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Abstract

Two-phase flow through heterogeneous media leads to scale-free distributions of irregularly-

shaped pockets of one fluid trapped within the other. Although reactions within these fluids are

often modeled at the homogeneous continuum scale, there exists no current framework for upscaling

from the pore scale that accounts for the complex and scale-free geometry of the bubbles. In this

paper, we apply a linear-kinetics diffusion-reaction model to characterize the steady-state chemical

environment inside the irregular pockets. Using a combination of theory and invasion-percolation

simulations, we derive scaling laws describing the distribution of diffusion times within bubbles.

We show that chemical concentrations within the bubbles are determined by the Laplace transform

of the entire distribution of diffusion times from each location. This serves as a means to compute

average concentrations of reactant within a bubble of unique geometry and size. Furthermore, the

overall system size imposes upper bounds on the distribution of bubble sizes, thereby imposing

a system-size dependence on the statistics and average concentrations. These conclusions have

profound implications for continuum models of porous reactive-flow, where kinetic and equilibrium

parameters are often chosen from laboratory measurements made at centimeter scales.
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I. INTRODUCTION

Two-phase flow in porous media induces spatial heterogeneities in the distribution of the

two phases. We consider a situation in which one phase provides a reactant that diffuses

into and is consumed within the other phase. Therefore, the fluid-fluid interface provides

a complex boundary condition for the reaction within the second phase. The reactant

could be a single reactive chemical component, such as hydrogen ions, or could be a more

general parameter describing the state of a multicomponent reactive system. In either case,

we assume that the variable diffuses into the reactive phase and slowly approaches a new

equilibrium.

Specifically, we consider the heterogeneous geometry resulting from an invasion-

percolation with trapping (IPT) model in which one fluid, the invader, partially displaces the

other fluid, the defender [1–3]. The porous medium is assumed to have widely distributed

pore sizes and throats, leading to a sequential filling of the pore space by the invading fluid

and a retreat by the defending fluid. This process continues until all defending fluid has

either exited the system or has become “trapped” as disconnected bubbles.

The application that inspires this work is the geological storage of CO2 for purposes of

carbon sequestration. At geological carbon sequestration sites, supercritical CO2 is injected

into subterranean reservoirs, thereby displacing the existing salty water, or brine. Reactive

transport simulations of these reservoirs are typically performed at Darcy-scale resolutions

of centimeters or meters [4, 5], over which the heterogeneities of the porous material and

the emergent dynamics of the invasion process are lost. The reactions are assumed to be

well-mixed within representative volume elements (REVs), and the chemical kinetic and

equilibrium parameters that are utilized in the models are those obtained from laboratory

measurements on well-mixed fluids or flooded cores [6, 7]. Such measurements are more

appropriately applied at the micron scale of the single pore. Whether or not it’s also appro-

priate to apply such parameters to heterogeneous systems that are coarse-grained at larger

length scales is not resolved. Furthermore, percolation processes give rise to structures with

length scales that follow power-laws and span many orders of magnitude. Upper cutoffs for

these scaling behaviors may be larger than simulation resolutions. This challenges the very

applicability of diffusive-transport models with fixed parameters. To date, there have been

some efforts to upscale from pore scale to reservoir scale in these contexts [8–16], especially
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regarding transport and reaction in hierarchical structures. However, there are few studies

that consider the presence of similar structures at all length scales and how those structures

influence overall chemical rates. A complete cohesive framework is lacking, and this work

contributes to completing that framework.

In this paper, we explore how the emergent geometries of invasion percolation affect

chemical reactions bounded by those geometries. We use single-component diffusion-reaction

equations to focus on the complex boundary conditions and draw conclusions regarding how

the geometry determines chemistry. Realistic scenarios, such as within the carbon seques-

tration reservoirs mentioned above, likely involve complicated multi-component chemistries

[17]. In some instances, the overall dynamics of multi-component precipitation-dissolution

systems can be characterized with a reduced number of variables [18, 19], and perhaps such

an approach can be applied to the carbonate systems of interest. Detailed diffusion-reaction

modeling of multi-component systems is important and interesting [20, 21], but is often per-

formed with simple geometries describing the boundary conditions. We complement those

studies by applying complex geometric boundary conditions to a simple reactive system.

We show that the chemistry at each point in the reactive phase is determined by the

Laplace transform of the distribution of first-passage diffusion times to the fluid-fluid in-

terface. Numerical simulations show that the distributions are similar to inverse Gaussian

distributions and can be characterized with the first two moments. Distributions of these

parameters follow simple power-laws. Interestingly, the functional form and the scaling ex-

ponents for the moments can be predicted using a simple circular approximation for the

bubbles in two dimensions, but the corresponding spherical approximation in three dimen-

sions fails to predict the correct scaling exponents. We find that averages such as chemical

concentration, when measured over an isolated bubble, depend on both size and complex

shape. Furthermore, the power-law distribution of bubble sizes implies that chemical con-

centrations averaged over the entire system depend upon the arbitrary choice of system size.

