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Formation and fragmentation of networks is typically studied using percolation theory, but most previous
research has been restricted to studying a phase transitionin cluster size, examining the emergence of a giant
component. This approach does not study the effects of evolving network structure on dynamics that occur at
the nodes, such as the synchronization of oscillators and the spread of information, epidemics, and neuronal
excitations. We introduce and analyze new link-formation rules, calledSocial Climber (SC) attachment, that
may be combined with arbitrary percolation models to produce a previously unstudied phase transition using the
largest eigenvalue of the network adjacency matrix as the order parameter. This eigenvalue is significant in the
analyses of many network-coupled dynamical systems in which it measures the quality of global coupling and is
hence a natural measure of connectivity. We highlight the important self-organized properties of SC attachment
and discuss implications for controlling dynamics on networks.

PACS numbers: 64.60.ah, 89.75.-k, 87.23.Ge

I. INTRODUCTION

Dynamics on networks has become a research area of broad
importance, with considerable effort focused on understand-
ing how dynamics are affected by network structure [1–17].
Of particular interest are dynamics that depend on global mea-
sures of network connectivity, and in particular on the largest
eigenvalueλ of the network adjacency matrixA (Aij 6= 0 if a
link exists from nodei to nodej). We will refer to this broad
class, which includes models for synchronization [1], genetic
expression [2], neural excitation [3], and epidemic spreading
[4, 5], asconnectivity-governed dynamics. We note, however,
that while analyses of such systems [1–5] typically assume
that the network structure is static and connected (i.e., lack-
ing isolated nodes/clusters), many applications exist forwhich
the network structure is non-static and/or fragmented, such as
epidemic spreading with immunization [5, 6], communication
and transit systems operating under failure or attack [7], and
information processing in the brain [8].

The systems that we categorize as having connectivity-
governed dynamics share a common property of being eas-
ily manipulated through changes inλ. For example, one can
prevent viral spreading in technological and social networks
by decreasingλ through immunization [5] or promote the dis-
semination of information in communication and sensor net-
works by increasingλ [9]. In recent years there has been
much interest in studying the effects of topological modifi-
cation onλ and developing efficient strategies for tuningλ
through the addition and/or subtraction of links and/or nodes
[9–11]. However, such perturbation techniques do not address
networks undergoing formation or fragmentation processes, a
problem traditionally studied with network percolation theory
[12].
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From network resilience against targeted attacks and fail-
ures [13, 14] to dynamics on networks [1–5], which often
map spreading dynamics to percolation processes, there are
widespread applications for percolation theory in the fieldof
complex networks. However, applying such techniques to dy-
namics on evolving networks is hindered in that it can require
two levels of analysis, theory for the change in network topol-
ogy and theory for the dynamics. We hypothesize that a cen-
tral element frustrating the development of this approach is
that this field of research has largely focused on studying a
phase transition in the size of the largest connected cluster by
analyzing cluster aggregation and the emergence of agiant
component, a cluster whose size is of the same order as the
entire system [12]. However, the application of subsequent
percolation theory requires information about cluster topol-
ogy in addition to cluster size, which highlights the need for
percolation theory focusing on other cluster properties such
as the spectra of clusters (i.e., the eigenvalues of adjacency
matrices corresponding to clusters), modularity, assortativity,
transitivity, etc. [15].

