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Abstract

We develop an analytic theory of the polymer mediated interactions between nano-colloids re-

versibly adsorbing the excluded volume polymers. This theory describes the limit of the weak

adsorption where the correlation length ξ of the polymer system is much smaller than the char-

acteristic adsorption length (colloid absorbance) α. By making use of the developed theory we

calculate the colloid immersion energy and the potential of the polymer mediated interactions as

functions of the colloid radius R, absorbance α, and the polymer volume fraction φP .

PACS numbers: 82.35.Gh,82.35.Lr
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Polymer mediated (PM) forces acting between colloids are known1,2 to arise from the

unbalanced osmotic pressure caused by the polymer density perturbations that stem from

the interactions between the polymers and the colloid surfaces. These polymer-colloid in-

teractions therefore play decisive role in determining a magnitude and even a sign of the

PM forces. The microscopic interactions between the polymers and the colloid surfaces

can be subdivided into the two main categories: repulsive entropic depletion interactions

and attractive adsorption interactions. In addition, depending on the magnitude of the

adsorption barrier, the polymer adsorption can be distinguished between reversible and ir-

reversible cases, thus imposing different conditions of thermodynamic equilibrium on the

colloid-polymer system. In the case of so-called reversible adsorption, the chemical poten-

tial of polymers in the depletion/enhancement layers surrounding the colloids equals to that

of the polymers in the bulk, thus allowing free exchange of polymers between these space

domains. In the case of irreversible adsorption, polymers are kept near the adsorbing col-

loids by strong adsorption forces, so that the above thermodynamic equilibrium is broken.

The complicated balance between the above depletion entropic and adsorption forces, as de-

termined by the thermodynamical conditions corresponding to the adsorption case, totally

determines the structure of the polymer density near colloids and the associated polymer

mediated force.

In this Letter we concentrate on the study of the PM interactions for the specific case of

nanoscopic colloidal particles mediated by reversibly adsorbed polymers. Here we refer to the

so-called protein limit,3 where the size of the particles is much less than the polymer gyration

radius, so that the polymers can not be modeled as individual soft particles interacting with

colloids. The described limit of PM interactions is immediately relevant to many biologically

and technologically important phenomena such as red blood cell adhesion4, DNA mediated

depletion interactions5 and size-exclusion polymer chromatography.6 In the diverse variety

of different polymer-colloid systems exemplified by the above cases, PM interactions plays

a role of the driving force that causes phase separations, colloid flocculation, association

and clustering that can be effectively used in tailoring the properties of these systems in

a desirable way. Understanding the underlying microscopic mechanisms of the PM forces

depending on the type of the adsorption interactions between the polymers and colloid

surfaces thus presents a key element in predicting the macroscopic behavior of these systems

in different experimental settings.

2



FIG. 1: Sketch of the geometry of the considered problem

We start our analysis of the PM interaction between two colloids mediated by reversibly

adsorbing polymers by giving mathematical formulation of the self-consistent mean field

theory (SCMFT) used in our study. We consider two colloids of the radius R immersed in a

bath of the reversibly adsorbing polymers of the polymerization degree N . The geometry of

the problem is sketched in Figure 1. Recall that in the considered regime of the reversible

adsorption no permanent links between the polymers and the colloid surfaces are formed, so

the polymers are assumed to be in thermodynamic equilibrium with the bulk polymer system

far away from the colloid surfaces. SCMFT is used for determining the non-uniform density

structure in the described polymer system by using the mean field potential V describing

the excluded-volume interactions among polymers, of the form

V = β−1vNρPη, η = N−1

∫ N

0

Q(−→r , n)Q(−→r ,N − n)dn− 1, (1)

with η obtainable from the end density Q that obeys the Edwards equation7 of the form

∂nQ(−→r , n) = ∇2
−→r Q(−→r , n)− V (ρ)Q(−→r , n). (2)

Here, Q(−→r , n) is the coordinate −→r -dependent end density that describes the probability

to find one end of the polymer of the polymerization degree n in the point −→r provided

that its other end is placed elsewhere in the free space Θ not occupied by hard bodies.