This complication must be accounted for in any accurate coarse-graining of the system.
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FIG. 1: The concentration of a reactant is fixed at the interface between a surrounding fluid (gray)

and bubbles of the isolated fluid (white). The reactant diffuses into the isolated fluid and is removed

at rate k. The resulting concentration at every location x within the isolated fluid can be described

by the distribution of diffusion times, τi, from the boundary to x. Note that the figure represents

only the fluid phases, and the porous solid phase is not shown.

II. THEORY

A. What physics and geometry control the chemistry in a heterogeneous system?

We describe the chemical state of our system at each location x with the concentration

C(x). Within the reactive fluid, the reactant is removed at the rate kC(x), and diffuses

with diffusion constant D. As mentioned above, C(x) can also be considered a generic state

variable that diffuses and decays to an equilibrium value within the reactive phase. The

reactive fluid is surrounded by an “inert” fluid, in which the concentration is fixed at C0

(see Fig. 1). The interface Γ therefore supplies the boundary condition C(Γ, t) = C0, for the

diffusion-reaction equation,

∂C(x, t)

∂t
= D∇2C(x, t)− kC(x, t). (1)

We are interested in results at steady-state, where ∂C(x,t)
∂t

= 0.

We use the invasion percolation with trapping (IPT) model as the generator of the ge-

ometry (Fig. 2). IPT is a quasi-static model of two-phase flow through porous media first

proposed by Wilkinson and Willemson [1]. It accounts for the heterogeneities in pore body
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and throat sizes by assigning a preference number to each. The pore space is then occupied

sequentially by the “invading” fluid via the highest preference pore contiguous to the pre-

viously occupied cluster. In bond percolation, the preference represents the dependence on

throat size in the capillary pressure necessary to enter pores within a medium. If the invad-

ing fluid is non-wetting and the previously resident, or “defending” fluid wetting (relative to

the surface), then the widest adjacent throat presents the lowest pressure barrier. The driv-

ing force increases the pressure in the connected invading cluster until it reaches that lowest

barrier, and then the fluid pops through the throat into the adjacent pore, simultaneously

releasing the pressure. The pressure again increases, and the process repeats.

If a cluster of the defending fluid becomes disconnected from the outside reservoir and

surrounded by the invading fluid, then the defending cluster is trapped and frozen, and

no more invasion can occur within that cluster. In our application, the trapped bubbles

of defending fluid constitute the reactive phase, and the concentration of reactant is fixed

within the invading phase.

We should note that there are limitations to the invasion percolation model of two-phase

porous flow. Several mechanisms and details are omitted, such as thin films of the wetting

phase coating the pore walls [22], bubble formation via “pinch-off” [23], and changes in

bubble shape due to evaporation. The implications of these simplifications will depend

upon the application, such as the injection of super-critical carbon dioxide into reservoirs.

Before applying the details of the theory to a given application, the limitations must be

carefully considered.

We construct L2 and L3 matrices of initially vacant pores. We begin by assigning random

values to all bonds and occupying the center pore. At each time step, we find the lowest

numbered bond contiguous to the occupied cluster and occupy the adjacent pore, provided

that pore is not part of a disconnected bubble. The edges of the system are considered open,

in that they always provide an egress for defending fluid. The process is continued until all

pores are occupied or part of disconnected bubbles.

The results and conclusions of this paper do not hinge upon our choice of percolation

model. Although we recognize IPT as a decent approximation of the scCO2 invasion pro-

cess of interest, we use it primarily as an algorithm to generate heterogeneous, multi-scale,

geometries. These geometries may alternatively be due to heterogeneous pore structures,

fractures [24], rock compositions, or other invasive flow models.
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(a) (b) (c)

FIG. 2: (Color online) Schematic representation of bond invasion percolation. (a) As a non-wetting

fluid displaces a wetting fluid, pores are preferentially invaded via the largest connecting throats.

(b) Sites on a lattice are occupied sequentially via highest valued bonds, indicated by the thickest

lines. (c) A portion of one 1000x1000 lattice, where disconnected bubbles of defending fluid are

shown in gray.

B. Chemistry is determined by distributions of first passage times

In general, the steady-state concentration everywhere within the reactive phase is deter-

mined by Eq. (1) and the boundary geometry determined by the percolation mechanism.

However, those exact solutions require numerical approaches that have two shortcomings.

First, numerical solutions by themselves would yield few insights into and little understand-

ing of the scaling behavior of the system. We would like to understand the physical and

geometric characteristics of the interface that control the chemistry. Second, the discrete

lattice geometry presents sharp edges that can be troublesome in numerical solutions. In-

terpreting results at the required sub-lattice resolution would not be straightforward.

Instead, we take an approach that yields insight and is appropriate on discrete lattices.