Here we study the link-percolation phase transition usingλ
as a novel order parameter, shedding light on a new phase tran-
sition in connectivity, corresponding to a poorly-connected
network becoming well-connected (or vice versa) in terms of
the topology’s effect on dynamics. In order to produce such
a transition, we introduce a link-formation rule calledSocial
Climber (SC) attachment for which we derive the asymptotic
scaling behavior ofλ for large network sizeN . We show that
networks forming under SC attachment exhibit maximal scal-
ing λ ∼ O(N1/2), indicating that our model may be of broad
interest for the design of networks with largeλ, a property that
is often beneficial [9] and can lead to, for example, excellent
robustness against attack and failure [13, 14] and very good
spreading characteristics [3, 4]. It follows that SC attach-
ment is a promising approach for the design of self-organized
communication and sensor networks [16] with topologies de-
signed for the rapid dissemination of information. We demon-
strate this application by showing that networks formed un-
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der SC attachment exhibit enhanced spreading properties with
respect to the susceptible-infected-susceptible (SIS) model
[4, 5], a contagion model with many applications including the
dissemination of information, sometimes referred to as “gos-
sip based” communication or epidemic routing [17]. We note
that the development this potential application may be facili-
tated by the fact that SC attachment may be combined with ar-
bitrary percolation processes, such as Erdös-Rényi (ER)per-
colation [18] and Achlioptas processes [19–21], to indepen-
dently control cluster aggregation (determined by the percola-
tion process) and connectivity within clusters (determined by
SC attachment).

II. SOCIAL CLIMBER ATTACHMENT

A link-percolation process begins withN isolated nodes,
indexedn = 1, 2, . . . , N. In discrete stepŝt = 1, 2, . . . , a
new undirected link between two nodes is selected according
to a rule or set of rules, and is then formed. Thus, aftert̂
steps there will bêt links in the network, resulting in clusters
of connected nodes, each of whose size (number of nodes in
the cluster) may range from one (an isolated node) toN (a
cluster that spans the entire network). Depending on the rules
used to select links, the evolution of cluster sizes, and in par-
ticular the size of the largest cluster, may vary significantly.
Social Climber attachment introduces a new link reselection
step between link selection and link formation, which we mo-
tivate by analogy to a corresponding social process: collo-
quially, a “social climber” is someone who actively attempts
to make powerful friends in order to become more powerful
himself. When introduced to a new person, a social climber
learns about the relative popularity of the people in that per-
son’s clique and eventually befriends whoever is of maximal
importance. With this in mind, SC attachment is a link res-
election step during percolation where the proposed link be-
tween two nodes is altered by allowing one of those nodes to
act like a social climber, choosing to link to the node of max-
imal importance in the other node’s cluster. Therefore, given
a link-percolation process, we summarize SC attachment as
follows. (i) Let x be a proposed undirected link connecting
nodesa andb, generated by an arbitrary percolation model.
(ii) Let clustersCa andCb be the clusters to which nodesa
andb belong, respectively. Then, ifCa 6= Cb the proposed
link x is discarded and instead a linky is made between node
a and the largest-degree node inCb, as shown in Fig. 1a. (iii)
If nodesa andb belong to the same cluster,Ca = Cb, then
the proposed linkx is made without modification. Note that
SC attachment does not affect which clusters combine, but
does affect the topology of the resulting joined cluster. The
SC model chooses a connection to the node of largest degree
in a cluster using nodal degree as a proxy for thedynamical
importance measure,DI = unvn [10], whereu andv denote
the right and left eigenvectors ofA corresponding toλ. For
the undirected networks considered here, symmetry ofA im-
pliesu = v, and thus the node with largest eigenvector entry
un will have maximalDI in its cluster [10]. Provided that the
node with largest eigenvector entryun also has largest degree
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FIG. 1. (color online) Linkx is proposed by an arbitrary percolation
model (dashed lines) to connect nodesa andb, merging clustersCa

andCb. BecauseCa 6= Cb the proposed linkx is discarded and
instead one of the following new links is formed. (a) Nodea is linked
to the largest-degree node inCb with link y to model SC attachment.
(b) The largest-degree nodes fromCa andCb are linked together with
link z to model DSC attachment. These processes may be visualized
using free PercoVIS software [22].

kn, we allow the SC model to select nodes based on degree
for simplicity and ease of computation. One may equivalently
view SC attachment as forming a link to the node with largest
degree by using degree centrality as a proxy for eigenvector
centrality.