ρP is the bulk polymer number density defined as a density of the polymer system far

away from any hard bodies immersed in this system and ρb ≡ NρP is the corresponding

bulk monomer number density; β = (kT )−1 is the reciprocal temperature, with k and T

being the Boltzmann constant and the absolute temperature, respectively; v is the excluded

volume parameter8 that quantifies the polymer excluded volume interactions. Note that the

excluded volume parameter v that enters the right hand side (r.h.s.) of Eq.(2) is defined by

v = b3(1−2χ) for the incompressible semidilute8 polymer solution considered in the present

work, with the interaction between polymers and solvent described by the Flory parameter
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χ. The case of purely steric interactions between polymers v = b3 comes as the ’athermal’

limit χ → 0 of the excluded volume parameter of the semidilute polymer solution, while

χ = 1/2 describes the case of theta-solvent.8 Hereafter, all lengths are measured in the

polymer segment Kuhn length b divided by
√
6, so that, for instance, the radius of gyration

of polymer reads RG =
√
N , N being the polymerization degree.

Note that the Edwards equation given by Eq.(2) is the second order partial differential

equation that must be supplemented by appropriate boundary conditions (BC) that describe

the adsorption interactions between the polymers and colloid surfaces. In the presence of

these attractive interactions, one can no longer use the standard Dirichlet BC Q(−→r , 0) = 0

that describes only purely entropic repulsion between the colloid surfaces and the polymers.

Instead, we impose BC of the form

∂−→m (|−→r + x−→m|Q(−→r + x−→m,n)) + α−1|−→r + x−→m|Q(−→r + x−→m,n)|x=L = 0 (3)

on each colloid surface, where −→m is the positive unit normal to the colloid surface, ∂−→m ≡ −→m∇
is the directional derivative, −→r is the position vector of the colloid center, and x is the

distance to the colloid surface. The coefficient α that has the dimension of length, quantifies9

the strength of the adsorption interactions between the polymers and the colloid surfaces.

L is the range of the adsorption potential that is assumed to be of the order of the monomer

unit length, which justifies including L in the effective particle radius R+L in the considered

diffusion limit L ∼ b << R.

Following the pioneering work of de Gennes in Ref.[10], BC similar to that expressed by

Eq.(3) are often used to describe the infinitesimally narrow adsorption potential that can

be represented by delta function in the simplest case of the planar adsorbing surface.8 For

the case of curved adsorbing surfaces the corresponding BC occurs11 to be dependent on

the curvature radii of this surface, rendering the choice of BC appropriate to the specific

geometry highly non-trivial. BC given by Eq.(3) specific to the considered spherical geometry

has been derived in Ref.[12] upon analyzing the solution of the Edwards equation given by

Eq.(2) in the presence of infinitesimally narrow finite range potential. Note that the use

of the actual short-range adsorption potential in the above derivation of BC is unavoidable

since this potential proves to be non-representable by a delta-function, in contrast to its

planar counterpart. According to the implicit equation for α derived in Ref.[12], near the

adsorption threshold v ≡ L
√
V ∼ π/2 describing the case of weak adsorption, the expression
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for α simplifies to α = 4L/(πv(πv − 2)), V being the strength of the adsorption potential.

Alternatively, the characteristic length α can be related12 to the absorbance defined as the

characteristic width of the density enhancement layer formed around the adsorbing colloid.

Note that the use of the boundary condition given by Eq.(3) implies that the adsorption

ability of the colloid surface is sufficient to overcome the entropic barrier imposed by entropic

repulsion of polymers, as indicated by the appearance of the surface bound states.12

Solving Edwards equation given by Eq.(2) supplemented by the boundary conditions,

Eq.(3), for Q and substituting the result into the second equality in Eq.(1), one finds the

excess polymer number density η. η in turn is to be related to the immersion energy W of a

single colloid and the potential U of PM forces acting between two colloids. W and U prove

can be identified12,13 with the excess grand potential

∆Ω = −ρb(βN)−1

∫

Θ

((1 + vNρb)η(
−→r ) + vNρbη(

−→r )2/2)d3r (4)

caused by the presence of, respectively, one and two colloids in the polymer system. Note

that the above identification W = ∆Ω (U = ∆Ω) relies on the fact that ∆Ω describes the

minimal work needed to reversibly bring one (two) colloids from the infinity to its actual

position in the polymer system, while maintaining thermodynamic equilibrium with the bulk

polymers as described by uniform density ρP .

In order to avoid essential mathematical difficulties associated with solving the non-linear

differential equation (2) different approximation schemes are often used, which rely on the

nature of the considered limiting cases. For the sake of simplicity, in the present work we

consider the asymptotic limit N >> 1 only, which describes the most practically important

case where the gyration radius of polymers RG is larger than all the relevant length scales.