We can express the reaction-diffusion equation Eq. (1) with the following:

dC(x, t)

dt
= D∇2C(x, t)−

k

N

N
∑

i

Ci(x, t), (2)

where we express the concentration at x as a superposition of the many colocalized parcels

of fluid, C(x, t) =
∑

i Ci(x, t). Each parcel departs the boundary carrying a concentration

of Ci(Γ, 0) = C0. It then diffuses through the bubble and reacts independently of all other

parcels. The linearity of the kinetics allows us to write the total chemical reaction rate at
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each x as a superposition of the reactions of the colocalized parcels. The concentration for

a parcel of age τ is described by

Ci(τ) = C0e
−kτ , (3)

where τ is the time since the parcel left the boundary. We now write that the total concen-

tration at x is the sum over the exponential decays:

C(x, t)

C0

=
∑

i

e−kτi =

∫ ∞

0

Pt(τ, x)e
−kτdτ, (4)

where Pt(τ, x) is the distribution of ages, τ , of the parcels found at x at time t (τ < t). At

steady state, all ages are represented, t → ∞, and Pt becomes the full distribution P (τ, x)

of first-passage times (FPTs) for diffusion from the bubble boundary to the location x. We

note that Eq. (4) is equivalent to the Laplace transform of the distribution of diffusion times.

Furthermore, we find that the mean first-passage time is insufficient to describe the

evolution of the concentrations. If 〈τ〉 were to describe the system, we would have that

Cmfpt(x) = C0e
−k〈τ〉. (5)

We compare this incorrect result to the correct expression for C(x), which is the mean of

the exponential [25]:

C(x) = C0〈e
−kτ〉. (6)

It follows that any scalar, such as an “effective diffusion length” does not accurately predict

the chemistry. The full distribution of diffusion times is necessary.

If the reactions are non-linear, then we cannot express the reaction-diffusion system as a

sum over independent parcels. The parcels mix in that the reaction of parcel i at location x

depends on the evolution of all other colocalized parcels concurrently at x. In that case, the

distribution of diffusion times is in general insufficient to accurately predict the chemistry.

However, the scaling forms and qualitative lessons learned from our analysis are likely still

relevant.

C. Analytic approximation of bubbles as discs and spheres

Our goal is to characterize the chemical concentration, C(x), everywhere in the whole

system. To that end, Eq. (4) instructs us to compute the distribution of first-passage times

7



to the interface from each location within the bubbles that emerge from the percolation

process. We have separated the chemistry from a purely geometric problem. To find analytic

solutions, we first approximate the complex shaped bubbles as discs in two dimensions and

as spheres in three dimensions. We hypothesize this may be a reasonable approximation

because the interior of the bubbles, where the diffusive process takes place, is Euclidean like

a simple sphere in that the volume scales as M(R) ∼ Rd, where R is the linear dimension

of the bubble and d is the Euclidean spatial dimension. The perimeters of the bubbles

are fractal [26–28] and diffusive processes on fractal surfaces have anomalous characteristics

[29]. However invasion percolation with trapping (IPT) prohibits the formation of bubbles

within bubbles. This prohibition ensures that the interior is Euclidean, and therefore the

anomalous characteristics of fractal diffusion do not apply to diffusion within the bubble.

In this section, we solve distributions of first-passage times out of discs and spheres and

compute the first two moments of those distributions. We then find scaling relationships

for the distributions of those moments given an ensemble of spheres. We distribute the disc

and sphere sizes identically to bubble sizes produced by percolation processes:

P (M) ∝M−ǫ, (7)

where ǫ ≈ 2.05 (2.17) in two (three) dimensions [2]. In this way, we develop an analytic

approximation for the distribution of functions P (τ) in the system, and thus, the distribution

of C(x).

1. Analysis for two-dimensional discs

For a single disc of radius R, the distribution of first-passage times can be found using

the Green’s function for diffusion of a particle originating a distance r0 from the center

and vanishing at the boundary. The Green’s function, C(r, θ, t; r0), is equivalently the

concentration at (r, θ) and time t of particles originating at (r0, 0). C(r, θ, t; r0) can be

expressed as a series of Bessel functions [30],

C(r, θ, t; r0) =
1

πR2

∞
∑

n=−∞

cos(nθ)
∑

qi

e−Dq2i t
Jn(qir)Jn(qir0)

[J ′
n(qR)]

2
, (8)

where D is the diffusion constant and Jn are Bessel functions of the first kind. The qi are

the roots of Jn(Rqi). The distribution of first-passage times is equivalent to the total flux
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of walkers absorbed at the perimeter:

P (τ, r0) =

∫ 2π

0

dθ RD
dC(r, θ, τ ; r0)

dr

∣

∣

∣

∣

r=R

, (9)

which gives another sum of Bessel functions. Simplification yields

P (τ, r0) =
2D

R

∑

qi

e−Dq2i τqi
Jo(qir0)

J1(qiR)
. (10)

We evaluate this series numerically for many parameter values and note that the distribu-

tions, P (τ), appear to be well approximated by inverse Gaussian distributions (see Fig. 3),

