstrates

the effectiveness of the MDS in folding lattice proteins. Because high-energy conformations are

often more open and therefore dissimilar, the minima found by the GWL had a higher average

pairwise distance. This comparison shows the usefulness of generating a random walk over

different basins of attraction via the double-partitioning design in detecting low-energy minima.

3.2 Clustering global minima

As demonstrated by Table 2, the MDS can efficiently find multiple global minima and many

low-energy local minima of a given protein chain. It is helpful to examine systematically the

diversity among all the global minima found for a specific protein sequence. To this end, we

used single-linkage hierarchical clustering to group global minima with the HSC distance as the

measure of dissimilarity. Figure 4 and Figure 5 show example cluster trees for the three chains.

The height of an internal node represents the HSC distance between the nearest neighbors in the

two sub-clusters. Two major clusters are readily distinguishable in Figure 4(a) and (b), where

the conformations in one cluster are the mirror images of those in the other cluster. In our HSC

11



Figure 4: Hierarchical clustering of global minima found in a single run: (a) seq48, (b) seq64.

distance measure, a certain conformation and its mirror image are treated as different confor-

mations. In fact, molecules may have different chemical properties from their mirror images,

which is referred to as chirality, and thus it is biologically meaningful to treat a conformation

and its mirror image differently.

For seq48, all the individual runs identified the same set of 14 global minima, with seven

in each of the mirror image clusters [Figure 4(a)], even without visit enhancement for D0 (i.e.,

A = 1). Therefore, the introduction of A seems less important for short chains. There were 78

global minima found for seq64 in the most successful run (finding the most global minima), with

39 in each of the two mirror image clusters [Figure 4(b)]. The hierarchical structures within

the two clusters are essentially identical, up to a permutation of the horizontal placement of

the global minima in one cluster. All the global minima found in other runs were subsets of

the above 78 global minima, which suggests they may represent a complete set of the global

minima for this sequence. For seq100b, the minima found were relatively diverse, but did not

contain the corresponding mirror image cluster due to the large conformation space and a limited

number of search steps. A protein in a compact folding state cannot easily evolve to its mirror

image conformation unless the chain sufficiently unfolds. Therefore, a high percentage of minima

that form mirror image pairs may be regarded as evidence of an efficient random walk in the

conformation space. The match percentage is defined as 2k
nT

, where k is the number of matched

image mirror pairs and nT is the total number of global minima found. For example, the match
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Figure 5: Hierarchical clustering of global minima of seq100b found in a single run and the
folding conformations of four global minima, each from a cluster.

percentages of the global minima on the two cluster trees in Figure 4 are both 100%. The overall

match percentages across five independent runs for seq48, seq64, and seq100b were 100%, 63%,

and 0%, respectively. The low match quality of the global minima found for seq100b implies

an insufficient random walk over the space. However, this sequence has been challenging for

many algorithms. For example, the equi-energy sampler failed to find any global minima for

this sequence [6]. Although the MDS could not move around the space so freely as to reach

mirror image pairs, it indeed identified in a single run 12 distinct global minima, with pairwise

HSC distances between 6 and 11 (Figure 5). If we use a distance cutoff around 9, these global

minima can be grouped into four clusters according to the cluster tree. The conformations of

four global minima, one from each cluster, are shown below the cluster tree in Figure 5. One
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sees that these conformations all have quite different hydrophobic cores, and a direct proposal

from one of them to another by the move set is almost impossible. Thus, the sampler must

first climb up a high energy barrier by sufficiently unfolding a compact conformation and then

move downhill to reach another global minimum. The double-partitioning design is the key to

achieving such free moves between different energy levels and across different basins of attraction.

To the best of our knowledge, this result is the first explicit demonstration of finding multiple

diverse global minima for this sequence in a single MCMC simulation. Lastly, to facilitate future

analysis, all the distinct global minima found for the three sequences in this study are provided

at www.stat.ucla.edu/~zhou/MDSHP/ and in the supplemental material.

4 Discussion

In this work, we have demonstrated the power of the MDS in searching for multiple distinct

global minima of various benchmark HP lattice protein sequences. By extending the idea in the

WL algorithm of partitioning energy space, the MDS introduces additional partitioning of the

conformation space into the basins of attraction of local minima. This double-partitioning design

significantly increases the efficiency of the sampler in exploring unvisited part of the space by

avoiding redundant sampling from the same domain. A visit-enhancement factor is introduced

to facilitate jumps between {Dk : k = 1, . . . ,K} and their complement D0, as the latter usually

contains important pathways to unexplored portion of the space.

One unique aspect of the MDS is that it utilizes information on local basin structures. In

addition to the advantage in finding minima reported in this paper, this information is also useful

for estimating barriers between different basins and constructing disconnectivity graphs [35,36]

as demonstrated in [28] on spin glasses. Practically, when a protein misfolds into a metastable

state with a high barrier to access other domains, the protein will be trapped in this local basin

and therefore lose its desired function. Estimating cross-domain barriers helps to identify those

deep metastable states, and may provide crucial fundamental understandings of protein behavior

in drug design. One of our future directions is to develop efficient methods to construct energy

barriers based on conformations simulated from the MDS.

Moreover, in the MDS algorithm, we use information from K stored minima to define do-

mains and to guide search for global minima. We would like to maximize the volume represented

by the K domains in the conformation space, while keeping the number K relatively small so

that each domain can have sufficient samples given an upper limit on the total number of con-

formations in a simulation. Proper schemes to merge similar and locally connected domains are

therefore highly desired. To this end, we have defined a new HSC distance for the HP model,

which implicitly merges those basins whose local minima only differ in the arrangement of P-

residues. Development of more general schemes to dynamically merge basins/domains separated

by low barriers [37] is another interesting topic for future investigation.
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It is noted that modifications of the WL algorithm have been proposed in the literature to

improve its sampling efficiency. For example, multiple runs of the WL algorithm have been used

to generate multiple random walks, each restricted to an energy window that slightly overlaps

adjacent ones. Cunha-Netto et al. developed an adaptive window approach to alleviate the

border effect when multiple energy windows are used for a large system [38]. This approach

is clearly different from the MDS, where a random walk is simulated over the entire energy

range. The additional domain partitioning is on the conformation space, not the energy space.

However, our algorithm may also benefit by similar ideas as the adaptive window approach when

sample from or optimize over large systems.
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