Mathematically, taking this limit can be formalized by replacing the n-dependent end-density

Q(−→r , n) by its n-independent asymptotic form q(−→r ). The resulting equation reads

∇2q = 2ξ−2q(q2 − 1), (5)

where ξ ≡ (vρb)
−1/2 is the Edwards correlation length7. Note that the asymptotic end

density q satisfies the same boundary condition, Eq.(3), which has been initially derived

for the true end density Q. Despite the above simplification, the complicated geometry

associated with the boundary conditions specified on the surfaces of two spherical colloids

makes the analytic solution of Eq.(5) prohibitively complicated. However, in some limiting
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cases this equation can be reduced to the linear differential equation that can be solved

analytically even in the described complicated geometry. In this Letter we concentrate on

one such limiting case known as the ”weak adsorption” limit,8 where the colloidal particles

are assumed to cause only slight density perturbations in the polymer system. In terms of

the used notations this limit can be formulated as α−1ξ << 1, which simply states that the

adsorption strength quantified through the inverse adsorption length α−1 is much smaller

than the screening effect of the excluded volume quantified through the Edwards length ξ.

Taking this limit is equivalent to assuming8 that q only slightly deviates from its bulk value

1, which immediately reduces Eq.(5) to its linearized form

∇2q = 4ξ−2(q − 1) (6)

that represents the spatial behavior of the above deviation correction q−1 up to the leading

order in α−1ξ. In contrast to the non-linear equation given by Eq.(5), its linear counterpart

in Eq.(6) can be solved analytically in the considered limit of weak adsorption. For the case

of a single colloid, the exact solution of the linearized equation given by Eq.(6) reads

q1(
−→r ) = 1 +R(qs − 1)r−1e−2(r−R)/ξ, qs =

(

1 +
ξ

2R

)(

1− ξ

2α

)

−1

, (7)

where r = |−→r | is the distance from the center of the colloid and qs is the value of the end

density on the surface of the colloid.

It is important to note that the above solution q1(
−→r ) of the linearized equation given by

Eq.(6) is valid for any radius R of the colloid. Still, care must be exercised in using this

formally exact solution, since it has restricted validity with respect to the relation between

the parameters ξ and α. This restriction can be mathematically expressed as α ∈ (−∞, 0]∪
(ξ/2,∞) that enforces the physical requirement that the surface end density qs must be

positive for any α and ξ. Note that the above restriction does not impose any additional

constraints on the validity of Eq.(7) in the cases of physical interest considered in the present

work. Specifically, the above condition evidently covers the limit of weak adsorption ξ << α

where, up to the leading order in ξ, the surface end density reduces to qs = 1+ξ(R−1+α−1)/2.

Note that in the weak adsorption limit ξ << α, the deviation correction expressed by the

second term in the r.h.s. of Eq.(7) is positive at any R, α, and ξ so that the adsorption

of polymers always leads to the enhancement of the polymer density in the vicinity of the

colloid. In the limiting case of non-adsorbing polymers described by the limit α → 0, qs
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tends to 0 as α → 0, so that q1 in Eq.(7) reduces to the solution q1 = 1−Rr−1e−2(r−R)/ξ of

the linearized equation in Eq.(6) obtained in Ref.[13]. In addition, taking the limit R → ∞
of the r.h.s. of Eq.(7) gives the end density q∞1 (−→r ) = 1+ (α−1ξ/2) exp(−2(r − R)/ξ) of the

polymers in the presence of the planar adsorbing surface that can be directly obtained as

a leading term of the expansion of the exact solution8,14 of the planar version of Eq.(7) in

ξ/α.

In the case of two colloids with the centers separated by the distance H , it is instructive

to look for the solution of Eq.(6) in the form of the linear combination of the exponential

terms similar to the last term in the r.h.s. of Eq.(7) that satisfies the boundary condition

given by Eq.(3). The corresponding solution reads

q2(
−→r ) = 1 +R(qs − 1)

(

1− R(qs − 1)
e−2H/ξ

2H

)−1(
e−2(r1−R)/ξ

r1
+

e−2(r2−R)/ξ

r2

)

, (8)

where qs is defined in Eq.(7), r1 and r2 are the distances from the point −→r to the centers

of the first and the second colloids, respectively. Similarly to its one-colloid counterpart

given by Eq.(7), the end density given by Eq.(8) correctly reproduces the corresponding

expression describing the case of non-adsorbing polymers considered in Ref.[13], which can

be formally obtained from Eq.(8) by taking the limit α, qs → 0. However, due to more

complicated geometry of the two-colloid problem, Eq.(8) has more restricted validity with

respect to the colloid radius R in comparison with the above one-colloid counterpart given

by Eq.(7). Formally speaking, the above expression for q2 satisfies the boundary condition,

Eq.(3), only in the asymptotic limit of the ”protein” colloids R << H . Fortunately, this

formal restriction can be avoided in the semi-analytical calculation of the PM potential

based on Eq.(8) discussed in what follows.