PIG(τ) =

(

λ

2πτ 3

)1/2

exp
−λ(τ − µ)2

2µ2τ
. (11)

This is expected because the distribution of FPTs to absorbing walls enclosing a finite

interval in one-dimension is given by a sum of inverse Gaussians. Next, we compute the

mean and variance of the first-passage time, µ(r0, R) = 〈τ〉 and v(r0, R) = 〈(τ − µ)2〉 using

Eq. (10). They are given by

µ(r0, R) =A(R
2 − r20)

v(r0, R) =B(R4 − r40),
(12)

where A = 0.5 and B = 0.125. The characteristic length scale in the percolation geometry

is prescribed by the size of one pore, or one lattice unit, of length a. Therefore, the choice

of diffusion constant is arbitrary and fixes a characteristic diffusion time, a2/2D. We fix

D = a2/2 = 1/2 so the diffusion time between individual pores is equivalent to a step of

duration unity in a discrete random walk [31]. In Section IVB, we compare the arbitrarily

scaled diffusion times with reaction rate constants presented in the same units.

Equation (12) characterizes the first-passage times from a single location within a disc to

the edge of the bubble. A finite system of bubbles therefore carries a distribution of means

and variances determined by both the distribution of sphere sizes and the distribution of

distances within a single disc. If P (µ, v) is the total density of these moments across the

system, then because each area or volume element can be characterized by either µ and v

or by r and R, we can write

∫∫

dµ dv P (µ, v) =
1

V

∫ Rmax

a

dR

∫ R

0

dr N(R)Q(r|R) (13)
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where V is the total area or volume of the system, N(R) is the number density of discs of

radius R in the system and Q(r|R) dr is the area within a disc of size R that is between

distances r and r + dr from the center. The lower limit on R exists because no bubbles are

smaller than a single pore and the upper limit represents the largest bubble size allowed by

the finite system size (or additional physics discussed in Section IVB5).

To use Eq. (13) to derive the distribution of time variables from geometric variables, we

first find distributions of the geometric properties of discs. Adopting the scaling for our

bubbles given in Eq. (7), we apply the relationship M = πR2 to find the corresponding

number density of discs with radius R:

N(R) = CR−β , (14)

where β = 2ǫ − 1 ≈ 3.11. Applying our limits on R, the normalization prefactor is C =

(β− 1)/(a(1−β) −R
(1−β)
max ). The conditional area density per disc Q(r|R) is simply 2πrΘ(R−

r, r, R− a), where the step function Θ(xi) = 1 if all arguments xi > 0. This ensures r < R,

r > 0, and R > a.

Using Eq. (12) we rewrite the product of the differential lengths using the Jacobian,

J =
∂µ

∂R

∂v

∂r
−
∂µ

∂r

∂v

∂R
(15)

=8ABRr(R2 − r2). (16)

We find the density of the two time parameters,

P (µ, v) =
N(R)Q(r|R)

V J
(17)

=
πC

4V AB

R−(β+1)

(R2 − r2)
Θ(R− r, r, R− a). (18)

Substituting for R and r with µ and v, we find

P (µ, v) =
2(β−3)/2Cπ

V Bµ

(

Av

Bµ
+
µ

A

)(−β+1

2 )
Θ

(

v −
Bµ2

A2
, v +

Bµ2

A2
− 2Ba2

)

. (19)

This gives the distribution of means and variances of first-passage times from interior loca-

tions to interfaces across an ensemble of discs. The integrated distribution of means for an

infinite system with negligible a is

P (µ) =

∫ ∞

0

P (µ, v)dv ∝ µ−(β−1)/2 = µ−1.055 (20)
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Similarly, the distribution of variances is

P (v) =

∫ ∞

0

P (µ, v)dµ ∝ v−(1+β)/4 = v−1.028 (21)

In a finite system, the limits a and Rmax provide bounds on the above scaling behavior; the

scaling is valid for means and variances larger than those associated with discs of size a.

2. Analysis for three-dimensional spheres

In three dimensions, we apply an identical analysis, albeit with slightly modified distribu-

tions. First, instead of analytically finding the Green’s function for diffusion in spheres, we

directly simulate random walks in a sphere to compute distributions of first passage times

from starting locations to the boundary. Although Eq. 12 was initially derived in 2D using

Green’s functions, the results of the 3D simulations are consistent with the form of this

equation. Therefore, we adopt Eq. 12 as an empirical description of the 3D behavior, with

constants A = 0.33 and B = 0.045.