In addition to SC attachment, we introduceDouble Social
Climber (DSC) attachment, in which a proposed link between
nodesa andb is either replaced by a link between the nodes
with maximal degree in each cluster whenCa 6= Cb, as shown
in Fig. 1b, or is formed betweena andb without modification
whenCa = Cb. We note that DSC attachment corresponds to
maximizing connectivity of the resulting cluster, as measured
by λ, whenever the node of maximal degree is also the node
of maximal eigenvector entry in each cluster [9]. SC and DSC
attachment may be visualized using free PercoVIS software
[22].

III. ANALYSIS

Although we will later generalize our methods to other per-
colation rules, we first analyze SC and DSC attachment for the
well-known ER percolation process [18]. The rule for select-
ing a link in ER percolation is simple: two nodes are chosen
uniformly at random and a link is formed if there is not al-
ready a link between them. Traditional analysis has focused
on the relationship between the number of links addedt̂ and
the size of the largest cluster̂G(t̂), called thegiant component
(GC) whenĜ(t̂) ∼ O(N). It is convention to rescale botĥt
andĜ by N [i.e. t = t̂/N andG(t) = Ĝ(t)/N ], where one
obtains in the asymptotic limitN → ∞ [18],

G(t) =

{

0 , t ≤ 0.5
1− e−2tG(t) , t > 0.5

. (1)

Here, for variable control parametert, the network undergoes
a second order phase transition in cluster size at the perco-
lation thresholdtER

c = 0.5, as observed through the order
parameterG(t). Because SC attachment affects the topology
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of clusters and not their sizes, Eq. (1) remains valid for ER
percolation combined with SC attachment.

We begin our analysis by studying the emergence of large-
degree nodes. For a given timet, consider a large clusterC
containings ≫ 1 nodes, and letkmax denote the maximal
nodal degree inC. By large cluster, we mean thats is with
high probability larger than the size of another randomly cho-
sen cluster in the network, and eventually we will consider
only the case in which clusterC is the largest cluster in the
entire network. We will compute the expected change inkmax

for the addition of a single link. When a link is proposed be-
tween nodesa and b by ER percolation,kmax will increase
by one if: (i) a /∈ C andb ∈ C (depicted in Fig. 1a where
Cb = C), or (ii) a, b ∈ C and the degree ofa or b is kmax.
Since ER percolation chooses nodes uniformly at random, the
probability thata /∈ C is 1 − s/N , and the probability that
b ∈ C is s/N . Sincea andb are chosen independently, the
probability of case (i) is(s/N)[1−s/N ]. The probability that
a randomly chosen node in a cluster of sizes has degreekmax

is r/s, wherer is the number of nodes in that cluster with de-
greekmax. Thus, the probability of case (ii) is, to leading order
asN → ∞, (s/N)[1−s/N ](r/s)+(s/N)2[2r/s], where the
first term corresponds toa ∈ C, b /∈ C and the second term
corresponds toa, b ∈ C. We note that other corrections may
be included to address the chance in (i) that the maximal de-
gree ofCa is larger than the maximal degree ofCb, kmax+1,
but such corrections decay rapidly as the size difference be-
tweenCb andCa increases. Sinces ≫ 1 while r ∼ O(1),
case (i) is the dominating process for sufficiently larges, so
the expected rate of change ofkmax averaged over all possible
links is

E

[

dkmax

dt̂

]

= ζ
s

N

(

1− s

N

)

. (2)

Here,ζ = 1 for SC attachment andζ = 2 for DSC attachment,
since for DSC case (i) applies to botha /∈ C, b ∈ C and
a ∈ C, b /∈ C. Usingd/dt̂ = Nd/dt, integration of Eq. (2)
predicts that the largest degree of a node within the GC at time
t is

E [kmax
ER(t)] = ζN

∫ t

0

[

G(τ) −G2(τ)
]

dτ. (3)

Note that this scaling withN is the largest achievable scaling
of a degree. For comparison, in networks with power-law de-
gree distribution,P (k) ∝ k−γ , the expected maximal degree
scales asO(N1/(γ−1)), approachingO(N) asγ → 2+.