In order to derive the immersion energy W and the potential of the PM interactions U

we substitute the obtained expressions for the end density given by Eqs.(7) and (8) into the

expression for the excess grand potential ∆Ω given by Eq.(4) to write

βW = 3φPR
−1
G R(qs − 1) (9)

and

βU = −6φP (HRG)
−1R2(qs − 1)2e−2H/ξ, (10)

respectively. Here, φP is the polymer volume fraction defined by φP = (4π/3)R3
GρP and

qs is defined in Eq.(7). Similarly to the expression for the polymer end densities in the
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presence of one and two colloids given by Eqs.(7) and (8), respectively, Eqs.(9-10) can be

straightforwardly reduced to their non-adsorbing polymer and weakly adsorbing polymer

limits. According to the explanations given right below Eq.(7) those limits can be respec-

tively obtained by setting qs = 0 and qs = 1 + ξ(R−1 + α−1)/2 in the r.h.s. of Eqs.(9-10).

Note that the limit of non-adsorbing polymers derived from Eqs.(9-10) by setting qs = 0

(α = 0) correctly reproduces the corresponding expressions for the colloid immersion energy

and the depletion potential obtained in Ref.[13].

Note that in contrast to the the expressions for the colloid immersion energy W given

by Eq.(9), the expression for the PM potential U in Eq.(10) is valid only up to the leading

order in the colloid radius. In this limit, the formula for the PM potential given Eq.(10)

allows for simple interpretation that can be elucidated by representing this formula as

βU = −(βWρ−1
P )2K0(H/RG), K0(x) = (2π)−1ρPR

−3
G x−1e−x/λ, (11)

where λ ≡ ξ/RG is the reduced polymer correlation length that depends on the overlap

degree of the polymer coils in the polymer solution. Note that λ decays from 1 at the overlap

threshold (corresponding to the semi-dilute solution boundary) to 0 at strong overlaps, thus

presenting a convenient dimensionless parameter amenable to evaluations of the overlap

degree for each particular system of the excluded volume polymers.

Two important remarks as to the derived expression for the PM potential, Eq.(10), are

in order here. Firstly, according to this expression, U is always negative, which corresponds

to the attraction between colloids. In addition, the absolute magnitude of U increases with

increasing the inverse absorbance α−1 and decreases with increasing the correlation length

ξ. The former trend is caused by the fact that α−1 quantifies the adsorption strength of

the colloid that imposes the enhanced bridging effect15 known to play in favor of increasing

the strength of PM interactions. The latter, opposite trend of decreasing the strength of

the PM interaction with increasing the correlation length ξ can be attributed to increasing

the excluded volume screening effect that suppresses these interactions. Secondly, the form

of Eq.(11) suggests that in the protein limit of small colloids the potential of PM forces

factorizes into the terms that describe the colloid immersion energies and the correlation

function of the homogeneous (bulk) system of the excluded volume polymers. This conclu-

sion is in line with similar observations13,16 for the case of purely entropic repulsion between

the surface of protein colloids and polymers.
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Note that the described simple factorization of the expression for the PM potential U

into the immersion energy W and the correlation function K0 provides a convenient route

to practical use of this expression. In fact, in the considered limit ξ << α the correlation

function of the excluded volume polymers K0 occurs to be independent on the nature of

the adsorption interactions between the colloid and these polymers. The effect of weak

adsorption of polymers to the surfaces of small colloids leading to the appearance of the PM

interactions exhibits itself only in the dependence of the colloid immersion energy on the

adsorption strength quantified through the parameter α. In other words, the approximate

expression for U given by Eq.(11) gives a possibility to reduce the two-colloid problem

of calculating the polymer mediated interaction potential to the one-colloid problem of

determining the colloid immersion energy. The accuracy of this approximate expression can

therefore be easily improved by using the refined correlation function K0 that is free of the

limitations of the used SCMFT approach. For instance, the polymer-colloid interaction-

independent polymer correlation function K0 can be deduced from the comparison between

the results of the Monte Carlo simulations and theoretical formula for the depletion potential