In the three dimensional case, we apply the appropriate relationships M = 4πR3/3 to

Eqs. 7 and 14. This yields β = 3ǫ − 2 ≈ 4.5. The conditional volume per sphere is now

Q(r|R) = πr2Θ(R − r, r, R − a). We use Eq. 17 to find the density of the time parameters

to be

P (µ, v) =
πC

2V AB

rR−(β+1)

(R2 − r2)
Θ(R− r, r, R− a) (22)

=
2(β−3)/2Cπ

V Bµ

(

Av

Bµ
+
µ

A

)(−β+1

2 )
Θ

(

v −
Bµ2

A2
, v +

Bµ2

A2
− 2Ba2

)

. (23)

The overall distribution of means and variances can again be found in three dimensions by

integrating over m and v:

P (µ) ∝ µ−(β/2−1) = µ−1.25, (24)

P (v) ∝ v−(β/4) = v−1.125. (25)

From this analysis, we form several predictions for the distributions of first-passage times

measured on the geometry formed by IPT. First, the distributions from single locations can

be approximated by inverse Gaussian distributions, which can be characterized solely by

the mean and variance. The bivariate histogram of the means and variances will resemble
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Eq. (23). It will exhibit high density along v = µ2 and no density below that line. Fur-

thermore, the collapsed histograms of the means and variances will follow power-law scaling

with exponents given above.

III. FIRST-PASSAGE TIME DISTRIBUTIONS

A. Distribution of FPTs out of percolation bubbles

Distributions of first-passage times are measured by simulating random walks originating

at each location within the bubbles, and terminating at the fluid-fluid interface. To en-

sure that first-passage time distributions for short excursions (about one step) match exact

theoretical diffusion results, the duration of each step is taken from an inverse Gaussian dis-

tribution with a mean step time along each dimension of unity (corresponding to D = 0.5).

Over many steps, the central limit theorem ensures that the mean squared displacement

scales linearly with step number, like any diffusive process. Several thousand walks are

simulated originating at each location, and the total duration of the walks are recorded.

Each realization of the IPT process therefore produces an ensemble of first-passage time

distributions, one ensemble corresponding to each lattice site occupied by defending fluid.

Figure 3 shows distributions for three example locations. The top plot shows a computed

probability density function (PDF) for a location on a cubic lattice, whereas the middle and

bottom show data for locations on a square lattice. The comments in Sec. IIC motivate us

to compare these curves to two-parameter fits of inverse Gaussian distributions, which are

given by broken lines in Fig. 3. Because of the similarity, we characterize the distribution at

each location using two fitting parameters, the mean µ and variance v. The fitting procedure

yields reliable measurements that are not skewed by limited data and the discrete nature of

the walk.

B. Characterizing the FPTs for an ensemble of bubbles

The two fitting parameters µ and v are computed for every location occupied by residual

defending fluid. Figure 4 gives bivariate histograms of those parameters collected over

several lattices in both two and three dimensions. There are three main features of these

histograms that are predicted by the theory of Section IIC. First, the highest density lies
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FIG. 3: Probability densities of first-passage times for diffusion to the fluid-fluid interface originat-

ing at three example locations. The process is in (top) three dimensions, and in two dimensions

with the origin (middle) near the core of the bubble or (bottom) near the edge of a bubble. The

dots represent PDFs computed from binned data, and the broken line represents a two parameter

fit to an inverse Gaussian function. Note the shortness of trips in three-dimensions compared to

those in two-dimensions. The units are such that the mean step time is one.

along a line v ∝ µ2. Second, below the line v = µ2, there is very little density, and indeed the

approximate theory predicts zero density in that region. Third, there is no density above an

upper cutoff determined by the size of the largest bubbles produced on the finite lattice. This

upper cutoff increases with lattice size. The limited range of µ and v in three dimensions is

due to both the steep descent in the probability compounded with computational limitations

on L.

We next compare the scaling behaviors predicted by Eqs. 20-25 to numerical results.

Figure 5 gives histograms of µ and v integrated over several systems. The lattice sizes are

L = 2000 and L = 200, in two and three dimensions, respectively. The dashed lines show

predicted power-law scaling, which we expect to be valid for µ > A and v > B because in

simulation the lower cutoff is a = 1. We find that the 2D results are in excellent agreement

with the circular bubble approximation, but in 3D, the agreement is very poor. Despite the
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small range of values for µ, we clearly observe a more negative exponent than predicted;

long-duration walks are not observed as frequently as expected. Due to the lower cutoff in

bubble size, we expect the scaling laws to over-predict the prevalence of small means and

variances; this expectation is opposite the observed discrepancy.

IV. DISCUSSION

A. Spherical bubble approximation: why does it fail in three dimensions?

Figure 5 demonstrates that the analytic model presented above is in agreement with

numerical data in two dimensions. However, the scaling exponents in three dimensions

disagree. Approximating bubbles as solid spheres overestimates the distribution of long-

duration walks and underestimates the dominance of short-duration walks. In this section,

we discuss differences between two and three dimensions that may explain this result, and

discuss the role of the connectivity of the three-dimensional lattice. We suggest that the

failure of the approximation in three dimensions is due to the stratification and filamentation

of 3D clusters, which is visualized in Fig. 6. Compare the hole-filled and filamentous nature

of that cluster to the 2D clusters depicted in Fig. 2.

To quantitatively compare clusters in two and three dimensions we use two measures.