In order to understand the implications of Eq. (3), we use
λ ≈

√
kmax, an asymptotically (N → ∞) accurate approxi-

mation derived in [24] and discussed further in [25]. While the
model used to generate this estimate is not equivalent to SC
attachment, we find it remains accurate here. Using this esti-
mate in conjunction with Eq. (3), and noting that fort > tER

c ,
the largest eigenvalue of the GC will be larger than the largest
eigenvalues of smaller clusters, we obtain the following ex-
pression for the expected largest eigenvalue for ER percola-
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FIG. 2. (color online)λER is shown for ER percolation with DSC
attachment. Our prediction, Eq. (4) withG(t) given by Eq. (1)
(solid line), agrees well with observed values for simulations with
N = 105 (X symbols) andN = 106 (circles). Observed values
for λAE (crosses) also agree well with theory, Eq. (6) (dashed line),
for AE percolation with DSC attachment forN = 106. (inset) For
N = 106, the great extent to which SC and DSC attachment increase
connectivity is shown by comparing toλ for classical ER percolation.

tion with SC attachment,

E [λER(t)] =

√

ζN

∫ t

0

[G(τ) −G2(τ)] dτ , (4)

implying that the network undergoes a continuous phase tran-
sition in connectivity at precisely the same valuet = tER

c at
which a phase transition in cluster size occurs. In the super-
critical regime,λ achieves maximal scaling,λ ∼ O(N1/2).
For comparison an all-to-all network has similar scaling,
λ =

√
N − 1, but usesO(N2) links compared toO(N)

used by SC attachment. Asymptotic scaling constants of
Eq. (4) for larget may be solved by integrating with re-
spect toG, rather thant, and using a dilogarithm to obtain
λER(t)/

√
N →

√

1− π2/12 ≈ 0.42 for SC attachment and
λER(t)/

√
N →

√

2− π2/6 ≈ 0.6 for DSC attachment [26].
We confirm the accuracy of Eq. (4) by direct simulation of our
model, shown in Fig. 2, which demonstrates excellent agree-
ment between Eq. (4) (solid line) and observed values ofλER

for ER percolation with DSC attachment withN = 105 (X
symbols) andN = 106 (circles). For integration in Eq. (4) we
use the asymptotic theoretical valueG(t) given by Eq. (1). In
the inset of Fig. 2 we compare observed values ofλER for SC
and DSC attachment to traditional ER percolation, where our
models’ main effects are highlighted: under SC or DSC at-
tachmentλER attains significantly larger values and also un-
dergoes a sharp increase attER

c .
Because the expected connectivity, measured byλER, is

a function ofG(·), developing scaling arguments forλER is
straightforward since scaling for̂G(t) is known:Ĝ ∼ log(N)

for t < tER
c andĜ ∼ N for t > tER

c [18]. Therefore, when
SC is used in conjunction with ER percolation, in the limit
N → ∞ we have

λER(t) ∼
√

logN t < tER
c ,

λER(t) ∼ N1/2 t > tER
c . (5)
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FIG. 3. (color online) Scaling ofλER(t) predicted in Eq. (5) is
demonstrated using the ratios ofλER(t) for N = 106 andN = 105,
denotedφER(t). Agreement between the prediction of Eq. (5) (lines)
and measurement from simulation (crosses) is good. Measurements
from AE percolation,φAE(t), are also shown (circles).

To validate Eq. (5) we estimate the change inλER when
system size is increased by definingφER(t) as the ratio of
λER(t) for N = 106 to λER(t) for N = 105. As shown in
Fig. 3, we predict thatφER(t) ≈

√

6/5 for t < tER
c (dashed

line) andφER(t) ≈
√
10 for t > tER

c (solid line), both of
which agree well withφER(t) calculated from a single simu-
lation of each system size (X symbols).