UD along the lines of our previous work in Ref.[13]. Note that the obtained in Ref.[13]

analytic expression for the correlation function of the form

K = σgρPH
−3(H/RG)

5

3 exp (−H/λ)
5

6 , (12)

leads to a good agreement between the simulations and theoretical predictions for UD, which

proves the adequateness of Eq.(12) to the case of the excluded volume polymers. The second

ingredient of the expression for the PM potential in Eq.(11), the colloid immersion energy

W , can be calculated numerically for arbitrary values of the correlation length ξ, absorbance

α and the colloid radius R. These calculations are much less computationally intensive in

comparison with the corresponding exact solution of the Edwards equation in bispherical

geometry imposed by the presence of two colloids. This significant simplifications, outlined

in the above, is achieved at a cost of restricting the validity of the results to the protein

limit R <∼ ξ only, which establishes the hierarchy of length scales R << ξ << α describing

the domain of parameters where the used approximation works best.

The above outlined calculation of the PM potential based on the numerical evaluation

of the immersion energy W and the analytic result for the correlation function given by

Eq.(12) are illustrated in Figure 2. Note that the reduced correlation length λ and the poly-
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mer volume fraction φP used in parameterizing the PM potential U are not independent.

For the considered case of the excluded volume polymers, these parameters can be related

by using the evaluation procedure described in Ref.[13] in detail. This evaluation shows

that φPλ is the increasing function of φP that varies between 0.2 at the overlap threshold

φP = 1 and 0.39 at φP = 5. The at-contact reduced PM potential βU(H = 2R) therefore

reaches the order of unity at small colloid radii R ∼ 0.2ξ , and it decreases by a factor of

10 with increasing the colloid radius up to the order of the correlation length ξ. Note that

the described dependence of the magnitude of the PM potential on the colloid radius shows

just the opposite trend in comparison with the purely entropic depletion potential that in-

creases with R. This difference stems from different dependencies of the colloids immersion

energy W on its radius R for the above cases of non-adsorbing and adsorbing polymers. In

the case of non-adsorbing polymers that mediate purely entropic depletion interactions, the

main factor that affects the strength of these interactions is the colloid surface area, so that

W occurs to be proportional to R. For the case of reversibly adsorbed polymers, the main

factor affecting the immersion energy is the strength of the adsorption interactions, so that

even small colloids can considerably change the polymer density structure in their vicinity

at large enough α−1. Interestingly, in the case of non-adsorbing polymers the increasing

power-dependence of W on R overrides13 the decreasing power-dependence of the correla-

tion function K(H = 2R) described by Eq.(12), so that the resulting at-contact depletion

potential UD ∼ W (R)2K(H = 2R) increases with increasing R. In contrast, for the consid-

ered case of adsorbing polymers the mentioned decreasing power-dependence K(H = 2R) is

the main factor contributing to the R-dependence of U(H = 2R) in the limit R << ξ. This

results in the observed decreasing U(H = 2R) with increasing R for adsorbing polymers,

which is solely due to the decreasing H-dependence of the correlation function K(H) given

by Eq.(12).

In summary, we obtained, for the first time, the analytic expression of the potential of the

PM interaction between nano-colloids mediated by reversibly adsorbing polymers. An ade-

quate description of the adsorption interactions between the polymers and colloid surfaces

has been achieved through using the boundary condition that correctly describes the case

of reversible polymer adsorption onto nano-sized ’protein’ colloids. The obtained analytic

expression for the PM potential can be effectively used for investigating thermodynamic

properties of polymer-nanocolloid mixtures in dependence on the affinity of the colloid sur-
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FIG. 2: Reduced PM potential for several values of the reduced colloid radius R/ξ and the selected

value of the reciprocal adsorption length ξ/α = 0.1.

face for polymers quantified by the adsorption length α incorporated in the above BC. In

particular, the present results for the PM potential shown in Figure 2 rise yet another inter-

esting question if the PM interactions mediated by adsorbing polymers can induce the phase

separation of the colloid-polymer system. It is well known16 that inducing this separation

by mixing non-adsorbing polymers with small nano-colloids is hardly possible. According to

our results, the presence of the adsorption interactions between the colloids and polymers

can drastically change this picture and lead to the colloid-polymer demixing even at small

R and large enough α−1. A more detailed discussion of the colloid-polymer phase diagramm

based on the calculated PM potential intended to rigorously answer the above question will

be reported elsewhere.
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