First, we measure the ratio of interfacial surface area to cluster volume. Figure 7 gives that

ratio as a function of bubble size. In two dimensions, as the bubble increases in volume,

the ratio decreases as a power of the cluster size. For a Euclidean geometric shape, like

a disc, the perimeter increases linearly with linear size whereas the volume increases with

the square. Therefore, such shapes would exhibit a ratio of [area]/[volume] ∼ [volume]−1/2.

Our observed exponent is smaller, indicating that although the volume is Euclidean, the

perimeter is fractal. In three dimensions, however, we do not observe a power-law scaling.

Instead, the ratio rapidly asymptotes. This behavior is expected for filamentous shapes that

lack a solid core, shapes peppered with holes, and shapes with surfaces that roughen as they

grow.

Our second measure is the Euler characteristic [32]. This is a topological invariant, a

number that describes the shape of the cluster regardless of how it may be bent or twisted.

It is classically defined for polyhedra as ψ = V −E +F , where V is the number of vertices,
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The lattice size is L = 2000 in 2D and L = 200 in 3D. The broken line gives v = µ2. The upper

cutoffs are determined by the finite lattice size.
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FIG. 5: Probability density of µ (left) and v (right), the mean and variance of τ . They are given

for both two and three dimensions (top and bottom, respectively). The plots give both measured

histograms (solid) and predicted scalings (broken) for circular and spherical bubbles. Also given are

measured results for lattices with reduced coordination number (open circles). Despite the limited

range of µ in three dimensions, we note the improved agreement with theory upon reducing lattice

connectivity.

FIG. 6: (Color online) A small connected defending cluster in three dimensions. Note the filamen-

tous and tortuous nature of the cluster.

E is the number of edges, and F is the number of faces. The Euler characteristic, ψ, of all

convex polyhedra is exactly 2. For tori with n holes, ψ = 2 − 2n. For some non-convex

polyhedra, specifically where there are pinching points where multiple faces share an edge,

ψ < 2.
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FIG. 7: Fluid-fluid interfacial surface area to volume ratio. The ratio is computed for defending

bubbles in (a) two dimensions for L = 2000 and in (b) three dimensions for L = 200, and plotted

as a function of bubble volume.

We measure ψ for the 3D clusters and find that the largest clusters, representing 20% of

the total mass, have an average Euler characteristic of ψ < −300. Therefore, the clusters

that we expect to contribute the largest values of µ are riddled with holes and convoluted

topologies. These features bring the interior of the bubble closer to the surrounding fluid,

reducing the first-passage times appreciably.

The holes and infiltrations of invading fluid into the bubbles of defending fluid lead to

short diffusion times between the bubble interior and the interface. However, on latices with

smaller coordination numbers (lower connectivity), this effect may be ameliorated. The

cubic lattices have coordination number 6. It has been shown that for small coordination

numbers (z < 5), the critical behavior of IPT is very different from regular percolation [33].

Specifically, the differences favor trapping. As trapping becomes more likely, we hypothesize

that the bubbles develop solid cores and become less infiltrated with invading fluid thereby

increasing the diffusion times from the bubble interior to the interfaces.

We test this hypothesis by excluding fluid from a random subset of lattice points when

generating the bubble geometry. We exclude 30% of the sites, so the remaining accessible

lattice sites have a mean coordination number 4.2. We then perform the IPT and random

walk algorithms as before, where the excluded sites are off-limits to both invading fluid and

random walkers.

The resulting bubbles are less filamentous and more compact. We measure the Euler

characteristic (while including the excluded volume in the connected cluster) and find an
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average ψ of ≈ −180 for the largest clusters, significantly higher than for unmodified lattices.

We find that the surface area to volume ratios have asymptotic behaviors similar to before,

but the ratios approach one, considerably lower. In these ways, the bubbles formed on

the modified lattice are more solid and less stratified as those formed on the unmodified

lattice, but have the same scaling features. However, the data in Fig. 5 show that bubbles

formed on the modified lattice gives scalings of µ and v that are in closer agreement with

the predictions for spheres. Lowering the coordination number from 6 to 4 increases the

compactness of the clusters, but the behavior is still distinct from that of spheres.

B. Characterizing the overall chemistry

In this section, we describe how the overall chemistry of the system depends on the size,

dimensionality, and coordination number of the underlying lattice. We discuss the physical

characteristics that determine the chemistry and explore the implications for upscaling pro-

cedures. First, we determine a measurement that describes the overall system. The average

chemical concentration, 〈C〉, is the natural choice. However, in many cases we are interested

only in those locations that deviate substantially from the average. For example, if C(x) is

related to alkalinity (or generally the ability of the chemical system to neutralize acids) we

may want to know how much of the system is sufficiently alkaline for a particular reaction

(e.g. precipitation) to occur. Whereas the average concentration may predict that the reac-

tion of interest occurs nowhere, the locations that deviate from the mean react differently.

In general, we compute the full distribution of C(x), but here we focus on and report the

fraction, F , of the defending fluid for which the concentration is below a chosen threshold,

Ccrit.