The methods used to derive Eqs. (3-5), which involved cal-
culating the probability that an isolated cluster attachesto the
GC, may be easily adapted to other percolation models. For
example, consider Achlioptas processes [19–21] for which
the merging of clusters depends on cluster size (up to some
bound). This class of percolation models has recently re-
ceived much attention, focusing on analysis of a rapid phase
transition in cluster size referred to as “explosive percolation”
[20, 21, 23]. Repeating the reasoning process in deriving
Eqs. (3-5) for Adjacent-Edge (AE) percolation [20] , we pre-
dict the largest eigenvalue to be

E[λAE(t)] =

√

ζN

2

∫ t

0

[G(τ) +G2(τ) − 2G3(τ)] dτ , (6)

where againζ = 1 for SC andζ = 2 for DSC. Note that
despite the near-discontinuous phase transition inG, maximal
scalingλ ∼ O(N1/2) is still achieved. In Fig. 2 we show
good agreement between observed values forλAE (crosses)
and Eq. (6) for DSC (dashed line), where observed values for
G(t) were used in Eq. (6) as an analytic expression has yet
to be developed. Note thatλAE(t) < λER(t), which we at-
tribute to the integrands of Eqs. (4) and (6), which are max-
imized atG = 1/2 andG = (1 +

√
7)/6 respectively and

are zero atG = 0 andG = 1. Since AE percolation pro-
duces rapid growth inG, the integrand of Eq. (6) is not large
over a majority of the integration interval, so essentially, the
explosive growth inG minimizes the regime during which SC
attachment has a large effect onλ. In Fig. 3 we also show
φAE(t), the ratio ofλAE(t) for N = 106 andN = 105,
where we observe similar scaling in the subcritical and super-
critical regimes as observed and predicted forλER.

IV. EXPERIMENTATION

We now demonstrate the effect of SC attachment on dynam-
ics. Because SC attachment produces networks with maximal
scaling ofλ, we focus on an application in which largeλ is
beneficial: the dissemination of information in communica-
tion and wireless sensor networks [16], which is often mod-
eled as an epidemic [17]. We note, however, that largeλ is
not always advantageous. For example, largeλ in ecological
networks can promote instability and species extinction [27].
(See [9] for a discussion of applications in which it is benefi-
cial to have either small or largeλ.) Here we study SIS con-
tagion [4, 5], which has been used to study spreading process
from viral propagation in social and technological networks
to the dissemination of information such as rumors and data
[17].

To briefly review, the SIS model is a continuous time pro-
cess in which each node may besusceptible to infection or
infected. Each infected node may infect each of its suscep-
tible network neighbors at rateα, and each infected node
may also spontaneously heal and return to being susceptible
at rateβ. The network state in which no nodes are infected
and all nodes are susceptible is a fixed point of the collective
dynamics, but this fixed point may not be stable to perturba-
tion (i.e., a small fraction of nodes being infected by some ex-
ternal agent). For many topologies of connected networks in
which a fraction of nodes are initially infected, the expected
steady-state fraction of infected nodesf may either be zero
(no infections, stable fixed point) or nonzero (endemic infec-
tion, unstable fixed point), depending on whetherα/β sur-
passes the epidemic thresholdλ−1 [4, 5]. Note that endemic
infection can be prevented by decreasingλ through immu-
nization untilλ−1 > α/β. Interestingly, for very large infec-
tion rates, reducingλ to prevent endemic infection can require
the complete fragmentation of the network. For example, if
α/β ≥ 0.5 the prevention of endemic infection requiresλ ≤ 2
which guarantees fragmentation of the network [14]. This sce-
nario has been observed experimentally for virus propagation
on mobile phone devices [28], where slowly spreading Blue-
tooth viruses may be inhibited by immunization (i.e., antiviral
software) but rapidly spreading messaging viruses are inhib-
ited only by a fragmented network.