We measure 〈C〉 and F over the residual bubbles as generated by the invasion percolation

algorithm. This is repeated for several lattices in both two and three dimensions and the

results are collated in Fig. 8. We compare the results against the predictions of our analytic

spherical bubble approximations using Eqs. 4, 11, and 23. For each system size, an upper

cutoff on µ is applied that is consistent with simulation. In three dimensions, the theoretical

result is also compared to simulations on latices with reduced coordination number.
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FIG. 8: Mean concentrations C (top) and fraction of defending fluid below threshold, F (bottom),

as functions of lattice size, L. Results are given for both two and three dimensions. Results using

the full distributions of first-passage times (circles) differ from those using only the mean time

(stars). In three dimensions, results from a lattice with reduced connectivity (open circles) are in

better agreement with theory (line).

1. Chemistry depends on full distribution of first-passage times

Our first conclusion, drawn from theory and the simulation results, is that the local and

average concentrations depend on the complete distributions of first-passage times as eval-

uated at each point within the defending phase. A first naive approximation to computing

〈C〉 is to compute a single diffusion time averaged over the whole system and applying it to

an exponential decay. This approach incorrectly accounts for the heterogeneous distribution

of locations, some of which are close to interfaces and some of which are far. The next level

of complexity uses mean first-passage times computed for each location, 〈τ〉. However, we

have argued that this is also insufficient and the full distribution of diffusion times from

each x is necessary. Even for the simplest shaped bubbles, such as discs, the naive use of a

single parameter such as a “characteristic diffusion length” to describe the local geometry

at each point will inaccurately predict concentrations. Figure 9 shows the fractional error,

∆C = (C − Cmfpt), introduced by applying the mean first-passage times 〈τ〉 in computing

〈C(x)〉 (Eq. 5) rather than applying complete distributions of first-passage times, P (τ, x)
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FIG. 9: (Color online) Fractional error ∆C/C introduced by applying mean first-passage times in

computing C(x), rather than applying the complete distribution. ∆C(L)/C is given as a function

of L for both two (dots) and three (crosses) dimensions.

(Eq. 6). We see that ∆C(L)/C increases with system size, approaching 25% and 10% in two

and three dimensions, respectively. In other words, the concentration at a given location is

incorrectly estimated using the mean first-passage time via Eq. 5. Furthermore, although

the full distribution of first-passage times is necessary to accurately describe the connec-

tion between geometry and chemistry at each location, we have found that a two-parameter

description (mean and variance) offer a decent approximation.

2. Structural model of material is critical

We find that the structural model of the porous medium, and the structure of the re-

sulting bubbles, is critical in predicting the distribution of first-passage times and resulting

concentrations. Most notably, a spherical approximation for bubbles works well in two-

dimensional media, but fails in three dimensions. The scaling behavior not only depends

upon the dimensionality of the lattice, but also on the connectivity. This conclusion equally

applies to distributions of chemical concentrations. However, the particulars of the medium

and the model of bubble formation do not affect the qualitative conclusions discussed in this
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Section. Equation (4) applies to all linear-kinetics models, and any correlated infiltration

process will give rise to system size dependence (as discussed below).

3. Average chemistry depends on size scales

The average chemical concentration computed over a single bubble depends on the size of

the bubble. As bubbles increase in size, more volume is added in the core with long diffusion

times. Therefore, larger bubbles have lower average concentrations. In two-dimensions, the

scaling of diffusion times as the bubble grows in volume is equivalent to that of a circle.

However, in three dimensions, the scaling differs from a sphere.

When averaged over the entire system of bubbles, 〈C〉 and F depend upon the choice

of system size. Bubbles exist in all sizes and are described by power-law distributions, the

upper cutoff of which is determined by the size of the lattice, L. Therefore, larger lattices

will generate disproportionately more numerous large bubbles, which in turn yield longer

diffusion times. The average over the lattice of a quantity such as concentration will depend

on L, as shown in Fig. 8, regardless of whether the quantity is experimentally measured,

numerically computed, or analytically derived.

Another implication is that a given system is not equivalent to a similarly sized subdivision

of a larger system. For example, an IPT realization on a 2D lattice of width L/N does not

exhibit the same statistics as a realization on a lattice of size L subdivided into N2 equal

parts. First of all, a measurement averaged over the subdivisions is equal to that measured

over the large lattice, whereas the smaller realizations have different statistics. Second, there

is great variability and heterogeneity among the many subdivisions of size L/N . There does

not exist a crossover length, λ, above which the variability among subdivisions smooths out

and they exhibit equivalent statistics. However, separate IPT realizations on lattices of size

L/N (not subdivisions of a realization of size L) will produce equivalent statistics.