We simulated SIS dynamics for moderateα/β on two net-
works forming under ER percolation, one with SC attachment
and the other without, predicting that SC attachment will have
a significant impact on the steady state fraction of infected
nodes,f . We simulated dynamics with(α, β) = (0.075, 1)
onN = 105 nodes at many pointst in the percolation process,
initially infecting 1% of nodes and then allowing the system
to reach a steady state fraction of infected nodesf(t), before
allowing percolation to continue to another value oft, where
the dynamics were re-initialized, simulated, and so on. The
resulting curvesf(t), are shown in Fig. 4, where the shaded
region highlights that networks forming with SC attachment
(open squares) have significantly enhanced spreading charac-
teristics compared with networks forming without SC attach-
ment (filled squares). To contrast this result, we also plotf(t)
for a large infection rate(α, β) = (0.5, 1), wheref(t) with
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FIG. 4. (color online) SIS epidemics [4] were simulated on a network
forming by ER percolation with SC attachment (open symbols)or
without (filled symbols), wheretN is the number of links added.
f(t) is the steady-state fraction of infected nodes when 1% of nodes
are initially infected. The shaded region highlights the significant
impact of SC attachment for moderate infection rate (squares). For
high infection rate, SC attachment has no effect (circles).

SC attachment (open circles) is indistinguishable from that
without SC attachment (filled circles). This is not surprising
as one would expect any initial infection to saturate the cluster
in which it begins, in which casef(t) would depend primarily
on cluster size, not topology. We thus find two regimes of SIS
dynamics on fragmented networks: whenα/β is sufficiently
large,f depends primarily on network fragmentation (i.e. the
size of the GC), but for moderate and smallα/β, f depends
strongly on the connectivity of clusters (i.e., their respectiveλ
values).

V. DISCUSSION

Motivated by the need for the development of analysis for
connectivity-governed dynamics [1–5] on evolving networks,
we have developed a percolation theory focusing on the con-
nectivity of clusters, rather than their size. In this pursuit, we
have introduced a model, Social Climber attachment, that pro-
duces networks with strong connectivity and maximal scal-
ing of λ, and validated our claims using two link-percolation
models. While strong connectivity in networks is achievable
via other percolation models (e.g., networks with heavy-tailed
degree distributions generated by the Chung-Lu model [29]),
such methods typically require that the nodal degrees and net-
work connectivity be defineda priori. In contrast, two key
properties distinguish SC attachment. (i) First, SC attachment
produces networks with largeλ via self-organization. Be-
causeλ governs many dynamical processes [1–5], SC attach-
ment provides a foundation for designing networks that self-

organize with properties linked to largeλ such as robustness
[13, 14] and the efficient spread of information [9]. Our model
is therefore promising as a starting point for the development
of self-organized communication networks such as wireless
sensor networks [16], where data broadcasting may be mod-
eled by SIS transmission [17]. Development and analysis of
this application may be facilitated by the fact that SC attach-
ment does not affect cluster sizes, only their internal topology.
(ii) Second, a novel phase transition in connectivity occurs
for networks forming under SC attachment, which may have
broad applications. For example,λ(t) changes most rapidly
near the percolation threshold, so creating networks near criti-
cality may offer an effective approach for designing networks
on which dynamics can be efficiently controlled by adding
or removing a minimal number of links. This approach may
therefore aid in the design of critical infrastructure (e.g., the
power grid, communication networks, and airline networks)
that can be easily switched between topologies designed for
high-flow and low-flow conditions.

We conclude by suggesting several possible extensions to
this work that may be of interest to readers. First, SC attach-
ment uses complete information about the structures of the
clusters that it connects, yet in some applications this infor-
mation may be difficult or impossible to obtain. The effects
of incomplete information or noise on SC attachment are as
yet unexplored. For example, incorporating a probabilistic
(rather than deterministic) link reselection step may be ofin-
terest as the resulting process would have some similarity with
the preferential attachment network growth model [30]. Sec-
ond, one may wish to adapt our model to study various real-
world networks. While networks formed under SC attachment
feature largeλ, to incorporate this model for the design of
communication networks one would likely need to consider
many other design criteria such as betweenness centrality and
software protocols [16]. Finally, we named our model Social
Climber attachment to reflect the selfish behavior of individu-
als in social situations, yet the generation of a network topol-
ogy similar to that observed in social networks using the SC
model would require additional link-formation rules, suchas
those producing modularity and transitivity [15].
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