4. Implications for upscaling procedures

For a very large system the scaling laws that emerge from the IPT process have lengthscale

cutoffs determined by physical scaling cutoffs (discussed in the next section). Coarse graining

is typically executed using well-mixed representative volume elements (REV) that are smaller
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than those upper bounds. A simple approach to coarse graining is to assign kinetic and

equilibrium chemical parameters that are derived from and applicable to samples of the

REV size. For example, if we take laboratory measurements of dissolution kinetics in a

sample of size 10 cm, then we apply those parameters to a large-scale simulation with

resolution of 10 cm. However, we have shown that those measurements will vary with the

size of that sample. A proper coarse-graining cannot depend on the resolution.

In an upscaling application, the applied averages must therefore be measured over the

entire physical system or over a length scale determined by physical percolation. We can

assign to the small REVs kinetic and equilibrium chemical parameters drawn from distribu-

tions like those measured at the largest physical length scales. Furthermore, the parameters

will be highly spatially correlated because bubbles and structures span multiple REVs. Ac-

curate upscaling procedures must capture the important correlations and heterogeneities by

including variations and correlations in the parameters. An exploration of those correlations

and how they can be incorporated into a coarse-graining process are topics of future work.

5. Upper lengthscales in invasion percolation

The physics of the invasion percolation process determine upper cutoffs of the emergent

length scales. These are due to several forces, most notably those of viscosity and buoyancy

[26, 34, 35]. At each time step, the invasion percolation process chooses for invasion the

neighboring pore requiring the smallest interfacial pressure,

∆pint ∼ γ/a, (26)

where γ is the interfacial surface tension between phases and a is the throat size. The sequen-

tial process assumes that other sources of pressure are irrelevant across the system. However,

the invading fluid also experiences pressure gradients due to buoyancy and viscosity. Across

a length scale L̄, these two pressures vary by

∆pgrav ∼ ∆ρ gL̄

∆pvisc ∼
µinvV L̄

κ
,

(27)

where ∆ρ is the difference in densities between fluids, g is gravity, µinv is the dynamic

viscosity of the invading fluid, V is the velocity of invasion, and κ is the absolute permeability

22



[34]. Above the critical buoyant and capillary length scales, the buoyant and viscous forces

are greater than the interfacial forces. Therefore, across distances greater than L̄grav and

L̄cap, the invasion process is no longer dominated by the interfacial pressure drops across

pore throats, but rather by gravitational and capillary forces. Setting Eq. 26 equal to

Eq. 27, we solve for those two length scales. The dimensionless cutoffs, Lgrav = L̄grav/a and

Lcap = L̄cap/a, are

Lgrav =
1

Bo
(28)

Lcap =
κ

a2Ca
, (29)

where Bo is the Bond number and Ca is the capillary number.

As an example test case, we consider the subsurface movement of supercritical CO2 for

carbon sequestration. At a 2 Km depth, the system will be roughly at 340K and under

20 MPa of pressure [36]. Under these conditions, ∆ρ ≈ 0.35g/cm3 and γ ≈ 27mN/m

[37]. The viscosity of the supercritical carbon dioxide is µ = 0.048 mPa s [38]. A likely

injection scenario involves a flux of approximately 3 Mton of carbon dioxide per year, which

is equivalent to about 100 liters/second [36]. At a distance of only 10 meters from the

injection point, this corresponds to a fluid velocity of approximately V = 3× 10−4 cm/s, for

a material with porosity of 0.3. The ratio κ/a2 is typically small, approximately 10−3 [1].

For this model system, the corresponding capillary number is Ca = µv/γ = 5 × 10−9.

For pores of size 0.1 mm, the Bond number is Bo = ∆ρga2/γ = 1.3 × 10−3. The resulting

dimensionless cutoffs are Lgrav ≈ 103, and Lcap ≈ 106, corresponding to 10 cm and 100

m, respectively. For systems larger than these cutoffs, buoyant and viscous effects must be

included in the invasion percolation algorithm by including spatial gradients in the bond

invasion preferences [26, 35, 39]. Note that the values used here are not meant to predict

geological carbon sequestration conditions with high accuracy, but are meant to illustrate

the critical length scales and show that omitting viscous and buoyant effects is reasonable

over the size scales of our simulations.

V. CONCLUSION

In summary, we have shown that complex geometric boundary conditions emergent in

two-phase porous flow have profound effects on the bounded reaction-diffusion processes. We
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have shown that the chemistry at each point in the reactive phase is determined by the full

distribution of first-passage diffusion times, and scalar geometric measures are insufficient to

accurately predict concentrations due to the reactions. We have studied the scaling behavior

of the moments of these distributions both in simulation and in an idealized spherical bubble

approximation. The analytic approximation is successful in two dimensions in that it ac-

curately predicts scaling laws describing the first-passage time distributions, and therefore

can accurately predict concentrations. However, the simple spherical approximation fails

to account for the convoluted shapes of bubbles in three dimensions. The existence of the

power-law scaling implies that shapes and structures exist of all length scales permitted by

the system size. Therefore, averages taken over the system, such as the average chemical

concentration, depend upon that arbitrary choice of system size. This complication must

be accounted for in any accurate coarse-graining of the system.
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